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Motivation

Obstacles
Quantum Gravity
É existence of both technical and conceptual difficulties in implementing a

gravitational field quantization process
É locality: cluster decomposition relies on a background metric

Limits of standard formulation of QFT
É perturbative techniques= eternal interactions (bound states, static black holes...)
É relies on spacetime isometries→ vacuum state in curved QFT ?
É quantization of evanescent modes

Wishlist
Locality (not just in time)→ role of the boundary, composition
Solution of QFT difficulties (selection of vacuum state in curved space, S
matrix in AdS,...)
Appropriate formulation for QG



Standard Minkowski-based QFT

x

t

flat spacelike hypersurfaces
Unitary evolution in time

QFT on curved spacetime

Evolution between Cauchy surfaces
non-unitary in general

States and space states defined on general
spacetime boundary hypersurfaces
Evolution defined inside the region enclosed by
the boundary
Generalization of the notion of transition
amplitude

GBQFT

There are aspects of the GBF that cannot be described within standard QT.
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GBF: basic structures and core axioms
In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime):
hypersurfaces: oriented manifolds of dimension d− 1
regions: oriented manifolds of dimension d with boundary

M
ρM

O
ρO

M

Σ
HΣ

Algebraic structures:
To Σ a Hilbert spaceHΣ
To M a linear amplitude map
ρM :H∂ M →C

As in AQFT, observables are
associated to spacetime regions: An
observable O in a region M is a linear
map ρO

M :H∂ M →C, called
observable map.

Set of axioms + generalization of the Born rule
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Advantages of GBF

The GBF provides a manifestly local description of quantum theory [Oeckl,
2007,2008]

No background metric structure enters in the algebraic structures of the GBF

The GBF offers a new perspective on quantum theory, underlying geometric
aspects (holography) [DC, Oeckl, 2008; Oeckl, 2013; DC 2015; DC, Raetzel, 2013; DC,
Oeckl, 2021]

It can treat situations where quantum theory fails:
É vacuum state in curved space [DC, Oeckl, 2019]
É S-matrix in AdS [DC, Dohse, Oeckl, 2012; DC, Dohse, 2017]
É QFT in the presence of static black holes
É evanescent modes [DC, Oeckl, 2021; DC, Oeckl, Zampeli, 2024]
É time operator in QFT [DC, Oeckl, 2025]



Vacuum state



Lagrangian subspace and quantization

The image of the map LM → L∂ M is a real Lagrangian subspace: LM ⊆ L∂ M ,
meaning that it is

isotropic, ω∂ M (φ,η) = 0, ∀φ,η ∈ LM

and
coisotropic, ω∂ M (φ,η) = 0, ∀φ ∈ LM ⇒ η ∈ LM .

To quantize one considers L+Σ , a Lagrangian subspace of the space of complex
solutions in a neighbourhood of Σ positive definite w.r.t. the inner product

(φ,η)Σ = 4iωΣ(φ,η)



Standard quantization

positive energy modes ↔ positive definite Lagrangian subspace L+

negative energy modes ↔ negative definite Lagrangian subspace L−

t

x

t1

t2

M

negative energy
solutions

positive energy
solutions

µ

The region M = [t1, t2] × R3 is a
time-interval in Minkowski space. A
source µ is located in M.

The solution η of the inhom. e.o.m.,
(�+m2)η(x) =µ(x), is

a negative energy sol. for t≤ t1,
η|t≤t1

= η− ∈ L−,

a positive energy sol. for t≥ t2,
η|t≥t2

= η+ ∈ L+.

These boundary conditions for η are precisely tied to the choice of vacuum.



Different Lagrangian subspaces

t

x

M real Lagrangian subspace

X definite Lagrangian subspace

X definite Lagrangian subspace

amplitude

vacuum

M

X

Field propagator associated to a generic
region M, in the Schrödinger rep.

ZM (ϕ) =
∫

φ
�

�

∂ M
=ϕ
Dφ eiSM [φ]

the integral is over the spacetime configu-
rations φ that reduce to ϕ at ∂ M.

The propagator ZX associated to the
exterior region X is interpreted as an
amplitude which coincides with the
vacuum wave function

ZX (ϕ) = ρX (ϕ) =ψ0(ϕ)



Summary

Important property
L+ and L− are Lagrangian subspaces of LC

vacuum state ←→ postive-definite
Lagrangian subspace

←→
boundary conditions
at infinity (temporal
or spatial)

[DC, Oeckl, 2019]



A case study: The timelike hypercylinder

x

t
R

M

Boundary: timelike hypercylinder, i.e. a 3-ball B3
R of

radius R extended over all of time

=⇒ connected and timelike

Complex solution space decomposes into propagating
and evanescent sectors:

LC = Lp,C⊕Le,C

Propagating elements:

spherical Hankel functions hl and hl

Evanescent elements:
modified spherical Hankel functions
kl(z) =−ilπhl(iz)/2 and k̃l(z) = kl(−z)

t

x

M

R
propagating

hl

evanescent

kl

f`: certain kind of spherical Bessel function that depends on p :=
p

|E2−m2|:
propagating: E2 >m2 evanescent: E2 <m2

h`(pr) h`(pr) k`(pr) k̃`(pr)
=⇒ L= Lp⊕Le



Propagating sector

The positive-definite and negative-definite Lagrangian subspaces

Lp,+ = {φ ∈ Lp,C defined by hl ∀E≥m}

Lp,− = {φ ∈ Lp,C defined by hl ∀E≥m}
define a Kähler polarization of LC

[DC, R. Oeckl, 2008]

Evanescent sector

Outside the hypercylinder region, the Lagrangian
subspace that reproduces the standard Minkowski
vacuum state is the Lagrangian subspace

Le,+ = {φ ∈ Le,C defined by kl}

t

M
kl

Problem
The inner product (φ,ξ )e

∂ M for the evanescent modes is not positive definite on Le,+ !
=⇒ The quantum theory cannot be constructed with the traditional technique
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α-Kähler quantization
It is possible to construct a Hilbert space for evanescent modes by introduction a
real structure that “generalizes” the action of the complex structure.

Any real structure α : LC→ LC must satisfies the following properties:
polarization interchange
identity property: (α)2 = id

compatibility with the symplectic structure: ω(α(η),α(ζ )) =ω(η,ζ )
positive definiteness fo the inner product: (η,ζ ) = 4iω(α(η),ζ )

Using the positive definite inner product a Hilbert state can now be constructed:
This is called the α-Kähler quantization.

Hypercyinder symmetries =⇒ α is unique

[DC, R. Oeckl, SIGMA, 2021]
[DC, R. Oeckl, Int.J.Mod.Phys., 2021]



Dynamics

Gpropagating
F +Gevanescent

F = standard Feynman propagator in Minkowski

Analogous results have been obtained in Euclidean, Rindler, Milne, dS, AdS spaces.



Evanescent
particles



UDW detector inside the hypercylinder region

Fee Hamiltonian: H0 =
Ω

2

�

σ+σ−−σ−σ+
�

Interaction: HI (τ) = λχ (τ)
�

σ−+σ+
�

φ̂(x(τ))

|e〉

|g〉
Ω

t

M
|e〉

|g〉
Ω

g

e

ξ

emission

outgoing particle
on ∂ M

ρUDWe→g (Ψout,E)

e

g
ξ

absorption

incoming particle
on ∂ M

ρUDWg→e (Ψ in,E)



Comparison radial picture vs. temporal picture

Emission spectrum for the temporal picture
= Emission spectrum for the radial picture without evanescent sector

Figure 7: Spontaneous emission probability as a function of the detector energy gap �, at ⁄ = 0.01.
In addition to the emission probability for the radial picture (solid line), the emission probability
for the temporal picture (dashed line) is also indicated. The characteristic time T is 5 (left-hand
plot), respectively 100 (right-hand plot).

the left-hand plot shown in Figure 5. Comparing di�erent detector energy gaps shows that higher
energy gaps lead to a higher emission probability in the propagating sector. In the evanescent
sector it is lower energies that lead to higher probability. When the energy gap equals the mass of
the field, particle emission becomes suppressed and its probability vanishes in the adiabatic limit
T æ Œ. This is also clearly visible in the plot of Figure 6, showing the probability as a function of
the energy gap for di�erent fixed values of the time T .

It is instructive to compare the emission spectrum for the present radial picture with that which
would be obtained for the temporal picture. As explained previously, the probabilities for the latter
are precisely obtained by removing the evanescent sector. That is, the integrals over the energy in
numerator and denominator of expression (80) restrict in this case to the range E > m. In Figure 7
the emission probabilities for both pictures are compared as a function of the detector gap energy
� near the field mass, i.e., near � = m. At � < m it is not surprising that the results are di�erent,
because in the radial picture the detector can decay by emitting evanescent particles with energy
less than m, while in the temporal picture it cannot. However, even at � > m, the di�erence is
notable if �≠m is small. This “spill-over” e�ect of the evanescent sector into the propagating sector
is linked to the non-adiabaticity of the detector switching. That is, as T is taken to be larger, �
has to be increasingly closer to m for the e�ect to be noticeable.

10 Absorption probability

In this section we consider the probability of absorption of a single particle by the UDW detector
as a function of the particle energy.

24

︸ ︷︷ ︸

evanescent

s−−er− e− u−
︸ ︷︷ ︸

prop

s− u.−−−−−

[DC, Oeckl, Zampeli, 2024]



Time
operator



As is well known there are ob-
stacles in the construction of
a time operator in quantum
theory.

The main idea is to construct
a time operator analogous to
the Newton-Wigner position
operator.

Time operator in QFT
Daniele Colosi, Robert Oeckl and Adamantia Zampeli (Universidad Nacional Autónoma de México)

Causalworlds, Zürich, 12-16 September 2022

We propose a definition of a time operator in a scalar QFT based on a generalization
of the Newton-Wigner position operator. The key ingredient is the construction of
quantum states on a timelike hyperplane �, defined by a constant value of the spatial
coordinate x. Such states result not only from quantizing the standard propagating
modes of the field but, crucially, also the evanescent ones thanks to the novel
–-Kähler quantization introduced by two of the authors. In particular the time
operator is defined as a map from a real-valued function on a timelike hyperplane to
the space of self-adjoint operators on the Hilbert space of states on �. Correlation
functions between states defined at di�erent timelike hyperplanes �1 and �2 are
computed and discussed.

Position and time in QM

x

t

x̂

x

t

t̂

In QM time is treated as an external parameter, either in the form of ab-
solute time or of proper time defined by a classical spacetime metric.
Time is not a dynamical variable =∆ no time operator exists in QM!

QFT: Newton-Wigner position operator

Consider a massive spin 0 system. Newton-Wigner position operator in momentum
space: x̂NW = i

⇣
Òk̨ ≠ k̨/2E2

k

⌘
with E2

k = |̨k|2 +m2.
Eigenstates of the Newton-Wigner operator: ›t;x̨(k̨) =

Ô
2Ek e

i(Et≠k̨·x̨)

These eigenstates satisfy orthonormal-
ity and closure conditions:
• orthonormality:

(›t;x̨, ›t;y̨) = ”(3)(x̨≠ y̨)
• closure: R d3x̨ (›t;x̨,Â)›t;x̨ = Â

(›t1,x̨1, ›t2,x̨2) =

i
2fi2

m2(t2 ≠ t1)
≠‡2 + i‘ K2

⇣
m

Ô
≠‡2 + i‘

⌘

where ‡2 = (t2 ≠ t2)2 ≠ (x2 ≠ x1)2

The Newton-Wigner position operator
admits the following representation in
terms of creation and annihilation op-
erator:

x̂NW =
Z

d3x̨ x̨ a†x̨ax̨

x

t

x̂NW = R d3x x a†xax

The General Boundary Formulation of Quantum Theory

The GBF is a new axiomatic formulation of quantum theory inspired by TQFT.
The GBF assigns algebraic structures to geometric ones.

hypersurface � ¡ Hilbert space H� of states
region M with boundary
ˆM

¡ linear amplitude map and ob-
servable map flOM : HˆM æ C

These structures are subject to a number of axioms that guarantee their consistency.
Probability interpretation: generalisation of Born’s rule.

If ˆM is the disjoint union of two Cauchy surfaces, then the amplitude map flM reduces
to the standard transition amplitude.
Crucially, no special from of the boundary ˆM is required.

The GBF generalizes the standard formulation of QFT

States on timelike hyperplanes

Space-interval region bounded by two timelike hyperplanes at fixed spatial coordinates

t

x
x2x1

M

propagating

evanescent

Elements of Lp,C
x1 , propagating modes,

|E| > EÎ,

(�s,ỹ)a(E, k̃) =
q
k1e

i(Es≠k̃ỹ≠k1x)

(�s,ỹ)b(E, k̃) =
q
k1e

i(Es≠k̃ỹ+k1x)

Elements of Le,C
x1 , evanescent modes,

|E| < EÎ,

(�s,ỹ)x(E, k̃) = e≠ifi/4
q
k1e

i(Es≠k̃ỹ)+k1zek1(x1≠x)

(�s,ỹ)i(E, k̃) = e≠ifi/4
q
k1e

i(Es≠k̃ỹ)≠k1ze≠k1(x1≠x)

Quantization

Propagating Evanescent

Kähler quantization –-Kähler quantization

Inner product: („, ÷) = 4iÊ(„, ÷)
Vacuum determined by positive-
definite Lagrangian subspace Lp,C,+

w.r.t. (·, ·)

Standard Kähler quantization

Decaying boundary conditions on
„ determines the appropriate Lagrangian
subspace Le,C,+

Problem: Le,C,+ is not positive-definitive
w.r.t. (·, ·)

Solution: real structure – =∆ –-inner
product: („, ÷)– = 4iÊ(–(„), ÷)
Le,C,+ is positive definitive w.r.t. (·, ·)–

–-Kähler quantization

Main results

Quantum numbers E, k̃ allow to characterize �t,ỹ as right-moving and left-moving
particles.

Right-moving + left-moving
particles

x1 x2

t

x

t̂NW = R d2y dt t a†y,tay,t

(›t1,x̨1, ›t2,x̨2) =

im2

2fi2
(x2 ≠ x1)
‡2 ≠ i‘ K2

⇣
m

Ô
≠‡2 + i‘

⌘

Right-moving propagating par-
ticles only

t

x

The divergence at t = 0 is possibly
an artifact cancelled by the contribu-
tion of evanescent particles (to be con-
firmed).
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Results

One-particle state localized on
each spacelike hyperplane

One-particle state localized on
each timelike hyperplane



Propagating and evanescent contribution

Evanescent contribution resolves the infinite probability density at∆t= 0!

[DC, Oeckl, to appear in Found. of Physics]



Electromagnetic
field



Different spacetime regions in Minkowski (Coulomb gauge)

t

x
Mti Mhyp

t

z

y

x

Mwg

no evanescent modes
plane waves

no evanescent modes
vector spherical

harmonics

evanescent modes Ø
cylindrical spherical

harmonics



Dynamics

GMti
F = G

Mhyp

F = G
Mwg,propagating
F +G

Mwg,evanescent
F



Conclusion and outlook

The GBF is a viable formulation for QFT
Can handle situation where the standard formulation fails
vacuum, evanescent particle, time operator
Maybe an appropriate arena for QG

To explore the physics of evanescent particles (colab. Zampeli)
Localization of state in more general hypersurfaces
Quantum cosmological model; linearized gravity
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