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Planck-scale spacetime foam

Quantum Gravity — spacetime foam?
[Wheeler, Ann. Phys. 2 (1957)]

Lorentz violation?
[Pavlopoulos, Phys. Rev. 159 (1967)]

Deformation of Lorentz invariance without
violation of Relativity Principle?
[Amelino-Camelia, Nature 418 (2002)]

[Rovelli-Speziale,
PRD67 (2003)] \oy
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[Matschull-Welling, CQG 15 (1998)]: 2+1D QG + matter

/ DA G Jus U(ANALE ANANAYE £ f 8(04) _ i S

Segly] = [@", &) =il , &P, £ ="Planck length” (really, just h).

e Relevance for 341D QG: can be formulated as a topological BF
theory + "simplicity" constraints [Plebanski, JMP 18 (1977)].

e [Freidel-Livine PRL 96 (2006)]: QG + scalar field — nonlocal
effective field theory = scalar field on noncommutative spacetime.
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[Gelfand-Naimark, Mat. Sbornik. 12 (1943)]
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[Connes, Noncommutative Geometry (1994)]
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Quantum groups

[&#,8Y] = iLet”, &P does not break Poincaré invariance. It is invariant
under a quantum group/Hopf algebra deformation of I1SO(2,1).

Poincaré invariance = comodule property:

=AY, @3 +al@l, |[@&Y)=ile", 3",

[AF, APl =[a!,AP;] =0, |[a",a"] =il a’|.

A#,, at € noncomm. deformation of algebra of functions on 1ISO(2,1).

Group axioms (composition law, inverse, identity), must be compatible
with [a*, a”] # 0 (i.e. homomorphisms), Then you have a Hopf algebra.
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Examples of quantum groups

SUq(2) [Woronowicz, Publ. Res. Inst. Math. Sci. 23 (1987)]

GLq(N), SLq(N), SUq(N) |TY T = qT T, ...
[Faddeev et al., Leningrad Math. J. 1 (1990)]

SOq(p.q) [Aschieri, Lett. Math. Phys. 49 (1999)]

T-Poincaré: 17 classes of models
[Mercati, PTEP 2024 073B06 & 123B05, arXiv:2404.08729, 2311.16249]

» 0-Poincaré [Balachandran—Martone, MPLA 24, 1811 (2009)]
» k-Poincaré [Lukierski et al. PLB 271, 321 (1991)]

[Ballesteros et al., PLB 351, 137 (1995)]
» p-Poincaré [Lizzi-Scala—Vitale, PRD 106, D106 (2022)]
» \-Poincaré [Gubitosi et al. PRD 105, 126013 (2022)]

6 /24



Works considered in this talk

1. Localization and reference frames in k-Minkowski/Poincaré
[Carotenuto-Lizzi-Mercati-Manfredonia, IJGMMP 19 (2022), arXiv:2011.10628]
[Lizzi-Manfredonia-Mercati-Poulain, PRD 99 (2019), arXiv:1811.08409]

2. Localization and reference frames in p-Minkowski/Poincaré
[Lizzi-Vitale, PLB 818 (2021), arXiv:2101.06633]
[Lizzi-Scala-Vitale, PRD 106 (2022), arXiv:2205.10862]

3. Quantum Euler angles, quantum alignment protocols and “doubly
quantum mechanics” in SUq(2)
[Amelino-Camelia—D’Esposito—Fabiano—Frattulillo-Hoehn—Mercati, PTEP 2024
(2024), arXiv:2211.11347]

[D’Esposito—Fabiano—Frattulillo-Mercati, Quantum 9 (2025), arXiv:2412.05997]

4. Hopf algebra associated to quantum reference frame transformations
[Ballesteros—Giacomini—Gubitosi, Quantum 5 (2021), arXiv:2012.15769]
[Ballesteros—Fernandez-Silvestre-Giacomini-Gubitosi, arXiv:2504.00569]
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1. k-localization & reference frames

“Timelike” k-Minkowski spacetime:

&%, &) = — &', [#,4/]=0, keR.

1
K

Representation: on H._ ik = L2(R3):

L o i = i
T — w0—>—<x‘V+%>=—(r6‘r+%),
K

K

Spectra: o(&*) =R Vu. No point spectrum.

Improper eigenfunctions of £%: . (Z) = k
complete basis (£° is selfadjoint).

“observables”. Mellin transform relates the two bases.

. é_
—1T |1_:’|—2 1T

(r,0,¢) and (71,0, ) are two complete sets of commuting

[Carotenuto-Lizzi-Mercati-Manfredonia, IJGMMP 19 (2022), arXiv:2011.10628]



. _log®(r/rg) _ o R
o Log-Gaussians: e~ o2 1™ saturate uncertainty AZ? Ap > %

e In the limit g — 0 and ¢ — oo, while rg e~ — 0, the state
becomes perfectly localized on the temporal axis, r =0, 7 = 7.

e “Cilindretto” state centred at (0,0, zp).

Mellin transform: A7 ~ 32.

a — 0 or zg — oo yield a non-
normalizable Mellin transform (infinitely
delocalized in time).

[Lizzi-Manfredonia—Mercati-Poulain, PRD 99 (2019)]
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k-Poincaré group

[@",a"] = L (s*ga” — 6 a") , [A*,,AP,] =0,
[Ar,, 6 =L [[V‘o AP, 4+t A0, — 5o AP, — &9, n“p} :

Representation: Hy_poinc = L2[SO(3,1) x R3]. In 1+1 dimensions:

oLy ), e
a—>K< +q 61>+ (2(:osh§-i-smh§a£ ,

Al il 2
a —q +n (281nh§+(cosh§ 1) 35)

2 coshé sinh¢
Ay = ( sinhé coshé |-
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Proposed physical interpretation

Alice's coordinates: &*, Bob's coordinates: #* = A", @ ¥ +a* @ 1.

A spacetime event (e.g. a detector clicking) will be described in terms of
expectation values and higher momenta:

Alice: (ZH), (ZMEY), (BHEVEP) ..

Bob: (&), (#1&"), (&M &) ...

Bob's expectation values are taken on H._poinc ® Hi—Mink-
Separable states on the &'# algebra:

|9) ® 1) € Hy—Poinc ® Hi—Mink

represent transformed reference frames: no a priori reason to entangle
states of transformation and of coordinates. Dynamics might change that.
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“Identity state” |e), perfectly localized at @* = £ = 0. It connects
two coincident reference frames.

Cannot localize translations around @* = 0, unless é =0 also. In
341D, the only “pure Lorentz transformations” with

(a*) = Aa* = 0 states are pure spatial rotations. No “pure boost”
states. First observed in [Amelino-Camelia et al., PLB 671 (2009)]

Poincaré-transforming the k-Minkowski spacetime origin state |o) as
lg) ® |o), all statistical properties of the translation operators transfer
to the coordinates: (g,o|&"&" ... |g,0) = (gla"a" ...|g)

Poincaré-transforming with the identity state: Alice and Bob agree
on all localization and statistical properties of the event

(e, |&™HE"™ .. le, ) = (Y|&HEY ... |¢),

“Pure translation” states, localized around £ = 0, exist and are
identical to the k-Minkowski states, as far as @* are concerned.
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Uncertainty from transformed reference frames

A pure translation state always increases the variance of Z*:
A" = A@") + A4 > A2
all translations, except perfectly-localized purely temporal ones Aa* = 0,

increase the fuzzyness of the event.

You cannot undo uncertainty: cannot translate from Bob to a third
observer who agrees with Alice on all her measurements.

When boosts are involved, one can decrease the uncertainty of one
coordinate though Lorentz contractions.

No invariant notion of locality: the “sharpness” of an event depends on
the reference frame.

[Lizzi-Manfredonia—Mercati-Poulain, PRD 99 (2019)]
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2. p-localization & reference frames

[Lizzi-Vitale, PLB 818 (2021)] [Lizzi-Scala-Vitale, PRD 106 (2022)]
20, &' =io&?, [2°, &%) = —ip&?, (&3, -] = [&', &%) =

cylindrical coordinates: [£0,e?%] = pe'?, [# -] =[23-]=

o Complete set of commuting operators: (#,£3, @) or (7, &3, 29).
e  has compact spectrum and o(£°) = o(Z + a), a € (0, 27).
e Have to choose a self-adjoint extension for £°, e.g. o = 0.

e Uncertainty bounds — the only sharply localized states are on the
z — 0 plane.

14 / 24



[a",a") = 2i0 (8" 0ap1 0"y — 6"0ap10%y) ,  [AM),A%] =0,

(A", a°] = —2io (5%5“[1[\2]1/ - APOAMHT’Q]V) :

representation of @ as p-Minkowski & vector fields on SO(3,1):

a’ — 10 (5’105“[1 AQ},, — Apo A'u[l 7]2],,) % +i0 (5Piqi - 25p0q[1i) + h.c. s

q?
3 identity state s.t. (e|f(A¥,,a")|e) = f(6",,0),

Unlike k, pure Lorentz transformation states localized at a* =0
exist only for pure rotations around the z axis.

Like k, pure-translation states exist and match p-Minkowski states.

The only perfectly localized states are pure time translations and
pure translations along the z axis.

Combinations of the three can be sharply localized too.

Regarding uncertainty growth, everything we found in k holds
here too.
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3. SUq(2) quantum Euler angles

Recall SUq4(2) (here we assume ¢ € R):

o~

[Amelino-Camelia et al., PTEP 2024 (2024), arXiv:2211.11347]:

o
|
L)
o)

) Gé=qéa @& =qé
)

Spin-1 (co-)representation: Ry; = Str (aj U’Taif]).

Cgmpopents of 3D [otatign matrix do not commute with each other,
[Ra:a:7 ny] 7é 0, [Rzy> ny] ?é 0,...
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Two rotated labs can ex-
change N electrons in eigen-
states of o5, oy and o, in
order to determine their rela-
tive orientation. In commu-
tative spacetime, in the large-
N limit, their relative Euler
angles can be determined ex-
actly. If spacetime is noncom-
mutative, these angles are in-
compatible observables

H .'0
M3
“;. .

Thought experiment is completely independent of the energy of the
electrons. N is the multiplier that magnifies the noncommutativity effects
(g could be related to A/M?3 ratio, [Major-Smolin, NPB 473 (1996)]).
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[D'Esposito et al., Quantum 9 (2025), arXiv:2412.05997]

To have a consistent framework, spinors describing spin-1/2 states need
to live on a noncommutative generalization of C2:

o

e Following this logic, what in commutative spacetime one would call
the probability of outcomes of Stern—Gerlach experiments, has to be
promoted to self-adjoint operator on Hilbert space, P(1) — P(1).

) . #g=qg@, P=U.s2;s.

< &

e Framework admits semiclassical superpositions of “probability
eigenstates”: Doubly quantum mechanics.
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Implications

e Framework is Covariant & relational:
All predictions are SUq(2)-covariant. Reference frame changes are
genuine quantum operations.

e No classical background:
Removes the need for any classical geometry in the
description—apparatus and observer are fully quantum.

e Probabilities acquire quantum uncertainty:
Even “probability” is observer- and context-dependent, with its own
quantum fluctuations.

e Test-bed for quantum gravity:
This framework explicitly realizes a quantum theory where all
physical reference structures are quantized.
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4. Quantum “Taitian” reference frames

“Taitian” reference frames:
[Tait, Proc. R. Soc. Edinb. 11 (1884)]

Inertial reference frames attached to physi-
cal degrees of freedom: two inertial parti-
cles, one acting as origin and the other pro-
viding orientation and acting as Neumann's
inertial clock.

Assuming a relational / perspective neutral framework, one finds
surprising features: entanglement and superposition are frame-dependent,

causal order can be in superposition, etc.
[Giacomini—Castro-Ruiz—Brukner, NJP 18 (2016)]
[Vanrietvelde-Hoehn—Giacomini—Castro-Ruiz, Quantum 4 (2020)].
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Hopf algebra from Taitian reference frames

[Ballesteros—Giacomini—Gubitosi, Quantum 5 (2021)]
141D non-relativistic point particles (commutative time):

IC B A

)

Y

to go from C's reference frame to A's, need to translate/boost B with:

A R . A i PA S
Utransl = €xp (ﬁxA ®pB) s Uboost = €xp <7_im_A ® KB) )

generalizes Galilean transformations to operator-valued transformation
parameters. If A is in a superposition, so is the transformation.
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Recursively commuting £4 ® pp and % ® Kp, one is able to close a
1-parameter family of 7D Lie algebras D(7), parametrized by t.

[Opanowicz, J. Phys. A 31(1998)]
There are 26 quantum group deformations of the 1+1D Galilei group.
[Ballesteros et al., arXiv:2504.00569]

One of these deformations with commutative time, at first order in the
deformation parameter a (the noncommutativity length scale) reproduces
the Lie algebra D(7).

Quantum group parameters Dual Hopf algebra generators

b  time translations Py 0-momentum
a spatial translations P, 1-momentum
©  Galilean rapidity K Galilean boost
0 Bargmann phase M mass central extension
-~ N -— _
represented as f(Ga,pa) represented as f(4p,pB)
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Quantum group parameters

Dual Hopf algebra generators

b time translations
a spatial translations
0 Galilean rapidity
6 Bargmann phase

Py
P
K
M

0-momentum
1-momentum
Galilean boost
mass central extension

~
represented as f(Ga,pa)

~
represented as f(4B,PB)

The exponents in the quantum group exponential formula:
I®M b®Poa8P1 98K (|ose the D(7) algebra, if expanded at first order

in the noncommutativity length scale «.

The correspondence depends on assuming a o mLA. The Galilei algebra is
recovered in the limit m4 — oo (no “backreaction”).

The full, all orders in ¢, quantum group seems to provide deformations of

standard quantum mechanics suppressed by m .

1
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