

QUANTUM REFERENCE FRAMES IN QUANTUM SPACETIMES

Flavio Mercati - University of Burgos

Relativistic Quantum Information North - Naples, 25.6.2025

Planck-scale spacetime foam

Quantum Gravity \rightarrow spacetime foam? [Wheeler, Ann. Phys. 2 (1957)]

Lorentz violation? [Pavlopoulos, Phys. Rev. **159** (1967)]

Deformation of Lorentz invariance without violation of Relativity Principle? [Amelino-Camelia, Nature **418** (2002)]

[Rovelli–Speziale, PR**D67** (2003)]

Minimal length ₩ Lorentz violation?

- Relevance for 3+1D QG: can be formulated as a topological BF theory + "simplicity" constraints [Plebanski, JMP 18 (1977)].
- [Freidel-Livine PRL 96 (2006)]: QG + scalar field → nonlocal effective field theory = scalar field on noncommutative spacetime.

[Gelfand–Naimark, Mat. Sbornik. 12 (1943)]

[Connes, Noncommutative Geometry (1994)]

Quantum groups

 $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i \ell \varepsilon^{\mu\nu}{}_{\rho} \hat{x}^{\rho}$ does not break Poincaré invariance. It is invariant under a **quantum group/Hopf algebra** deformation of ISO(2,1). Poincaré invariance = **comodule** property:

 $\hat{x}^{\prime\mu} = \Lambda^{\mu}{}_{\nu} \otimes \hat{x}^{\nu} + \boldsymbol{a}^{\mu} \otimes \hat{1}, \qquad \left[\hat{x}^{\prime\mu}, \hat{x}^{\prime\nu} \right] = i \, \boldsymbol{\ell} \, \epsilon^{\mu\nu}{}_{\rho} \, \hat{x}^{\prime\rho} \, ,$

$$[\boldsymbol{\Lambda}^{\mu}{}_{\nu},\boldsymbol{\Lambda}^{\rho}{}_{\sigma}] = [\boldsymbol{a}^{\mu},\boldsymbol{\Lambda}^{\rho}{}_{\sigma}] = 0, \quad \left| [\boldsymbol{a}^{\mu},\boldsymbol{a}^{\nu}] = i\,\boldsymbol{\ell}\,\epsilon^{\mu\nu}{}_{\rho}\,\boldsymbol{a}^{\rho} \right|.$$

 $\Lambda^{\mu}{}_{\nu}, a^{\mu} \in \text{noncomm.}$ deformation of algebra of functions on ISO(2,1). Group axioms (composition law, inverse, identity), must be **compatible** with $[a^{\mu}, a^{\nu}] \neq 0$ (*i.e.* homomorphisms), Then you have a **Hopf algebra**.

Examples of quantum groups

κ-Poincaré

λ-Poincaré

- SU_q(2) [Woronowicz, Publ. Res. Inst. Math. Sci. 23 (1987)]
- $GL_q(N)$, $SL_q(N)$, $SU_q(N)$ [Faddeev *et al.*, Leningrad Math. J. 1 (1990)]
- SO_q(p,q) [Aschieri, Lett. Math. Phys. 49 (1999)]
- **T-Poincaré:** 17 classes of models [Mercati, PTEP **2024** 073B06 & 123B05, arXiv:2404.08729, 2311.16249]
 - ► **θ-Poincaré** [Balachandran-Martone, MPLA **24**, 1811 (2009)]
 - [Lukierski *et al.* PLB **271**, 321 (1991)] [Ballesteros *et al.*, PLB **351**, 137 (1995)]
 - P-Poincaré [Lizzi–Scala–Vitale, PRD 106, D106 (2022)]
 - [Gubitosi et al. PRD 105, 126013 (2022)]

Works considered in this talk

- Localization and reference frames in κ-Minkowski/Poincaré [Carotenuto-Lizzi-Mercati-Manfredonia, IJGMMP 19 (2022), arXiv:2011.10628] [Lizzi-Manfredonia-Mercati-Poulain, PRD 99 (2019), arXiv:1811.08409]
- Localization and reference frames in ρ-Minkowski/Poincaré [Lizzi-Vitale, PLB 818 (2021), arXiv:2101.06633] [Lizzi-Scala-Vitale, PRD 106 (2022), arXiv:2205.10862]
- Quantum Euler angles, quantum alignment protocols and "doubly quantum mechanics" in SU_q(2) [Amelino-Camelia-D'Esposito-Fabiano-Frattulillo-Hoehn-Mercati, PTEP 2024 (2024), arXiv:2211.11347]
 [D'Esposito-Fabiano-Frattulillo-Mercati, Quantum 9 (2025), arXiv:2412.05997]
- 4. Hopf algebra associated to quantum reference frame transformations [Ballesteros-Giacomini-Gubitosi, Quantum 5 (2021), arXiv:2012.15769]
 [Ballesteros-Fernandez-Silvestre-Giacomini-Gubitosi, arXiv:2504.00569]

1. κ-localization & reference frames

"Timelike" κ-Minkowski spacetime:

$$[\hat{oldsymbol{x}}^0, \hat{oldsymbol{x}}^i] = rac{i}{oldsymbol{\kappa}} \, \hat{oldsymbol{x}}^i\,, \quad [\hat{oldsymbol{x}}^i, \hat{oldsymbol{x}}^j] = 0\,, \qquad oldsymbol{\kappa} \in \mathbb{R}\,.$$

• Representation: on $\mathcal{H}_{\kappa-\mathrm{Mink}}=L^2(\mathbb{R}^3)$:

$$\hat{x}^i o x^i, \qquad \hat{x}^0 o rac{i}{\kappa} \left(ec{x} \cdot ec{
abla} + rac{3}{2}
ight) = rac{i}{\kappa} \left(r \, \partial_r + rac{3}{2}
ight),$$

- Spectra: $\sigma(\hat{x}^{\mu}) = \mathbb{R} \;\; orall \mu.$ No point spectrum.
- Improper eigenfunctions of \hat{x}^0 : $\varphi_{\tau}(\vec{x}) = \kappa^{-i\tau} |\vec{x}|^{-\frac{3}{2}-i\tau}$ complete basis (\hat{x}^0 is selfadjoint).
- (r, θ, ϕ) and (τ, θ, ϕ) are two complete sets of commuting "observables". Mellin transform relates the two bases.

[Carotenuto-Lizzi-Mercati-Manfredonia, IJGMMP 19 (2022), arXiv:2011.10628]

- Log-Gaussians: $e^{-\frac{\log^2(r/r_0)}{\sigma^2}}r^{i\tau_0}$ saturate uncertainty $\Delta \hat{x}^0 \Delta \hat{r} \geq \frac{\langle \hat{r} \rangle}{2\kappa}$.
- In the limit $r_0 \to 0$ and $\sigma \to \infty$, while $r_0 e^{-\sigma^2} \to 0$, the state becomes **perfectly localized** on the **temporal axis**, r = 0, $\tau = \tau_0$.
- "Cilindretto" state centred at $(0, 0, z_0)$.

Mellin transform: $\Delta \tau \sim \frac{z_0}{2 a}$.

 $a \rightarrow 0$ or $z_0 \rightarrow \infty$ yield a nonnormalizable Mellin transform (infinitely delocalized in time).

[Lizzi-Manfredonia-Mercati-Poulain, PRD 99 (2019)]

к-Poincaré group

$$\begin{split} & [\hat{\boldsymbol{a}}^{\mu}, \hat{\boldsymbol{a}}^{\nu}] = \frac{i}{\kappa} \left(\delta^{\mu}{}_{0} \, \hat{\boldsymbol{a}}^{\nu} - \delta^{\nu}{}_{0} \, \hat{\boldsymbol{a}}^{\mu} \right) \,, \qquad [\hat{\boldsymbol{\Lambda}}^{\mu}{}_{\nu}, \hat{\boldsymbol{\Lambda}}^{\rho}{}_{\sigma}] = 0 \,, \\ & [\hat{\boldsymbol{\Lambda}}^{\mu}{}_{\nu}, \hat{\boldsymbol{a}}^{\rho}] = \frac{i}{\kappa} \left[\hat{\boldsymbol{\Lambda}}^{\mu}{}_{0} \, \hat{\boldsymbol{\Lambda}}^{\rho}{}_{\nu} + \eta^{\mu\rho} \, \hat{\boldsymbol{\Lambda}}^{0}{}_{\nu} - \delta^{\mu}{}_{0} \, \hat{\boldsymbol{\Lambda}}^{\rho}{}_{\nu} - \delta^{0}{}_{\nu} \, \eta^{\mu\rho} \right] \,. \end{split}$$

Representation: $\mathcal{H}_{\kappa-\mathrm{Poinc}} = L^2[SO(3,1) \times \mathbb{R}^3]$. In 1+1 dimensions:

$$\hat{\boldsymbol{a}}^{0} \rightarrow \frac{i}{\kappa} \left(\frac{1}{2} + q^{1} \frac{\partial}{\partial q^{1}} \right) + \frac{i}{\kappa} \left(\frac{1}{2} \cosh \xi + \sinh \xi \frac{\partial}{\partial \xi} \right) ,$$
$$\hat{\boldsymbol{a}}^{1} \rightarrow q^{1} + \frac{i}{\kappa} \left(\frac{1}{2} \sinh \xi + (\cosh \xi - 1) \frac{\partial}{\partial \xi} \right) ,$$
$$\hat{\boldsymbol{a}}^{\mu} \rightarrow \left(\cosh \xi - \sinh \xi \right)$$

$$\hat{\Lambda}^{\mu}{}_{\nu} \rightarrow \left(\begin{array}{cc} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{array} \right) \,.$$

Proposed physical interpretation

Alice's coordinates: \hat{x}^{μ} , Bob's coordinates: $\hat{x}'^{\mu} = \Lambda^{\mu}{}_{\nu} \otimes \hat{x}^{\nu} + a^{\mu} \otimes \hat{1}$. A spacetime event (*e.g.* a detector clicking) will be described in terms of expectation values and higher momenta:

> Alice: $\langle \hat{x}^{\mu} \rangle$, $\langle \hat{x}^{\mu} \hat{x}^{\nu} \rangle$, $\langle \hat{x}^{\mu} \hat{x}^{\nu} \hat{x}^{\rho} \rangle$... Bob: $\langle \hat{x}'^{\mu} \rangle$, $\langle \hat{x}'^{\mu} \hat{x}'^{\nu} \rangle$, $\langle \hat{x}'^{\mu} \hat{x}'^{\nu} \hat{x}'^{\rho} \rangle$...

Bob's expectation values are taken on $\mathcal{H}_{\kappa-\text{Poinc}} \otimes \mathcal{H}_{\kappa-\text{Mink}}$. Separable states on the \hat{x}'^{μ} algebra:

$$|g\rangle \otimes |\psi\rangle \in \mathcal{H}_{\kappa-\mathrm{Poinc}} \otimes \mathcal{H}_{\kappa-\mathrm{Mink}}$$

represent transformed reference frames: no *a priori* reason to entangle states of transformation and of coordinates. Dynamics might change that.

- "Identity state" $|e\rangle$, perfectly localized at $\hat{a}^{\mu} = \hat{\xi} = 0$. It connects two coincident reference frames.
- Cannot localize translations around $\hat{a}^{\mu} = 0$, unless $\hat{\xi} = 0$ also. In 3+1D, the only "pure Lorentz transformations" with $\langle \hat{a}^{\mu} \rangle = \Delta \hat{a}^{\mu} = 0$ states are **pure spatial rotations**. No "pure boost" states. First observed in [Amelino-Camelia *et al.*, PLB **671** (2009)]
- Poincaré-transforming the κ -Minkowski spacetime origin state $|o\rangle$ as $|g\rangle \otimes |o\rangle$, all statistical properties of the translation operators transfer to the coordinates: $\langle g, o | \hat{x}'^{\mu} \hat{x}'^{\nu} \dots | g, o \rangle = \langle g | \hat{a}^{\mu} \hat{a}^{\nu} \dots | g \rangle$
- Poincaré-transforming with the identity state: Alice and Bob agree on all localization and statistical properties of the event $\langle e, \psi | \hat{x}'^{\mu} \hat{x}'^{\nu} \dots | e, \psi \rangle = \langle \psi | \hat{x}^{\mu} \hat{x}^{\nu} \dots | \psi \rangle$,
- "Pure translation" states, localized around ξ̂ = 0, exist and are identical to the κ-Minkowski states, as far as â^μ are concerned.

Uncertainty from transformed reference frames

A **pure translation** state always increases the variance of \hat{x}^{μ} :

$$\Delta(\hat{\boldsymbol{x}}^{\prime\mu})^2 = \Delta(\hat{\boldsymbol{x}}^{\mu})^2 + \Delta(\hat{\boldsymbol{a}}^{\mu})^2 \ge \Delta(\hat{\boldsymbol{x}}^{\mu})^2,$$

all translations, except perfectly-localized purely temporal ones $\Delta \hat{a}^{\mu} = 0$, increase the fuzzyness of the event.

You cannot undo uncertainty: cannot translate from Bob to a third observer who agrees with Alice on all her measurements.

When boosts are involved, one can decrease the uncertainty of **one** coordinate though Lorentz contractions.

No invariant notion of locality: the "sharpness" of an event depends on the reference frame.

[Lizzi-Manfredonia-Mercati-Poulain, PRD 99 (2019)]

2. p-localization & reference frames

[Lizzi-Vitale, PLB 818 (2021)] [Lizzi-Scala-Vitale, PRD 106 (2022)] $[\hat{x}^{0}, \hat{x}^{1}] = i \varrho \hat{x}^{2}, \qquad [\hat{x}^{0}, \hat{x}^{2}] = -i \varrho \hat{x}^{1}, \qquad [\hat{x}^{3}, \cdot] = [\hat{x}^{1}, \hat{x}^{2}] = 0,$ cylindrical coordinates: $[\hat{x}^{0}, e^{i\hat{\varphi}}] = \varrho e^{i\hat{\varphi}}, \qquad [\hat{r}, \cdot] = [\hat{x}^{3}, \cdot] = 0.$

- Complete set of commuting operators: $(\hat{r}, \hat{x}^3, \hat{arphi})$ or $(\hat{r}, \hat{x}^3, \hat{x}^0)$.
- $\hat{\varphi}$ has compact spectrum and $\sigma(\hat{x}^0) = \varrho(\mathbb{Z} + \alpha), \; \alpha \in (0, 2\pi).$
- Have to choose a self-adjoint extension for \hat{x}^0 , e.g. $\alpha = 0$.
- Uncertainty bounds ightarrow the only sharply localized states are on the $z-x^0$ plane.

$$\begin{split} [\hat{\boldsymbol{a}}^{\mu}, \hat{\boldsymbol{a}}^{\nu}] &= 2\,i\boldsymbol{\varrho}\left(\delta^{\nu}{}_{0}\hat{\boldsymbol{a}}_{[1}\delta^{\mu}{}_{2]} - \delta^{\mu}{}_{0}\hat{\boldsymbol{a}}_{[1}\delta^{\nu}{}_{2]}\right), \qquad [\hat{\boldsymbol{\Lambda}}^{\mu}{}_{\nu}, \hat{\boldsymbol{\Lambda}}^{\rho}{}_{\sigma}] = 0, \\ [\hat{\boldsymbol{\Lambda}}^{\mu}{}_{\nu}, \hat{\boldsymbol{a}}^{\rho}] &= -2\,i\boldsymbol{\varrho}\left(\delta^{\rho}{}_{0}\delta^{\mu}{}_{[1}\hat{\boldsymbol{\Lambda}}_{2]\nu} - \hat{\boldsymbol{\Lambda}}^{\rho}{}_{0}\hat{\boldsymbol{\Lambda}}^{\mu}{}_{[1}\eta_{2]\nu}\right), \end{split}$$

representation of \hat{a}^{μ} as ρ -Minkowski \oplus vector fields on SO(3,1):

$$\hat{\pmb{a}}^{\rho} \rightarrow i \varrho \left(\delta^{\rho}{}_{0} \delta^{\mu}{}_{[1} \Lambda_{2]\nu} - \Lambda^{\rho}{}_{0} \Lambda^{\mu}{}_{[1} \eta_{2]\nu} \right) \frac{\partial}{\partial \Lambda^{\mu}{}_{\nu}} + i \varrho \left(\delta^{\rho}{}_{i} q^{i} - 2 \delta^{\rho}{}_{0} q^{[1} \frac{\partial}{\partial q^{2]}} \right) + h.c.,$$

- \exists identity state s.t. $\langle e|f(\hat{\Lambda}^{\mu}{}_{\nu},\hat{a}^{
 ho})|e
 angle = f(\delta^{\mu}{}_{\nu},0),$
- Unlike κ , pure Lorentz transformation states localized at $\hat{a}^{\mu} = 0$ exist only for **pure rotations around the z axis**.
- $\bullet\,$ Like $\kappa,\,$ pure-translation states exist and match $\rho\textsc{-Minkowski}$ states.
- The only perfectly localized states are **pure time translations** and pure **translations along the z axis**.
- Combinations of the three can be sharply localized too.
- Regarding uncertainty growth, everything we found in κ holds here too.

3. SUq(2) quantum Euler angles

Recall $SU_q(2)$ (here we assume $q \in \mathbb{R}$):

$$\hat{U} = \left(egin{array}{ccc} \hat{a} & - oldsymbol{q} \, \hat{c}^* \ \hat{c} & \hat{a}^* \end{array}
ight) \,, egin{array}{ccc} \hat{a} \, \hat{c} \, \hat{c} = oldsymbol{q} \, \hat{c}^* \, \hat{a} & \hat{c} \, \hat{c}^* = \hat{c}^* \, \hat{c} \ \hat{c}^* \, \hat{c} + \hat{a}^* \hat{a} = oldsymbol{1} & \hat{a}, \hat{a}^* - \hat{a}^* \hat{a} = (1 - oldsymbol{q}^2) \hat{c}^* \hat{a} \,. \end{array}$$

[Amelino-Camelia et al., PTEP 2024 (2024), arXiv:2211.11347]:

Spin-1 (co-)representation:
$$\hat{m{R}}_{ij}=rac{1}{2} ext{tr}\left(\sigma_{j}\,\hat{U}^{\dagger}\sigma_{i}\hat{U}
ight)$$
 .

Components of 3D rotation matrix do not commute with each other, $[\hat{R}_{xx}, \hat{R}_{xy}] \neq 0$, $[\hat{R}_{zy}, \hat{R}_{xy}] \neq 0$,... Two rotated labs can exchange N electrons in eigenstates of σ_x , σ_y and σ_z in order to determine their relative orientation. In commutative spacetime, in the large-N limit, their relative Euler angles can be determined exactly. If spacetime is noncommutative, these angles are incompatible observables

Thought experiment is completely independent of the energy of the electrons. N is the multiplier that magnifies the noncommutativity effects (q could be related to Λ/M_P^2 ratio, [Major-Smolin, NPB 473 (1996)]).

[D'Esposito et al., Quantum 9 (2025), arXiv:2412.05997]

To have a consistent framework, spinors describing spin-1/2 states need to live on a noncommutative generalization of \mathbb{C}^2 :

$$\hat{oldsymbol{\psi}} = \left(egin{array}{c} \hat{oldsymbol{x}} \ \hat{oldsymbol{y}} \end{array}
ight) \,, \qquad \hat{oldsymbol{x}} \, \hat{oldsymbol{y}} = oldsymbol{q} \, \hat{oldsymbol{y}} \, \hat{oldsymbol{x}} \,, \qquad \hat{oldsymbol{\psi}}_lpha = \hat{oldsymbol{U}}_{lphaeta} \otimes \hat{oldsymbol{\psi}}_eta \,.$$

- Following this logic, what in commutative spacetime one would call the probability of outcomes of Stern-Gerlach experiments, has to be promoted to self-adjoint operator on Hilbert space, $P(\uparrow) \rightarrow \hat{P}(\uparrow)$.
- Framework admits semiclassical superpositions of "probability eigenstates": **Doubly quantum mechanics.**

Implications

- Framework is Covariant & relational: All predictions are SU_q(2)-covariant. Reference frame changes are genuine quantum operations.
- No classical background: Removes the need for any classical geometry in the description—apparatus and observer are fully quantum.
- Probabilities acquire quantum uncertainty: Even "probability" is observer- and context-dependent, with its own quantum fluctuations.
- **Test-bed for quantum gravity:** This framework explicitly realizes a quantum theory where *all* physical reference structures are quantized.

4. Quantum "Taitian" reference frames

"Taitian" reference frames:

[Tait, Proc. R. Soc. Edinb. 11 (1884)]

Inertial reference frames attached to **physical degrees of freedom:** two inertial parti**cles**, one acting as origin and the other providing orientation and acting as Neumann's inertial clock.

Assuming a relational / perspective neutral framework, one finds surprising features: entanglement and superposition are frame-dependent, causal order can be in superposition, etc. [Giacomini-Castro-Ruiz-Brukner, NJP 18 (2016)]

[Vanrietvelde-Hoehn-Giacomini-Castro-Ruiz, Quantum 4 (2020)].

Hopf algebra from Taitian reference frames

[Ballesteros-Giacomini-Gubitosi, Quantum 5 (2021)] 1+1D non-relativistic point particles (commutative time):

to go from C's reference frame to A's, need to translate/boost B with:

$$\hat{U}_{\rm transl} = \exp\left(\frac{i}{\hbar}\hat{x}_A \otimes \hat{p}_B\right)\,, \qquad \hat{U}_{\rm boost} = \exp\left(\frac{i}{\hbar}\frac{\hat{p}_A}{m_A} \otimes \hat{K}_B\right)\,,$$

generalizes Galilean transformations to operator-valued transformation parameters. If A is in a superposition, so is the transformation.

Recursively commuting $\hat{x}_A \otimes \hat{p}_B$ and $\frac{\hat{p}_A}{m_A} \otimes \hat{K}_B$, one is able to close a **1-parameter family of 7D Lie algebras** $\mathcal{D}(7)$, parametrized by t.

[Opanowicz, J. Phys. A 31(1998)]

There are 26 quantum group deformations of the 1+1D Galilei group.

[Ballesteros et al., arXiv:2504.00569]

One of these deformations with commutative time, at first order in the deformation parameter α (the noncommutativity length scale) reproduces the Lie algebra $\mathcal{D}(7)$.

Quantum group parameters		Dual Hopf algebra generators	
\hat{b}	time translations	\hat{P}_0	0-momentum
\hat{a}	spatial translations	\hat{P}_1	1-momentum
\hat{v}	Galilean rapidity	\hat{K}	Galilean boost
$\hat{ heta}$	Bargmann phase	\hat{M}	mass central extension

represented as $f(\hat{q}_A, \hat{p}_A)$

represented as $f(\hat{q}_B, \hat{p}_B)$

Quantum group parameters		Dual Hopf algebra generators	
\hat{b}	time translations	\hat{P}_0	0-momentum
\hat{a}	spatial translations	\hat{P}_1	1-momentum
\hat{v}	Galilean rapidity	\hat{K}	Galilean boost
$\hat{\theta}$	Bargmann phase	\hat{M}	mass central extension

represented as $f(\hat{q}_A, \hat{p}_A)$

represented as $f(\hat{q}_B, \hat{p}_B)$

The exponents in the quantum group exponential formula: $e^{\hat{\theta} \otimes \hat{M}} e^{\hat{b} \otimes \hat{P}_0} e^{\hat{a} \otimes \hat{P}_1} e^{\hat{v} \otimes \hat{K}}$ close the $\mathcal{D}(7)$ algebra, if expanded at first order in the noncommutativity length scale α .

The correspondence depends on assuming $\alpha \propto \frac{1}{m_A}$. The Galilei algebra is recovered in the limit $m_A \to \infty$ (no "backreaction").

The full, all orders in α , quantum group seems to provide deformations of standard quantum mechanics suppressed by m_A^{-1} .

References

- Quantum groups (in particular SU_q(2)) [Chari-Pressley, A Guide to Quantum Groups, CUP (1994)]
- T-Minkowski spacetimes & T-Poincaré quantum groups [Mercati, PTEP 2024 073B06, arXiv:2404.08729] [Mercati, PTEP 2024 123B05, arXiv:2311.16249]
- Localization and reference frames in κ and ρ
 [Carotenuto-Lizzi-Mercati-Manfredonia, IJGMMP 19 (2022), arXiv:2011.10628]
 [Lizzi-Manfredonia-Mercati-Poulain, PRD 99 (2019), arXiv:1811.08409]
 [Lizzi-Vitale, PLB 818 (2021), arXiv:2101.06633]
 [Lizzi-Scala-Vitale, PRD 106 (2022), arXiv:2205.10862]
- Quantum alignment protocols and "doubly quantum mechanics" in SU_q(2) [Amelino-Camelia-D'Esposito-Fabiano-Frattulillo-Hoehn-Mercati, PTEP 2024 (2024), arXiv:2211.11347] [D'Esposito-Fabiano-Frattulillo-Mercati, Quantum 9 (2025), arXiv:2412.05997]
- Hopf algebra associated to quantum reference frame transformations [Ballesteros-Giacomini-Gubitosi, Quantum 5 (2021), arXiv:2012.15769] [Ballesteros-Fernandez-Silvestre-Giacomini-Gubitosi, arXiv:2504.00569]