Recent Advancements in Cavity controlled QFT effects

Kinjalk Lochan, IISER Mohali (INDIA)

Università degli Studi Federico II, Napoli 25 June 2025

15th annual conference on Relativistic Quantum Information (North)

Jaffino Stargen @ Joy Univ

Hendrik Ulbricht @ U Southampton

Pritam Nanda@ IISER M

Akhil Deswal @ IISER M

Andrea Vinante @ IFN, Trento

Sandeep Goyal @ IISER M

Harkirat Singh Sahota @IIT Delhi

Navdeep Arya @ U Stockholm

Cavity enhanced Unruh effect D. Jaffino Stargen, KL Phys. Rev. Lett. 129, 111303 (2022)

Radiative correction to states of atoms Navdeep Arya, D. Jaffino Stargen, KL, Goyal; Phys. Rev. D (2024)

Superradiance in cavity environment Akhil Deswal, Navdeep Arya, KL, Goyal; arxiv 2501.16219

Interacting quantum field theory in cavity Pritam Nanda, KL; To appear ...

- At not so UV scale the interaction between fields/atoms are typically limited by energy scales of probes
- Interesting predictions need extreme conditions for verifications.
- Lab based test : Unruh Effect, non-inertial QFT, Inertial QFT effects : Hierarchy suppressed interaction
- **Modification from the boundary conditions : Dilution of extreme conditions**

Kinjalk Lochan, IISER Mohali (INDIA)

Atomic and Field probes

Perturbative approach : correlators of field play central role

 $\rho(\omega_k)$ is the density of field modes. $\mathcal{I}(\Delta E, \omega)$ determines the participation of modes in a process

$$(\delta E_a)_{\rm rf} = -\frac{g^2}{2} \sum_{i,j} \int_0^\infty \mathrm{d}u \sum_d |\langle b|\mu(0)|d\rangle|^2 (e^{i\omega_{bd}u} - e^{-i\omega_{bd}u}) \frac{1}{2} \langle 0|\{\Phi^{\rm f}(\tau_0), \Phi^{\rm f}(\tau_0 - u)\}|0\rangle$$

Scattering amplitudes

 $\langle K_1, K_2, ..., K_\ell; k_1, k_2, ..., k_p | : \Phi^n(x) \phi^m(x) | K'_1, K'_2, ..., K'_{n-\ell}; k'_1, k'_2, ..., k_{m-p} \rangle$

Probe Response $\propto \int_{0}^{\infty} d\omega_k \rho(\omega_k) \mathcal{I}(\Delta E, \omega_k) \mathcal{J}(\omega_k, \eta^i)$

Manipulating correlations Bridging the gap of extreme conditions

Kinjalk Lochan, IISER Mohali (INDIA)

Midi^{*}superspace quantization of field

Putting boundaries starts building up resonance structure $\int \frac{d^3k}{\omega_k} u_k(x) u_k^*(y)$

 $\omega_k^2 = k^2$

Strongly enhances field correlations at resonance

 $\sum \delta(\omega_{nml}-f(nml)/L)$

nml

Scully et. al. Phys. Rev. Lett. (2003),

Lopp, Martin-Martinez, Page CQG (2018)

 $\sum_{n} \int \frac{d^2 k}{\omega_{k,n}} u_{k,n}(x) u_{k,n}^*(y)$ $\omega_{k,n}^2 = k^2 + \frac{f(n)^2}{I^2}$

 $\sum_{n} \sum_{m} \int \frac{dk_z}{\omega_{k_z,n,m}} u_{k_z,n,m}(x) u_{k_z,n,m}^*(y)$ mn $\omega_{k_z,n,m}^2 = k_z^2 + \frac{f(n,m)^2}{I^2}$

 $\omega_k^2 = k^2$ $\frac{d^3k}{d\omega d\Omega} = \omega^2 d\omega d\Omega$ ω_k

Low energy suppression

Strongly enhances field correlations at resonance

Measure of modes

Energy dilution arrested, coupling dictated

 Introduces a cutoff in the system ou; Phys. Rev. Res. (2025) rya, KL, Goyal; arxiv 2501.16219

SPONTANEOUS EMISSION IN CYLINDRICAL CAVITY

Kinjalk Lochan, IISER Mohali (INDIA)

$$\dot{\mathcal{F}}(\Delta E) = \frac{1}{2\pi} \int_0^\infty d\omega_k \underbrace{\frac{8}{a^2 e^{-\pi \Delta E/a}} \frac{K_{2i\Delta E/a}(2\omega_k/a)}{(2\omega_k/a)}}{\mathcal{I}(\Delta E, \omega_k)}$$

$$\sum_{m=-\infty}^\infty \sum_{n=1}^\infty \frac{\frac{(\omega_k/\pi R^2)}{J_{|m|+1}^2(\xi_{mn})} \frac{\Theta l(\omega_k - \xi_{mn}/R)}{\sqrt{\omega_k^2 - (\xi_{mn}/R)^2}}}{\sqrt{\omega_k^2 - (\xi_{mn}/R)^2}} \times \underbrace{J_m^2(\xi_{mn}\rho_0/R)}_{\mathcal{J}(\rho_0/R)}$$

$$= \frac{e^{\pi \Delta E/a}}{\pi^2 R(Ra)} \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \frac{J_m^2(\xi_{mn}\rho_0/R)}{J_{|m|+1}^2(\xi_{mn})} \times K_{i\Delta E/a}^2(\xi_{mn})$$

 $ho(\omega_k)$

- Fall off is less steep and non monotonic !
- Possible to catch the radius where it is above inertial and not too small
- Stargen, KL Phys. Rev. Lett. (2022)]

Radiative energy corrections

Navdeep Arya, D. Jaffino Stargen, KL, Goyal; Phys. Rev. D (2024)

If atoms see more pronounced quantum fluctuations, their atomic lines must respond

DDC formalism for radiative correction

 $H_I(\tau) = -g\mu(\tau)\Phi(\tilde{x}(\tau))$

Due to interaction, both field and atomic states change

$$\frac{d}{d\tau}\hat{\mathcal{O}}_A = \frac{i}{\hbar} \left[\hat{H}\right]$$

$$\frac{d}{d\tau}\hat{\mathcal{O}}_{\phi} = \frac{i}{\hbar} \left[\hat{H}_{\phi}, \hat{\mathcal{O}}_{\phi}\right] + \frac{i}{\hbar} \left[\hat{H}_{I}, \hat{\mathcal{O}}_{\phi}\right]$$

For leading order shift in eigenstates of the atomic Hamiltonian

$$(\delta E_a)_{\rm vf} = -\frac{g^2}{2} \int_0^\infty du$$

 $C^{({\rm R})}(u) = \frac{1}{2} \langle 0| \{ \Phi^{\rm f}(\tau_0), u\} \}$

$$\chi^{(S,a)}(u) = i \sum_{d} |\langle a|_{f}$$

Dalibard, Dupont-Roc, and C. Cohen-Tannoudji, J. Physique 43, 1617 (1982). Audretsch and Muller Phys. Rev. A. 50, 1755 (1994)

 $\left[\hat{\mathcal{O}}_A \right] + \frac{i}{\hbar} \left[\hat{H}_I, \hat{\mathcal{O}}_A \right]$

 $luC^{(R)}(u)\chi^{(S,a)}(u)$

 $\Phi^{\mathrm{f}}(\tau_0-u)\}|0\rangle,$

 $\mu(0)|d\rangle|^2 \left(e^{i\omega_{ad}u} - e^{-i\omega_{ad}u}\right)$

Radiative energy shifts in cavity

<u>D. J. Heinzen</u> and <u>M. S. Feld; Phys. Rev. Lett. 59, 2623 (1987)</u>

 $\tilde{x}^{\nu}(\tau) = (\gamma \tau, 0, 0, \gamma v_0 \tau)$

$$\overline{2} \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \frac{J_m^2(\xi_{mn}\rho_0/R)}{J_{|m|+1}^2(\xi_{mn})} \int_{-\infty}^{\infty} \frac{\mathrm{d}k'_z}{\omega'_k} e^{-i\omega'_k(\tau_2-\tau_1)}$$

$$-1\left(\frac{\sqrt{1-\left(\frac{R\omega_{0}}{\xi_{mn}}\right)^{2}}}{\left(\frac{R\omega_{0}}{\xi_{mn}}\right)}-\frac{\pi}{2}\right], \quad R\omega_{0}<\xi_{mn},$$

$$\frac{R\omega_0}{\xi_{mn}} + \sqrt{\left(\frac{R\omega_0}{\xi_{mn}}\right)^2 - 1}, \qquad$$

$$R\omega_0 \geq \xi_{mn}.$$

On a Rindler trajectory on the other hand

$$\Delta_{\rm rf} = (\delta E_e)_{\rm rf} - (\delta E_g)_{\rm rf}$$

= $\frac{g^2}{(2\pi R)^2} \sum_{m,n} \frac{J_m^2(\xi_{mn}\rho_0/R)}{J_{|m|+1}^2(\xi_{mn})} \int_0^\infty {\rm d}u \int_{-\infty}^\infty \frac{{\rm d}u}{a}$

$$\Delta - \Delta_0 = \frac{g^2 \omega_0}{(2\pi)^2 (R\omega_0)^2} \sum_{m,n} \frac{J_m^2(\xi_{mn}\rho_0/R)}{J_{|m|+1}^2(\xi_{mn})} \times \int_0^\infty d\tau$$

 $\varpi \equiv \omega_k / \omega_0$

 $\alpha \equiv \omega_0/a$

More pronounced shifts in the neighbourhood of resonance points

 $(\Delta - \Delta_0)/\Delta_0$

 $(\Delta - \Delta_0)/\Delta_0$

As. Before : The fall in radiative shift away from resonance is less steep and non monotonous

 This gives a more room for tuning cavity geometry : A more sensitive measure

Generalisable for other accelerating setting as well Navdeep Arya, Sandeep Goyal; Phys. Rev. D (2024)

Field - Field interaction

Pritam Nanda, KL; To appear ...

Field interaction : How fields talk to each other

$$\mathcal{L} = \frac{1}{2} \left[-\partial_{\mu} \Phi \partial^{\mu} \Phi - M^{2} \Phi^{2} - \partial_{\mu} \phi_{1} \partial^{\mu} \phi - m^{2} \phi^{2} \right] - \lambda \Phi^{n}(x) \phi^{m}(x)$$

What they end up doing to each other is captured in

$$-i\lambda\langle K_1, K_2, ...K_{\ell}; k_1, k_2, ...k_p | \int d^4x \Phi^n(x)\phi^m(x) | K'_1, K'_2, ...K'_{n-\ell}; k'_1, k'_2, ...k_{m-p} \rangle$$

Illustrative example : Particle decay $\mathcal{L} = \frac{1}{2} \partial^{\mu} \Phi \partial_{\mu} \Phi - \frac{1}{2} M^2 \Phi^2 + \frac{1}{2} \delta^2$

 $\langle p_1 p_2 | -i\lambda \int d^4 x \Phi(x) \phi(x) \phi(x) | P \rangle$

Coupling hierarchy sets up the dominant decay channels

$$\Gamma = \frac{1}{2M} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^6} \frac{1}{4E_{p_1} E_{p_2}} |\mathcal{M}(\Phi \to \phi\phi)|^2 (2\pi)^4 \delta^4 (P_\Phi - p_{1\phi} - p_{2\phi})$$

$$\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} - \lambda\Phi\phi\phi$$

Decay rate and branching ratio

The decay rate is dependent on the "effective coupling"

$$\Gamma = \gamma \frac{\lambda^2}{M} \int \frac{d^3 \vec{p_1}}{(2\pi)^2} \frac{1}{4(\vec{p_1}^2 + m^2)} \delta\left(M - 2\sqrt{\vec{p_1}^2 + m^2}\right) = \frac{\lambda^2 E_P}{M^2} \sqrt{1 - \frac{4m^2}{M^2}}$$

Weak coupling : Longer decay

Migrate to high energy to appreciate this process !

$$\mathcal{L} = \frac{1}{2} \left[-\partial_{\mu} \Phi \partial^{\mu} \Phi - M^2 \Phi^2 - \partial_{\mu} \phi_1 \partial^{\mu} \phi_1 - m_1^2 \phi_1^2 - \partial_{\mu} \phi_2 \partial^{\mu} \phi_2 - m_2^2 \phi_2^2 \right] - \lambda_1 \Phi \phi_1 \phi_1 - \lambda_2 \Phi \phi_2 \phi_2 \phi_2 \phi_2$$

In multiple field interaction, the coupling hierarchy sets the branching ratio

Higgsplosion : Khoze, Spannowsky; Nuclear Physics B (2018)

Higgs decay

Decay channel	Branching ratio	Rel. uncertain
$H \to \gamma \gamma$	2.27×10^{-3}	2.1
$H \to ZZ$	$2.62 imes 10^{-2}$	± 1.5
$H \to W^+ W^-$	2.14×10^{-1}	± 1.5
$H \to \tau^+ \tau^-$	6.27×10^{-2}	± 1.6
$H \to b \overline{b}$	$5.82 imes 10^{-1}$	+11.
$H \to c \bar{c}$	$2.89 imes 10^{-2}$	+52.
$H \to Z\gamma$	1.53×10^{-3}	± 5.8
$H \to \mu^+ \mu^-$	$2.18 imes 10^{-4}$	± 1.7

 $m_H = 125 \,\mathrm{GeV}$

Status of Higgs boson : Particle data group (2023)

LHC Higgs cross section working group report (2016)

Can we enhance $\langle p_1 p_2 | -i\lambda \int d^4 x \Phi(x) \phi(x) \phi(x) | P \rangle$?

Selective Enhancement in 2-D square cavity

$$\omega_{k_z^{(3)}}^2 = k_z^{(3)^2} + \frac{\pi^2}{L^2}(n_3^2 + m_3^2) + M^2$$

Transition amplitude : Reduced symmetry

$$(-i\lambda)\int < p_1 p_2 |\Phi\phi\phi|P > d^4 x = \frac{1}{L} \frac{2n_1 n_2 n_3 (\cos n_1 \pi \cos n_2 \pi \cos n_3 \pi - 1)}{(n_1 + n_2 + n_3)(n_1 - n_2 + n_3)(n_1 + n_2 - n_3)(n_1 - n_2 - n_3)} \times \frac{2m_1 m_2 m_3 (\cos m_1 \pi \cos m_2 \pi \cos m_3 \pi - 1)}{(m_1 + m_2 + m_3)(m_1 - m_2 + m_3)(m_1 - m_2 - m_3)(m$$

$$\delta(k_z^{(3)} - k_z^{(2)} - k_z^{(1)}) \delta(\omega^{(3)} - \omega^{(2)} - \omega^{(1)})$$

 $\Gamma = \gamma \frac{\lambda^2}{ML^2} \sum_{n_1, n_2} \sum_{m_1, m_2} \left(A_{n_1, n_2, 1} \right)^2 \left(B_{m_1} \right)^2$

Transition amplitude : Decay into scalar photons

 $\Gamma = 2 \frac{\lambda^2}{ML^2} \sum_{n_1, n_2} \sum_{m_1, m_2} \frac{\left(A_{n_1, m_2} - \frac{\lambda^2}{m_1, m_2} - \frac{\lambda^2}{m_1, m_2} - \frac{\lambda^2}{m_1, m_2} - \frac{\lambda^2}{m_1 + m_1^2 - m_2^2 - m_2^2}\right)}{\frac{\lambda^2}{2M} + \sqrt{\frac{M^2}{m_1 + m_1^2 - m_2^2 - m_2^2}} + \sqrt{\frac{M^2}{m_1 + m_1^2 - m_2^2 - m_2^2}}$

$$_{1,m_{2},1})^{2} \int \frac{dk_{z}^{(1)}dk_{z}^{(2)}}{\omega_{k_{z}^{(1)}}\omega_{k_{z}^{(2)}}} \delta(M - \omega_{k_{z}^{(1)}} - \omega_{k_{z}^{(2)}}) \ \delta(k_{z}^{(2)} + k_{z}^{(1)})$$

$$\frac{A_{n_1,n_2,1}}{M} \left(\frac{B_{m_1,m_2,1}}{2} + \frac{m_1^2 - n_2^2 - m_2^2}{2} + \frac{\pi^2}{L^2} \left(n_2^2 + m_2^2 - n_1^2 - m_1^2 \right) \right) \right)$$

$$\frac{E_P}{M} \left(\frac{E_P}{M} \left(\frac{M^2 + \frac{\pi^2}{L^2} \left(n_1^2 + m_1^2 - n_2^2 - m_2^2 \right) \right)^2}{4M^2} - \frac{\pi^2}{L^2} \left(n_1^2 + m_1^2 \right) \right) \right)$$

Transition amplitude : Each process has its own characteristic resonance

Thus a particular decay channel can be resonance condition.

$$\frac{1}{\frac{+\frac{\pi^2}{L^2}(n_1^2 + m_1^2 - n_2^2 - m_2^2))^2}{4M^2} - \frac{\pi^2}{L^2}(n_1^2 + m_1^2)}$$

n-particle decay will have different amplitude and has a different resonance location

Thus a particular decay channel can be selectively enhanced by identifying the proper

Atom/field or field-field interaction at low energy is typically made uninteresting due to dilution of participating modes.

- conditions on specific surface.
- resonances.
 - low energies

Summary

Controlling the density fall off can be achieved by selecting Dirichilet boundary

Leads to surge in correlations and cross section of processes around these

Selective enhancement of interesting processes can alternatively be achieved at

