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Motivation

Obstacles

e Quantum Gravity
> existence of both technical and conceptual difficulties in implementing a
gravitational field quantization process
> locality: cluster decomposition relies on a background metric
o Limits of standard formulation of QFT
» perturbative techniques <~ eternal interactions (bound states, static black holes...)
> relies on spacetime isometries — vacuum state in curved QFT ?
> quantization of evanescent modes

Wishlist

e Locality (not just in time) — role of the boundary, composition

o Solution of QFT difficulties (selection of vacuum state in curved space, S
matrix in AdS,...)

e Appropriate formulation for QG




Standard Minkowski-based QFT

AN

QFT on curved spacetime

S
>
A

QAN
/]\—) X
Evolution between Cauchy surfaces

flat spacelike hypersurfaces non-unitary in general
Unitary evolution in time




Standard Minkowski-based QFT
QFT on curved spacetime

VAN O

S

R =
BRESS

QAN
/]\—) X
Evolution between Cauchy surfaces

flat spacelike hypersurfaces non-unitary in general
Unitary evolution in time

GBQFT

o States and space states defined on general
spacetime boundary hypersurfaces

e Evolution defined inside the region enclosed by
the boundary

e Generalization of the notion of transition
amplitude




GBF: basic structures and core axioms

In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime):
o hypersurfaces: oriented manifolds of dimension d — 1

e regions: oriented manifolds of dimension d with boundary

Algebraic structures:

o To X a Hilbert space J4;
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o Set of axioms + generalization of the Born rule



Advantages of GBF

o The GBF provides a manifestly local description of quantum theory [Oeckl,
2007,2008]

e No background metric structure enters in the algebraic structures of the GBF

o The GBF offers a new perspective on quantum theory, underlying geometric
aspects (holography) [DC, Oeckl, 2008; Oeckl, 2013; DC 2015; DC, Raetzel, 2013; DC,
Oeckl, 2021]

o It can treat situations where quantum theory fails:

» vacuum state in curved space [DC, Oeckl, 2019]
> S-matrix in AdS [DC, Dohse, Oeckl, 2012; DC, Dohse, 2017]
» QFT in the presence of static black holes

» evanescent modes [DC, Oeckl, 2021; DC, Oeckl, Zampeli, 2024]

> time operator in QFT [DC, Oeckl, 2025]



( Vacuum state )




Lagrangian subspace and quantization

e The image of the map L, — L, is a real Lagrangian subspace: L,, C L,
meaning that it is

isotropic, a)L;M(gZS, n)=0, Y ¢’ neLy
and

coisotropic, wz,(d,n)=0,YVPELy = neLy.

o To quantize one considers L7, a Lagrangian subspace of the space of complex

solutions in a neighbourhood of X positive definite w.r.t. the inner product

()= 4ia)2($,;7)



Standard quantization

positive energy modes <«  positive definite Lagrangian subspace L*

negative energy modes «—  negative definite Lagrangian subspace L~

t . The region M = [t;,,] x R? is a
T T Tp osmve.energyT T T T time-interval in Minkowski space. A
" solutions source y is located in M.
2
M The solution 7 of the inhom. e.o.m.,
(O-+m*)(x) = ulx), is
4 e anegative energy sol. fort <t,,

negative energy e, =0~ €L,
solutions .
e apositive energy sol. for t>1t,,

X 77|t2t2:77+€l'+'

These boundary conditions for n are precisely tied to the choice of vacuum.



Different Lagrangian subspaces

X definite Lagrangian subspace

X vacuum

M real Lagrangian subspace

t X definite Lagrangian subspace
L} x

Field propagator associated to a generic
region M, in the Schrodinger rep.

M
amplitude

The propagator Zy associated to the
exterior region X is interpreted as an
amplitude which coincides with the
Zy(p)= D eSul9] vacuum wave function

Plon=% S
Zx(¢) = px(9) = ¢o(e)

the integral is over the spacetime configu-
rations ¢ that reduce to ¢ at IM.



Summary

Important property

L* and L~ are Lagrangian subspaces of L©

boundary conditions
at infinity (temporal
or spatial)

postive-definite

vacuum state «— .
Lagrangian subspace

[DC, Oeckl, 2019]



A case study: The timelike hypercylinder

Boundary: timelike hypercylinder, i.e. a 3-ball B} of
R radius R extended over all of time

= connected and timelike

<[,

Complex solution space decomposes into propagating
and evanescent sectors:
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@ Propagating elements:

spherical Hankel functions /, and 4, — propagating
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@ Evanescent elements:
modified spherical Hankel functions
k/(z) = —ilmh (i2)/2 and k(z) = k)(—2)




Propagating sector

The positive-definite and negative-definite Lagrangian subspaces

P ={de LPC defined by b, VE>m} define a Kihler polarization of L©
LPm={¢eLPC definedbyh, VE>m} [DC, R. Oeckl, 2008]
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Problem
The inner product (¢,£ )5, for the evanescent modes is not positive definite on L%+ !
—> The quantum theory cannot be constructed with the traditional technique




a-Kihler quantization

It is possible to construct a Hilbert space for evanescent modes by introduction a
real structure that “generalizes” the action of the complex structure.

Any real structure @ : L© — L© must satisfies the following properties:
e polarization interchange

o identity property: («)* =id

e compatibility with the symplectic structure: w(a(7),a({)) = w(,{)
e positive definiteness fo the inner product: (7, () = 4icw(a(n),{

Using the positive definite inner product a Hilbert state can now be constructed:
This is called the a-Kihler quantization.

e Hypercyinder symmetries =

[DC, R. Oeckl, SIGMA, 2021]
[DC, R. Oeckl, Int.J.Mod.Phys., 2021]



Dynamics

GHOPHEIE 4 Ggraneseent = standard Feynman propagator in Minkowski

Analogous results have been obtained in Euclidean, Rindler, Milne, dS, AdS spaces.



Evanescent
particles




UDW detector inside the hypercylinder region
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Comparison radial picture vs. temporal picture

Emission spectrum for the temporal picture

= Emission spectrum for the radial picture without evanescent sector
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[DC, Oeckl, Zampeli, 2024]



Time
operator




Asiswell known there are ob-
stacles in the construction of
a time operator in quantum
theory.

‘ Inw =S Pz alaz

A

L.

The main idea is to construct
a time operator analogous to
the Newton-Wigner position
operator.

‘wa = [d% dtta;tay,t




Results

probability density
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prop + ev
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Evanescent contribution resolves the infinite probability density at At = 0!

[DC, Oeckl, to appear in Found. of Physics]



Electromagnetic
field




Different spacetime regions in Minkowski (Coulomb gauge)
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Dynamics

GMti _ GMhyp _ Gng,propagating+ Gng,evanescent
F F - F

F




Conclusion and outlook

o The GBF is a viable formulation for QFT
o Can handle situation where the standard formulation fails
@ vacuum, evanescent particle, time operator

o Maybe an appropriate arena for QG

o To explore the physics of evanescent particles (colab. Zampeli)

o Localization of state in more general hypersurfaces

o Quantum cosmological model; linearized gravity
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