Alessandro Valenti

Workshop on FCC-ee and Lepton Colliders

Laboratori Nazionali di Frascati January 23rd, 2025

University of Basel

Based on 2411.02485 in collaboration with Admir Greljo, Hector Tiblom

Universität Basel

FCC-ee plan

New Physics Through Flavor Tagging at FCC-ee

Above the Z-pole

FCC-ee plan

 $O(10^{12})$ Z-bosons

- Stefanek et al (2024) • ~ 10^5 more than LEP Ge et al (2024), ... $\rightarrow O(300)$ statistical improvement on EWPO
- Systematics: capped at O(10) O(100)

Probe tree-level new physics up to O(100) TeV (LEP O(10) TeV)

New Physics Through Flavor Tagging at FCC-ee

FCC-ee report (2019)

De Blas et al (2019)

Above the Z-pole

Blondel, Janot (2019, 2022)

Bernardi et al (2022)

Allwicher et al (2023, 2024)

FCC-ee plan

 $O(10^{12})$ Z-bosons

- Stefanek et al (2024) • $\sim 10^5$ more than LEP Ge et al (2024), ... $\rightarrow O(300)$ statistical improvement on EWPO
- Systematics: capped at O(10) O(100)

Probe tree-level new physics up to O(100) TeV (LEP O(10) TeV)

New Physics Through Flavor Tagging at FCC-ee

FCC-ee report (2019)

De Blas et al (2019)

Above the Z-pole

Blondel, Janot (2019, 2022)

- Bernardi et al (2022)
- Allwicher et al (2023, 2024)

WW	Zh	<u>tt</u>
163 GeV	$240~{ m GeV}$	365 GeV
10 ab^{-1}	5 ab^{-1}	1.5 ab^{-1}

 10 ab^{-1} 5 ab^{-1}

Higher energy & luminosity than LEP-II $(130-209 \text{ GeV}, \sim 3 \text{ fb}^{-1} \text{ tot})$

What are the new physics opportunities?

Outline

- 1. Observables and flavor tagging above the Z-pole
- 2. SMEFT interpretation
- 3. Impact on selected models
- 4. Conclusion

Observables

 $(\sqrt{s'} \gtrsim 0.85\sqrt{s})$ Consider inclusive, non-radiative fermion pair-production ratios:

$$(e^+e^- \rightarrow \bar{b}b)$$

 $_{s,c,b}\sigma(e^+e^- \rightarrow \bar{q}q)$

$$+ R_c, R_s, R_t, R_\ell$$

Observables

 $(\sqrt{s'} \gtrsim 0.85\sqrt{s})$ Consider inclusive, non-radiative fermion pair-production ratios:

- Systematics?

New Physics Through Flavor Tagging at FCC-ee

 $R_b = \frac{\sigma(e^+e^- \to \bar{b}b)}{\sum_{q=u,d,s,c,b} \sigma(e^+e^- \to \bar{q}q)}$ $+ R_{c}, R_{s}, R_{t}, R_{\ell}$

• Theoretically OK: $\Delta R_b/R_b|_{\text{theory}} \sim 10^{-4}$ PDG EW (2024)

• Naïve stat limit: \approx same as theory (WW: $N_{\bar{b}b} \simeq 6 \times 10^7$)

Observables

 $(\sqrt{s'} \gtrsim 0.85\sqrt{s})$ Consider inclusive, non-radiative fermion pair-production ratios:

- <u>Systematics?</u>

Flavor tagging crucial to assess expected FCC-ee precision

New Physics Through Flavor Tagging at FCC-ee

 $R_b = \frac{\sigma(e^+e^- \to \bar{b}b)}{\sum_{q=u.d.s.c.b} \sigma(e^+e^- \to \bar{q}q)}$ $+ R_c, R_s, R_t, R_\ell$

• Theoretically OK: $\Delta R_b/R_b|_{\text{theory}} \sim 10^{-4}$ PDG EW (2024)

• Naïve stat limit: \approx same as theory (WW: $N_{\bar{b}b} \simeq 6 \times 10^7$)

Toy model: R_h

Two flavors only (b, j)

New Physics Through Flavor Tagging at FCC-ee

 $N_{\text{tot}} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+e^- \rightarrow q\bar{q}) \rightarrow \text{total untagged events}$

$$\begin{cases} N(n_b = 2) \equiv N_2 = N_{\text{tot}} [(\epsilon_b^b)^2 R_b + (\epsilon_j^b)^2 R_j], \\ N(n_b = 1) \equiv N_1 = 2N_{\text{tot}} [\epsilon_b^b (1 - \epsilon_b^b) R_b + \epsilon_j^b (1 - \epsilon_j^b) R_j] \\ N(n_b = 0) \equiv N_0 = N_{\text{tot}} [(1 - \epsilon_b^b)^2 R_b + (1 - \epsilon_j^b)^2 R_j]. \end{cases}$$

New Physics Through Flavor Tagging at FCC-ee

Toy model: R_h

- Two flavors only (b, j)
- $N_{\text{tot}} = \mathcal{L} \cdot \mathcal{A} \cdot \sigma(e^+e^- \rightarrow q\bar{q}) \rightarrow \text{total untagged events}$
 - $\epsilon_b^b = \underline{\text{True positive}}$ rate (prob. tag *b*-jet as *b*) = 1 ϵ_b^j $\epsilon_i^b = \text{False positive}$ rate (prob. tag *j*-jet as *b*) = 1 - ϵ_i^j

$$-2\log L = \sum_{n=1}^{\infty} \frac{1}{2}$$

- Fit parameters: $R_b \& N_{tot}, \epsilon_b^b$
- Asimov approximation: $N_i^{exp} \rightarrow N_i^{nominal}$

Toy model: R_h $-2\log L = \sum_{i} \frac{(N_i^{\exp} - N_i)^2}{N_i^{\exp}} + \frac{x^2}{(\delta_{\epsilon})^2}$ • Systematic uncertainty on taggers: $\epsilon_i^j \to \epsilon_i^j (1 + x)$, δ_{ϵ} from MC

Toy model:
$$R_b$$

 $-2 \log L = \sum_i \frac{(N_i^{\exp} - N_i)^2}{N_i^{\exp}} + \frac{x^2}{(\delta_{\epsilon})^2}$

- Systematic uncertainty on taggers: $\epsilon_i^j \rightarrow \epsilon_i^j (1 + x)$, δ_ϵ from MC
- Fit parameters: $R_b \& N_{tot}, \epsilon_b^b$
- Asimov approximation: $N_i^{\exp} \rightarrow N_i^{\text{nominal}}$ $\left(\frac{\Delta R_b}{R_b}\right)^2 = \frac{1 \epsilon_b^b}{R_b}$

False positives stat $\leftarrow + \frac{2(\epsilon_b^b - \epsilon_b^b)}{\epsilon_b^b}$

False positives syst $\leftarrow + \frac{4(R_b - R_b^2)}{R_b^2}$

$$\frac{b}{b} \frac{(2 - \epsilon_b^b (2 - R_b))}{N_{\text{tot}} R_b (\epsilon_b^b)^2} \rightarrow \text{True positives stat}$$

$$\frac{-R_b (2 - \epsilon_b^b) (2\epsilon_b^b - 1))}{N_{\text{tot}} R_b^2 (\epsilon_b^b)^3} \epsilon_j^b$$

$$\frac{-1)^2 (\epsilon_j^b)^2}{2(\epsilon_b^b)^2} (\delta_\epsilon)^2 + \mathcal{O}\left((\epsilon_j^b)^2\right)$$
Alessandro Valenti | University of the state of the st

Toy model: *R*_b

Blekmann et al (2024) DeepJetTransformer ROC curves at FCC-ee

New Physics Through Flavor Tagging at FCC-ee

• Realistic estimate $\delta_{\epsilon} \simeq 0.01$. Consider WW run. • Minimize $\Delta R_b/R_b$ with $\epsilon_i^b = \epsilon_c^b(\epsilon_b^b)$ (conservative)

Toy model: R_h

Blekmann et al (2024) DeepJetTransformer ROC curves at FCC-ee

New Physics Through Flavor Tagging at FCC-ee

• Realistic estimate $\delta_{\epsilon} \simeq 0.01$. Consider WW run. • Minimize $\Delta R_b/R_b$ with $\epsilon_i^b = \epsilon_c^b(\epsilon_b^b)$ (conservative)

$$\frac{\Delta R_b}{R_b} \simeq 2 \times 10^{-4} \begin{pmatrix} \epsilon_b^b \simeq 0.65 \\ \epsilon_j^b \simeq 10^{-3} \end{pmatrix}$$

Almost saturates naïve stat & theory limit

• LEP-II: $\Delta R_h/R_h \simeq O(0.05)$ LEP EW WG (2003,2013)

\rightarrow impressive $O(10^2)$ improvement!

Note: for role of additional background (e.g. collimated VV) see the paper Alessandro Valenti | University of Basel 14

Realistic

	Observable/FCC-ee Rel. Err. (10^{-3})	WW	Zh	$t\overline{t}$	
assuming	R_b	0.17	0.36	0.96	\rightarrow
$\Delta m_t / m_t \lesssim O(0.1\%)$ from FCC-ee m_t scan	R_s	3.7	5.8	10	
	R_c	0.14	0.27	0.69	
Stat ←	R_t	-	-	1.2	
stat ←	$R_{ au,\mu}$	0.16	0.35	0.97	ho =
syst (theory) ←	R_e	0.50	0.52	0.64	-

Solid (at least) $O(10^2)$ improvement compared to LEP-II Room for improvement: *s*-tagging

New Physics Through Flavor Tagging at FCC-ee

; TIT: results

Fit R_b, R_s, R_c simultaneously

Small correlations: e.g. WW

$$p = \begin{pmatrix} 1 & -0.006 & -0.006 & -0.006 & 0 \\ -0.006 & 1 & -0.006 & 0 \\ -0.22 & -0.006 & 0 \end{pmatrix}$$

	Observable	Curr. Rel. Err. (10^{-3})	FCC-ee Rel. Err. (10^{-3})	Error reduction
	$\Gamma_{ m Z}$	2.3	0.1	23
LEP EW WG (2003,2013)	$\sigma_{ m had}^0$	37	5	7
De Blas et al (2019)	R_b^Z	3.06	0.3	10
Bionde, Janot (2021) PDC (2024)	R_c^Z	17.4	1.5	12
PDG (2024)	$A_{ m FB}^{0,b}$	15.5	1	16
	$A_{ m FB}^{0,c}$	47.5	3.08	15
	A_b^Z	21.4	3	7
	A_c^Z	40.4	8	5
	R_e^Z	2.41	0.3	8
	R^Z_μ	1.59	0.05	32
	$R^Z_{ au}$	2.17	0.1	22
	$A_{ m FB}^{0,e}$	154	5	31
	$A_{ m FB}^{0,\mu}$	80.1	3	27
	$A_{ m FB}^{0, au}$	104.8	5	21
	$\int A_e^Z$	14.3	0.11	130
(Curr. from SLC	C) $\begin{cases} A_{\mu}^{Z} \end{cases}$	102	0.15	680
	$A^Z_{ au}$	102	0.3	340
	$N_{ u}$	50	0.8	62

New Physics Through Flavor Tagging at FCC-ee

Z-pole summary

(See PDG@EW for definitions)

W-pole $+\tau$ decays summary

LEP EW WG (2003,2013) De Blas et al (2019) Blonde, Janot (2021) PDG (2024)

	Observable	Value	Error	FCC-ee Tot.	Error reduction
-	$\Gamma_W \; [{ m MeV}]$	2085	42	1.24	34
	$m_W \; [{ m MeV}]$	80350	15	0.39	38
	$\operatorname{Br}(W \to e\nu)(\%)$	10.71	0.16	0.0032	50
	$\operatorname{Br}(W \to \mu \nu)(\%)$	10.63	0.15	0.0032	47
	$\operatorname{Br}(W \to \tau \nu)(\%)$	11.38	0.21	0.0046	46
-	$\tau \to \mu \nu \nu (\%)$	17.39	0.04	0.003	13
-	$\tau \to e \nu \nu (\%)$	17.82	0.04	0.003	13

Outline

1. Observables and flavor tagging above the Z-pole

2. SMEFT interpretation

3. Impact on selected models 4. Conclusion

$$\mathscr{L} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i$$
 Consider fla

New Physics Through Flavor Tagging at FCC-ee

avor conserving, non-universal 4F interactions

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i$$
 Consider fla

Above the pole

• <u>Tree-level</u>: $2q2\ell + 4\ell$ operators involving e^+e^- (*prst* = 11*ii*)

New Physics Through Flavor Tagging at FCC-ee

avor conserving, non-universal 4F interactions

$$2q2\ell$$
 C
 C
 C
 O
 O
 O

$$egin{aligned} \mathcal{Q}_{\ell q}^{(1)} & (ar{\ell}_p \gamma_\mu \ell_r) (ar{q}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu \tau^I \ell_r) (ar{q}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu \ell_r) (ar{d}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu \ell_r) (ar{d}_s \gamma^\mu q) \ (ar{\ell}_p \gamma_\mu \ell_r) (ar{d}_s \gamma^\mu q) \ (ar{\ell}_p \rho_\mu e_r) (ar{d}_s q_t^\mu) \ (ar{\ell}_p \rho_\mu e_r) (ar{d}_s q_t^\mu) \ (ar{\ell}_p \gamma_\mu \ell_r) (ar{\ell}_s \gamma^\mu e) \ (ar{\ell}_p \gamma^\mu \ell_r) (ar{\ell}_p \gamma^\mu e) \ (ar{\ell}_p \gamma$$

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i$$
 Consider fla

Above the pole

- <u>Tree-level</u>: $2q2\ell + 4\ell$ operators involving
- <u>1-loop:</u> $2q2\ell + 4\ell + 4q$, all indices *prst* =

New Physics Through Flavor Tagging at FCC-ee

avor conserving, non-universal 4F interactions

$$e^{+}e^{-} (prst = 11ii)$$

$$= iijji (gauge running)$$

$$2q2\ell \begin{cases} \mathcal{O}_{\ell q}^{(1)} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ \mathcal{O}_{\ell q}^{(3)} & (\bar{\ell}_{p}\gamma_{\mu}\tau^{I}\ell_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ \mathcal{O}_{eu} & (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{ed} & (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{ed} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{qd}^{(1)} & (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\tau_{I}\gamma^{\mu}q_{t}) \\ \mathcal{O}_{qd}^{(1)} & (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\tau_{I}\gamma^{\mu}q_{t}) \\ \mathcal{O}_{qd}^{(1)} & (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{dd} & (\bar{d}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{dd} & (\bar{d}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{dd} & (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \mathcal{O}_{de} & (\bar{\ell}_{p}\gamma_{\mu}\ell_{r})(\bar{\ell}_{s}\gamma^{\mu}e_{t}) \\ \mathcal{O}_{ee} &$$

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i$$
 Consider fla

Above the pole

Build likelihood with the 3 runs, one operator at a time

 \rightarrow set $c_i = 1 \Rightarrow$ lower bound on Λ

 $\rightarrow \Delta R_a/R_a^{\rm SM} \sim s/\Lambda^2$: growth compensates precision deterioration!

 \rightarrow Alternative: pair-production *around* the Z-pole \Rightarrow See Ge et al (2024)

avor conserving, non-universal 4F interactions

- LEP-II: R_a ratios
- (HL-)LHC: high- $p_T \bar{q}q \rightarrow e^+ e^-$ tails
- FCC-ee Z-pole: <u>1-loop RGE</u> –

 $(y_t^2 \text{ for top, gauge others})$

- LEP-II: R_a ratios
- (HL-)LHC: high- $p_T \bar{q}q \rightarrow e^+ e^-$ tails
- FCC-ee Z-pole: <u>1-loop RGE</u> –

New Physics Through Flavor Tagging at FCC-ee

 $(y_t^2 \text{ for top, gauge others})$

- Cs: atomic parity violation
- (HL-)LHC: high- $p_T \bar{q}q \rightarrow e^+ e^-$ tails
- FCC-ee Z-pole: <u>1-loop RGE</u> –

 q, ℓ e^{-} q, ℓ

 $(y_t^2 \text{ for top, gauge others})$

Outline

- 1. Observables and flavor tagging above the Z-pole
- 2. SMEFT interpretation
- 3. Impact on selected models 4. Conclusion

Motivation: *B* anomalies

 $b \rightarrow s\ell\ell$

CMS+LHCb tension with (some) SM calculations

New Physics Through Flavor Tagging at FCC-ee

 $b \rightarrow c \tau \nu$

 $\sim 3.3\sigma$ tension with SM

Benchmark = BSM models accounting one/both discrepancies

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

 $\mathscr{L} \supset \frac{\mathscr{U}}{\sqrt{2}} U_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} \mathscr{C}_L^3 + \beta_{s\tau} \bar{q}_L^2 \gamma^{\mu} \mathscr{C}_L^3 \right) + \text{h.c.}$

Parameters: $r_U \equiv g_U / M_U \& \beta_{s\tau}$

New Physics Through Flavor Tagging at FCC-ee

Buttazzo, Greljo, Isidori, Marzocca (2017) Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert (2019, 2021)

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

Parameters: $r_U \equiv g_U / M_U \& \beta_{s\tau}$

• TL contrib. to $b \rightarrow c \tau \nu$

New Physics Through Flavor Tagging at FCC-ee

 $\mathscr{L} \supset \frac{\mathscr{U}}{\sqrt{2}} U_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} \mathscr{C}_L^3 + \beta_{s\tau} \bar{q}_L^2 \gamma^{\mu} \mathscr{C}_L^3 \right) + \text{h.c.}$ $U_{\mu} \sim (\mathbf{3}, 1, 2/3)$

Buttazzo, Greljo, Isidori, Marzocca (2017) Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert (2019, 2021)

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

Parameters: $r_U \equiv g_U / M_U \& \beta_{s\tau}$

- TL contrib. to $b \rightarrow c \tau \nu$
- 1-loop to $b \rightarrow s\ell\ell$

New Physics Through Flavor Tagging at FCC-ee

 $\mathscr{L} \supset \frac{\mathscr{U}}{\sqrt{2}} U_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} \mathscr{C}_L^3 + \beta_{s\tau} \bar{q}_L^2 \gamma^{\mu} \mathscr{C}_L^3 \right) + \text{h.c.}$ $U_{\mu} \sim (\mathbf{3}, 1, 2/3)$

Buttazzo, Greljo, Isidori, Marzocca (2017) Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert (2019, 2021)

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

Parameters: $r_U \equiv g_U / M_U \& \beta_{s\tau}$

- TL contrib. to $b \rightarrow c \tau \nu$
- 1-loop to $b \to s\ell\ell$
- 1-loop to $\tau \to \mu \nu \nu$

New Physics Through Flavor Tagging at FCC-ee

 $\mathscr{L} \supset \frac{\mathscr{U}}{\sqrt{2}} U_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} \mathscr{C}_L^3 + \beta_{s\tau} \bar{q}_L^2 \gamma^{\mu} \mathscr{C}_L^3 \right) + \text{h.c.}$ $U_{\mu} \sim (\mathbf{3}, 1, 2/3)$

Buttazzo, Greljo, Isidori, Marzocca (2017) Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert (2019, 2021)

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

Parameters: $r_U \equiv g_U / M_U \& \beta_{s\tau}$

- TL contrib. to $b \rightarrow c \tau \nu$
- 1-loop to $b \rightarrow s\ell\ell$
- 1-loop to $\tau \rightarrow \mu \nu \nu$

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

FCC-ee:

• $\mathcal{O}(10)$ improvement in $\tau \to \mu\nu\nu$ & $\mathcal{O}(50) W \to \tau\nu$

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

FCC-ee:

- $\mathcal{O}(10)$ improvement in $\tau \to \mu\nu\nu$ & $\mathcal{O}(50) W \to \tau\nu$
- Z-pole: 1-loop contrib.

to $Z \rightarrow \tau \tau, Z \rightarrow inv$

New Physics Through Flavor Tagging at FCC-ee

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

FCC-ee:

- $\mathcal{O}(10)$ improvement in $\tau \to \mu\nu\nu$ & $\mathcal{O}(50) W \to \tau\nu$
- Z-pole: 1-loop contrib.

to $Z \rightarrow \tau \tau, Z \rightarrow inv$

• Above the pole: 1-loop contrib.

to $e^+e^- \rightarrow \tau \tau, e^+e^- \rightarrow \bar{q}q$

New Physics Through Flavor Tagging at FCC-ee

FCC-ee:

- $\mathcal{O}(10)$ improvement in $\tau \to \mu \nu \nu$ $\& \mathcal{O}(50) W \to \tau \nu$
- **Z-pole**: 1-loop contrib.

to $Z \rightarrow \tau \tau, Z \rightarrow inv$

• Above the pole: 1-loop contrib.

to $e^+e^- \rightarrow \tau \tau, e^+e^- \rightarrow \bar{q}q$

New Physics Through Flavor Tagging at FCC-ee

I) Vector LQ for $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$

II) Scalar LQ for $b \rightarrow s\ell\ell$ $\mathscr{L} \supset \sum_{\alpha} S_{\alpha} \mathscr{C}_{L}^{\alpha} \left(\lambda_{b} \bar{q}_{L}^{c,3} + \lambda_{s} \bar{q}_{L}^{c,2} \right)$

Greljo, Salko, Smolkovic, Stangl (2022)

 $\alpha = e, \mu$

Parameters: $r_{b.s} \equiv \lambda_{b.s}/M_S$

New Physics Through Flavor Tagging at FCC-ee

 $S_{\alpha} \sim (\bar{3}, 3, 1/3)$

II) Scalar LQ for $b \rightarrow s\ell\ell$ $\mathscr{L} \supset \sum_{\alpha} S_{\alpha} \mathscr{C}_{L}^{\alpha} \left(\lambda_{b} \bar{q}_{L}^{c,3} + \lambda_{s} \bar{q}_{L}^{c,2} \right)$ $S_{\alpha} \sim (\bar{3}, 3, 1/3)$ $\alpha = e, \mu$ Λ_b b S

Greljo, Salko, Smolkovic, Stangl (2022)

Parameters: $r_{b.s} \equiv \lambda_{b.s}/M_S$

• TL contrib. to $b \rightarrow s\ell\ell$

II) Scalar LQ for $b \rightarrow s\ell\ell$ $\mathscr{L} \supset \sum_{\alpha} S_{\alpha} \mathscr{C}_{L}^{\alpha} \left(\lambda_{b} \bar{q}_{L}^{c,3} + \lambda_{s} \bar{q}_{L}^{c,2} \right)$ $S_{\alpha} \sim (\bar{3}, 3, 1/3)$ $\alpha = e, \mu$ $\Lambda_{b,s}$ b, sb, s $\Lambda_{b,s}$

Parameters: $r_{b.s} \equiv \lambda_{b.s}/M_S$

• TL contrib. to $b \rightarrow s\ell\ell$

Greljo, Salko,

Smolkovic, Stangl (2022)

• TL to $\bar{q}q \rightarrow \ell \ell \ell$ high- p_T tails (LHC & HL-LHC)

II) Scalar LQ for $b \rightarrow s\ell\ell$ $\mathscr{L} \supset \sum_{\alpha} S_{\alpha} \mathscr{C}_{L}^{\alpha} \left(\lambda_{b} \bar{q}_{L}^{c,3} + \lambda_{s} \bar{q}_{L}^{c,2} \right)$ $S_{\alpha} \sim (\bar{3}, 3, 1/3)$ $\alpha = e, \mu$ $\Lambda_{b,s}$ b, s*b*,*s*

- Parameters: $r_{b,s} \equiv \lambda_{b,s}/M_S$
- TL contrib. to $b \rightarrow s\ell\ell$

Greljo, Salko,

Smolkovic, Stangl (2022)

- TL to $\bar{q}q \rightarrow \ell \ell \ell$ high- p_T tails (LHC & HL-LHC)
- TL to above the pole $e^+e^- \rightarrow \bar{q}q$ (LEP-II & FCC-ee)

II) Scalar LQ for $b \rightarrow s\ell\ell$ $\mathscr{L} \supset \sum_{\alpha} S_{\alpha} \mathscr{C}_{L}^{\alpha} \left(\lambda_{b} \bar{q}_{L}^{c,3} + \lambda_{s} \bar{q}_{L}^{c,2} \right)$ $S_{\alpha} \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$ $\alpha = e, \mu$

- Parameters: $r_{b,s} \equiv \lambda_{b,s}/M_S$
- TL contrib. to $b \rightarrow s\ell\ell$

Greljo, Salko,

Smolkovic, Stangl (2022)

- TL to $\bar{q}q \rightarrow \ell \ell \ell$ high- p_T tails (<u>LHC</u> & <u>HL-LHC</u>)
- TL to above the pole $e^+e^- \rightarrow \bar{q}q$ (LEP-II & FCC-ee)
- 1-loop to Z-pole EWPO (<u>LEP & FCC-ee</u>)

II) Scalar LQ for $b \rightarrow s\ell\ell$ $\mathscr{L} \supset \sum_{\alpha} S_{\alpha} \mathscr{C}_{L}^{\alpha} \left(\lambda_{b} \bar{q}_{L}^{c,3} + \lambda_{s} \bar{q}_{L}^{c,2} \right)$ $S_{\alpha} \sim (\bar{3}, 3, 1/3)$ $\alpha = e, \mu$ $b \xrightarrow{h_b} \ell \xrightarrow{h_s} s$ $s \sim (r_b r_s)^2 M_S^2$ λ_b b λ_{s}

- Parameters: $r_{b,s} \equiv \lambda_{b,s}/M_S$
- TL contrib. to $b \rightarrow s\ell\ell$

Greljo, Salko,

Smolkovic, Stangl (2022)

- TL to $\bar{q}q \rightarrow \ell \ell \ell$ high- p_T tails (<u>LHC</u> & <u>HL-LHC</u>)
- TL to above the pole $e^+e^- \rightarrow \bar{q}q$ (LEP-II & FCC-ee)
- 1-loop to Z-pole EWPO (<u>LEP & FCC-ee</u>)
- 1-loop (box) to $B_{s} \bar{B}_{s}$ oscillations

II) Scalar LQ for $b \rightarrow s\ell\ell$

Outline

- 1. Observables and flavor tagging above the Z-pole
- 2. SMEFT interpretation
- 3. Impact on selected models
- 4. Conclusion

- Current results in flavor tagging at FCC-ee allow saturation of the naïve stat limit on R_b, R_c (for R_s improvement needed)
- R_a above the Z-pole at FCC-ee:
- probe flavor conserving, non-universal 4F (also 3rd gen!) up to $\mathcal{O}(50)$ TeV!
- SMEFT RG:

• FCC-ee may rule out/discover models for current B anomalies!

Thank you for your attention!

New Physics Through Flavor Tagging at FCC-ee

Interplay/complementarity between Z-pole EWPO (1-loop) and above the pole (TL)

BACKUP

Z-pole

							1711.	10391	
E)	Name	${\mathcal B}$	\mathcal{B}_1	\mathcal{W}	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
	Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1,3)_0$	$(1,3)_1$	$(8,1)_{0}$	$(8,1)_1$	$(8,3)_{0}$	$(1,2)_{rac{1}{2}}$
	Name	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	X	\mathcal{Y}_1	\mathcal{Y}_5
	Irrep	$(1,2)_{-rac{3}{2}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{-rac{5}{6}}$	$(3,3)_{rac{2}{3}}$	$(\overline{6},2)_{rac{1}{6}}$	$(\bar{6},2)_{-\frac{5}{6}}$

\mathcal{S}_1	\mathcal{S}_2	arphi	Ξ	Ξ_1	Θ_1	Θ_3
$(1,1)_{1}$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_0$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
ω_2	ω_4	Π_1	Π_7	ζ		
$(3,1)_{rac{2}{3}}$	$(3,1)_{-rac{4}{3}}$	$(3,2)_{rac{1}{6}}$	$(3,2)_{rac{7}{6}}$	$(3,3)_{-rac{1}{3}}$		
Ω_2	Ω_4	Υ	Φ			
(6.1)	$(6, 1)_{4}$	(6, 3)	$(8, 2)_1$			

From L. Allwicher talk

Other bounds

$$\begin{array}{l} \text{Oblique corrections} \\ \mathcal{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_{\rho} W^a_{\mu\nu})^2 - \frac{\hat{Y}}{4m_W^2} (\partial_{\rho} B_{\mu\nu})^2 \end{array}$$

EoM:

flavor conserving, non-universal 4F (TL *above* the Z-pole)

+

Higgs-fermion current operators (TL *at* the Z-pole)

New Physics Through Flavor Tagging at FCC-ee

	Othe	er bo	unds
	۸ [3333] [TL- ۲ <i>7</i>]	FCC-ee	FCC-ee
	$\Lambda^{\text{rev}}[1ev]$	Z, W-pole+ $ au$	above Z -pole
	$\Lambda^{(1)}_{\ell q}$	15.7	1.1
3rd aen only:	$\Lambda^{(ar{3})}_{\ell q}$	14.0	5.1
901101191	Λ_{eu}	16.2	1.6
Duro DC offoot	Λ_{ed}	1.5	1.3
ruie na ellect,	$\Lambda_{\ell u}$	15.4	1.5
hoth of 7 and above	$\Lambda_{\ell d}$	1.5	1.3
DOLLI AL Z ALIO ADOVE	Λ_{qe}	16.7	1.1
	$\Lambda_{\ell\ell}$	1.0	1.0
	$\Lambda_{\ell e}$	2.1	1.5
	Λ_{ee}	3.5	2.4
	$\Lambda^{(1)}_{qq}$	13.1	2.4
	$\Lambda^{(3)}_{qq}$	8.4	7.1
	$\Lambda^{(1)}_{qu}$	9.4	1.4
	$\Lambda^{(1)}_{qd}$	3.1	0.9
	Λ_{uu}	12.1	1.9
	Λ_{dd}	0.4	2.3
	$\Lambda^{(1)}_{ud}$	2.8	1.9

4F operators around the Z-pole? Ge et al (2024)

Key:
$$\sigma_{Z,SM} \sim \frac{s}{(s-m_Z^2)^2+m_z^2}$$

$\sqrt{s} \supset m_7 \pm 5$ GeV: larger stat but relative effect suppressed Comparing results: stronger bounds above the pole

Flavor-vic

$$R_{ij} = \frac{\sigma(e^+e^- \rightarrow e^-)}{\sum_{k,l}}$$

Consider only N_{ij} (contrib. to other bins negligible)

$$E[S] = s/\sigma_b$$

$$\sigma_b \simeq (b + \sum_k \sigma_{b,k})^{1/2}$$

$$R_{ij} \lesssim 1.645 \frac{\sigma_b}{N_{\text{tot}} \epsilon_i^i \epsilon_j^j} \quad (95\% \text{ CL})$$

blating ratios			
$\bar{q}_i q_j) + \sigma(e^+ e^- \rightarrow \bar{q}_j q_i)$			
$\sigma(e^+e^- \to \bar{q}_k q_l)$	Energy	ij	$ R_{ij}$
	WW	$egin{array}{c c} bs \ bd \ cu \end{array}$	$egin{array}{c} 2.80 \cdot 10 \ 3.44 \cdot 10 \ 5.28 \cdot 10 \ \end{array}$
Result	Zh	$egin{array}{c c} bs \ bd \ cu \end{array}$	$egin{array}{c} 6.37 \cdot 10 \ 6.58 \cdot 10 \ 1.10 \cdot 10 \end{array}$
	$t\bar{t}$	$egin{array}{c} bs \ bd \ cu \end{array}$	$egin{array}{c} 1.79 \cdot 10 \ 1.53 \cdot 10 \ 2.70 \cdot 10 \end{array}$

Flavor-violating ratios SMEFT interpretation: $|\Lambda_{1123}| > 16 \,\text{TeV}$ for $|\Lambda_{1113}| > 9.4 \,\text{TeV}$ for $|\Lambda_{1112}| > 8.1 \,\text{TeV}$ for

Bounds generally weaker/comparable with ones from hadronic decays

New Physics Through Flavor Tagging at FCC-ee

$$egin{aligned} &\mathcal{O}_{\ell q}^{(1)},\mathcal{O}_{\ell q}^{(3)},\mathcal{O}_{\ell d},\mathcal{O}_{ed},\mathcal{O}_{qe},\ &\mathcal{O}_{\ell q}^{(1)},\mathcal{O}_{\ell q}^{(3)},\mathcal{O}_{\ell d},\mathcal{O}_{ed},\mathcal{O}_{qe},\mathcal{O}_{qe}\ &\mathcal{O}_{\ell q}^{(1)},\mathcal{O}_{\ell q}^{(3)},\mathcal{O}_{\ell u},\mathcal{O}_{eu},\mathcal{O}_{eu},\mathcal{O}_{qe} \end{aligned}$$

Parameters: $r_{sh} \equiv g_{sh}/M_{Z'} \& r_{\ell} \equiv g_{\ell}/M_{Z'}$

- TL contrib to $b \rightarrow s\ell\ell$
- TL contrib to $B_{s} \bar{B}_{s}$ mixing
- TL contrib to $e^+e^- \rightarrow \bar{f}f$

Alessandro Valenti | University of Basel