
New Physics at FCC-ee

G. Polesello (INFN Pavia)

#### FCC-ee

- Energy range: Z-pole to ttbar production
- Very high luminosity yielding huge statistics of SM high mass particles, in particular
  - 6x10<sup>12</sup> Z bosons
  - ~2.5x10<sup>6</sup> Higgs bosons
- Very clean (e<sup>+</sup>e<sup>-</sup>) experimental environment as compared to hadron machines

 $\rightarrow$  see opportunities for BSM discovery in this environment



| Working point                                        | Z pole                   | WW thresh.               | ZH                             | $t\overline{t}$               |                         |
|------------------------------------------------------|--------------------------|--------------------------|--------------------------------|-------------------------------|-------------------------|
| $\sqrt{s}$ (GeV)                                     | 88, 91, 94               | 157, 163                 | 240                            | 340-350                       | 365                     |
| Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$ | 140                      | 20                       | 7.5                            | 1.8                           | 1.4                     |
| Lumi/year (ab <sup>-1</sup> )                        | 68                       | 9.6                      | 3.6                            | 0.83                          | 0.67                    |
| Run time (year)                                      | 4                        | 2                        | 3                              | 1                             | 4                       |
| Integrated lumi. $(ab^{-1})$                         | 205                      | 19.2                     | 10.8                           | 0.42                          | 2.70                    |
|                                                      |                          |                          | $2.2 \times 10^6  \mathrm{ZH}$ | $2 \times 10$                 | $^{6}{ m t}{ar { m t}}$ |
| Number of events                                     | $6\times 10^{12}{\rm Z}$ | $2.4\times 10^8{\rm WW}$ | +                              | $+370 \mathrm{k} \mathrm{ZH}$ |                         |
|                                                      |                          |                          | $65k~{\rm WW} \to {\rm H}$     | $+92k \; WW \rightarrow H$    |                         |

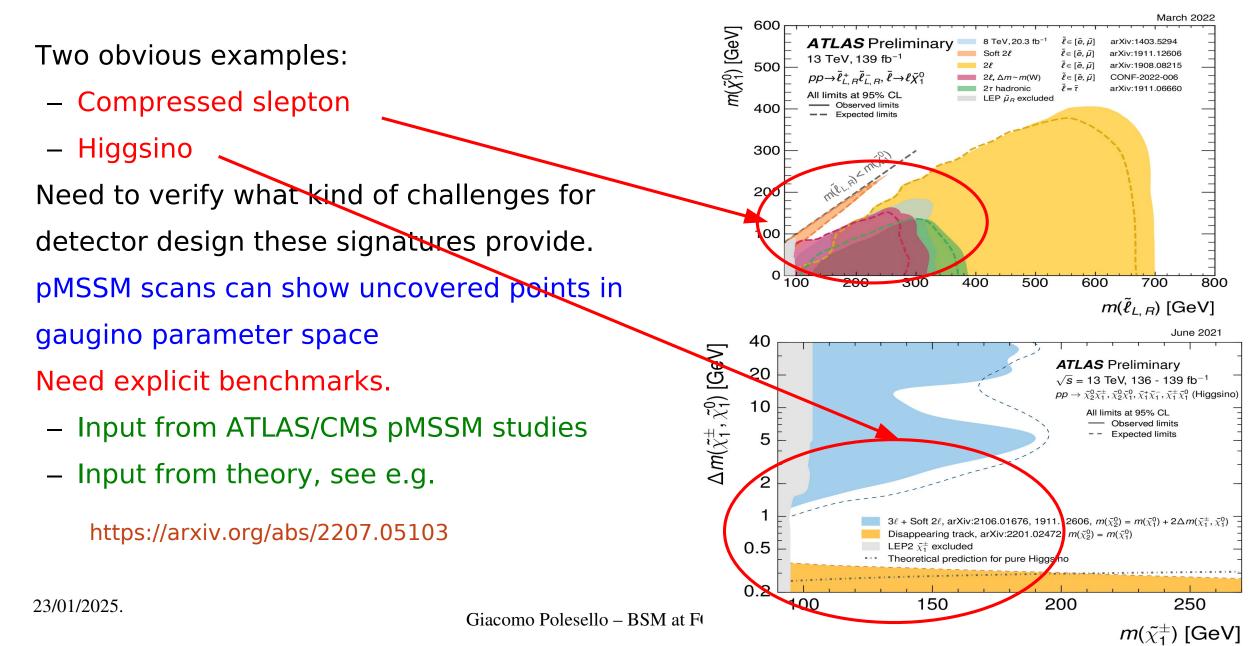
#### BSM

After (HL-)LHC, generic new physics excluded up to scale of few TeV How to go beyond:

- Loopholes in LHC searches:
  - BSM particles with masses <few GeV</li>
  - Compressed BSM spectra
- High statistics and clean environment to explore higher mass scales:
  - Deviations from SM prediction of precision measurements
  - Direct detection of rare decays of H,Z,top

|          | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\ell, \gamma$                                                                                                                                                                      | Jets†                                                                          | $E_{T}^{miss}$            | ∫£ dt[fb                                                                   | -1]                                                                                                                                                                | Lim     | nit                                                                                       | $\int \mathcal{L} dt = (3)$                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       | Reference                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|          | ADD $G_{KK} + g/q$<br>ADD non-resonant $\gamma\gamma$<br>ADD QBH<br>ADD BH multiget<br>RS1 $G_{KK} \rightarrow \gamma\gamma$<br>Bulk RS $G_{KK} \rightarrow tt$<br>Bulk RS $g_{KK} \rightarrow tt$                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$                                                | 1 - 4j<br>2j<br>$\ge 3j$<br>$\ge 1 b, \ge 1J/2$<br>$\ge 2 b, \ge 3j$           |                           | 139<br>36.7<br>139<br>3.6<br>139<br>36.1<br>36.1<br>36.1<br>36.1           | MD<br>Ms<br>Mth<br>GKK mass<br>GKK mass<br>KKK mass<br>KK mass                                                                                                     |         | 2.3<br>1.8 TeV                                                                            | 8.6 TeV<br>9.4 TeV<br>9.55 TeV<br>4.5 TeV<br>TeV<br>3.8 TeV                            |                                                                                                                                                                                                                                                                                                                                                                                                                       | 2102.10874<br>1707.04147<br>1910.08447<br>1512.02586<br>2102.13405<br>1808.02380<br>1804.10823<br>1803.09678                                  |
|          | $\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{HVT} \ W' \to WZ \ \mathrm{model} \ B \\ \mathrm{HVT} \ W' \to WZ \to \ell\nu \ \ell' \ \mathrm{model} \ B \\ \mathrm{HVT} \ W' \to WZ \to \ell\nu \ \ell' \ \mathrm{model} \ B \\ \mathrm{HVT} \ W' \to WZ \to \mu \ NR \\ \mathrm{HSM} \ W_R \to \mu \ NR \end{array}$ | $\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0.2 \ e, \mu \\ e \ l \ C \ 3 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$                    | -<br>2 b<br>≥1 b, ≥2 J<br>-<br>2 j/1 J<br>2 j/1 J<br>2 j/1 J<br>2 j/1 J<br>1 J | Yes                       | 139<br>36.1<br>36.1<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>80 | Z' mass<br>Z' mass<br>Z' mass<br>W' mass<br>W' mass<br>W' mass<br>W' mass<br>W' mass<br>Z' mass<br>Z' mass                                                         | 340 GeV | 2.42<br>2.1 Te                                                                            | 5.1 TeV<br>TeV<br>50<br>5.0 TeV<br>5.0 TeV<br>4.4 TeV<br>4.3 TeV<br>3.9 TeV<br>5.0 TeV | $\Gamma/m = 1.2\%$<br>$g_V = 3$<br>$g_V c_H = 1, g_F = 0$<br>$g_V = 3$<br>$m(N_R) = 0.5$ TeV, $g_L = g_R$                                                                                                                                                                                                                                                                                                             | 1903.06248<br>1709.07242<br>1805.09299<br>2005.05138<br>1906.05609<br>ATLAS-CONF-2021<br>2004.14636<br>2207.03925<br>2004.14636<br>1904.12879 |
| 5        | Cl qqqq<br>Cl llqq<br>Cl eebs<br>Cl µµbs<br>Cl tttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 e,μ<br>2 e<br>2 μ<br>≥1 e,μ                                                                                                                                                       | 2 j<br>-<br>1 b<br>≥1 b, ≥1 j                                                  | -<br>-<br>-<br>Yes        | 37.0<br>139<br>139<br>139<br>36.1                                          | Λ<br>Λ<br>Λ<br>Λ                                                                                                                                                   |         | 1.8 TeV<br>2.0 Te<br>2.5                                                                  |                                                                                        | 21.8 TeV $\eta_{LL}^-$<br>35.8 TeV $\eta_{LL}^-$<br>$g_* = 1$<br>$g_* = 1$<br>$ C_{4t}  = 4\pi$                                                                                                                                                                                                                                                                                                                       | 1703.09127<br>2006.12946<br>2105.13847<br>2105.13847<br>1811.02305                                                                            |
| 5        | Axial-vector med. (Dirac DM)<br>Pseudo-scalar med. (Dirac DM)<br>Vector med. Z'-2HDM (Dirac D<br>Pseudo-scalar med. 2HDM+a                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     | 2 j<br>1 - 4 j<br>2 b                                                          | -<br>Yes<br>Yes           | 139<br>139<br>139<br>139                                                   | m <sub>med</sub><br>m <sub>med</sub><br>m <sub>Z'</sub><br>m <sub>a</sub>                                                                                          | 376 GeV | 800 GeV                                                                                   | 3.8 TeV<br>3.0 TeV                                                                     | $\begin{array}{c} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm TeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$                                                                                                                                  | ATL-PHYS-PUB-20<br>2102.10874<br>2108.13391<br>ATLAS-CONF-202                                                                                 |
| 3        | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Vector LQ mix gen<br>Vector LQ mix gen                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ \text{multi-channe} \\ 2 \ e, \mu, \tau \end{array}$ | 0-2j,2b                                                                        | Yes                       | 139<br>139<br>139<br>139<br>139<br>139<br>139<br>139                       | LO mass<br>LO mass<br>LO <sup>2</sup> mass<br>LO <sup>3</sup> mass<br>LO <sup>3</sup> mass<br>LO <sup>4</sup> mass<br>LO <sup>4</sup> mass<br>LO <sup>4</sup> mass |         | 1.8 TeV<br>1.7 TeV<br>1.49 TeV<br>1.24 TeV<br>1.43 TeV<br>1.26 TeV<br>2.0 Te'<br>1.96 TeV |                                                                                        | $\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(LQ_2^o \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_2^o \rightarrow t\tau) = 1 \\ \mathcal{B}(LQ_2^o \rightarrow t\tau) = 1 \\ \mathcal{B}(LQ_2^o \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_2^o \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_1^o \rightarrow t\mu) = 1, \text{Y-M coupl.} \\ \mathcal{B}(LQ_1^o \rightarrow b\tau) = 1, \text{Y-M coupl.} \end{array}$ | 2006.05872<br>2006.05872<br>2303.01294<br>2004.14060<br>2101.11582<br>2101.12527<br>ATLAS-CONF-202<br>2303.01294                              |
| fermions | $ \begin{array}{l} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/7} T_{5/3} T_{5/3} \to Wt + X \\ VLQ \ T \to Ht/Zt \\ VLQ \ Y \to Wb \\ VLQ \ B \to Hb \\ VLL \ t' \to Z\tau/H\tau \end{array} $                                                                                                                                                                                                                                                                                                                                   | 1 e, μ<br>1 e, μ                                                                                                                                                                    | el                                                                             | Yes<br>Yes<br>Yes         | 139<br>36.1<br>36.1<br>139<br>36.1<br>139<br>139                           | T mass<br>B mass<br>T <sub>5/3</sub> mass<br>T mass<br>Y mass<br>B mass<br>r' mass                                                                                 |         | 1.46 TeV<br>1.34 TeV<br>1.64 TeV<br>1.8 TeV<br>1.85 TeV<br>2.0 Te<br>898 GeV              |                                                                                        | $\begin{array}{l} {\rm SU(2)\ doublet} \\ {\rm SU(2)\ doublet} \\ {\mathcal B}(T_{5/3} \to Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ {\rm SU(2)\ singlet,} \ \kappa_T = 0.5 \\ {\mathcal B}(Y \to Wb) = 1, \ c_R(Wb) = 1 \\ {\rm SU(2)\ doublet,} \ \kappa_{B^0} = 0.3 \\ {\rm SU(2)\ doublet} \end{array}$                                                                                                                      | 2210.15413<br>1808.02343<br>1807.11883<br>ATLAS-CONF-202<br>1812.07343<br>ATLAS-CONF-202<br>2303.05441                                        |
| ferm     | Excited quark $q^* \rightarrow qg$<br>Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $b^* \rightarrow bg$<br>Excited lepton $\tau^*$                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>1γ<br>-<br>2τ                                                                                                                                                                  | 2j<br>1j<br>1b,1j<br>≥2j                                                       |                           | 139<br>36.7<br>139<br>139                                                  | q* mass<br>q* mass<br>b* mass<br>τ* mass                                                                                                                           |         |                                                                                           | 6.7 TeV<br>5.3 TeV<br>3.2 TeV<br>4.6 TeV                                               | only $u^*$ and $d^*, \Lambda = m(q^*)$<br>only $u^*$ and $d^*, \Lambda = m(q^*)$<br>$\Lambda = 4.6 \text{ TeV}$                                                                                                                                                                                                                                                                                                       | 1910.08447<br>1709.10440<br>1910.08447<br>2303.09444                                                                                          |
| 2000     | Type III Seesaw<br>LRSM Majorana v<br>Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                                                                                                                                                                                                  | 2,3,4 e, µ<br>2 µ<br>2,3,4 e, µ (SS<br>2,3,4 e, µ (SS<br>                                                                                                                           | ≥2j<br>2j<br>5) various<br>5) -<br>-<br>-<br>-                                 | Yes<br>-<br>Yes<br>-<br>- | 139<br>36.1<br>139<br>139<br>139<br>34.4                                   | N <sup>0</sup> mass<br>N <sub>R</sub> mass<br>H <sup>±±</sup> mass<br>H <sup>±±</sup> mass<br>multi-charged particle monopole mass                                 | 350 GeV | 910 GeV<br>1.08 TeV<br>1.59 TeV<br>2.37                                                   | 3.2 TeV                                                                                | $\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production},  q  = 5e \\ \text{DY production},  g  = 1g_D, \text{ spin } 1/2 \end{split}$                                                                                                                                                                                                             | 2202.02039<br>1809.11105<br>2101.11961<br>2211.07505<br>ATLAS-CONF-202<br>1905.10130                                                          |

+Small-radius (large-radius) iets are denoted by the letter i (J.


#### Talk by A. Valenti today



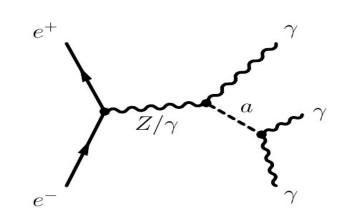
Main thrust of this talk, based on results shown at recent: ECFA workshop FCC workshop

#### 23/01/2025.

### LHC loopholes: SUSY



#### The role of EFTs


Before LHC clear theory font-runner: SUSY

For FCC no strong theoretical guidance: rely on EFT approach:

- Postulate a new BSM particle a
- Add to SM Lagrangian terms for coupling of a to relevant SM particles suppressed by scale of new physics

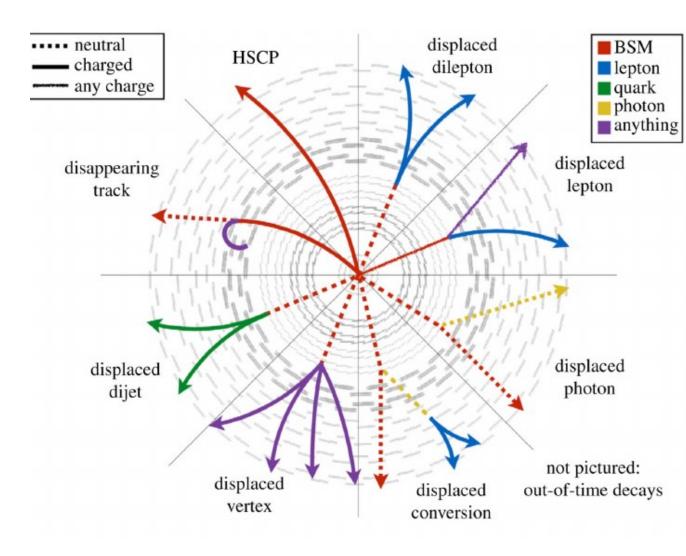
Example: axion-like particle coupling to vector bosons

$$\mathcal{L}_{\text{eff}} \ni e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu}$$



Achievable scale with 10<sup>12</sup> Z:

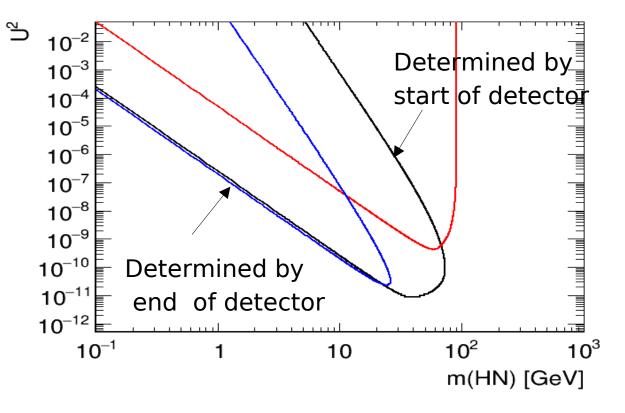
BR(Z→aγ)=(C<sub>γZ</sub>/Λ)<sup>2</sup>x8.6e<sup>-4</sup> (Λ in TeV) → For BR(Z→aγ)=1e<sup>-12</sup>: C<sub>γZ</sub>/Λ ~ 3e<sup>-5</sup> TeV<sup>-1</sup>


With  $10^{12}$  Z, a new physics scale of  $\sim 10^4$  TeV can be explored by looking for rare decays

#### Lifetime of new particles

Width of particle a of mass  $m_a$  decaying only through vertex (C/ $\Lambda$ ):

#### $\Gamma_a \sim m_a^3 (C/\Lambda)^2$


- For low masses and low couplings small BSM particle width  $\rightarrow$  long lifetimes, LLPs
- Wealth of signatures with little/no SM background
- LHC detectors designed without thinking of LLPs (although they are doing pretty well on it!)
- Establish requirements for FCC detectors enabling them to fully exploit physics opportunity of LLPs

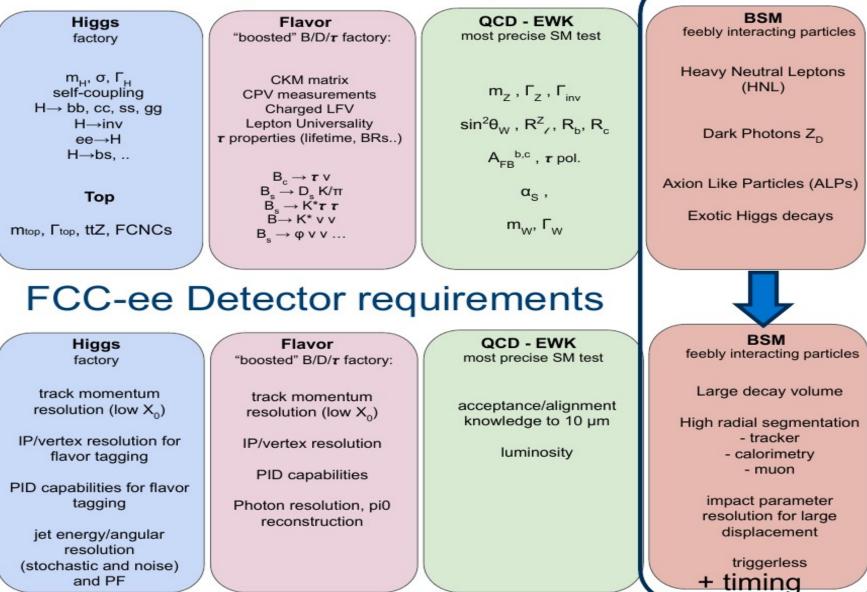


23/01/2025.

### Prompt vs LLP

Generically reach is defined in m(new physics)-coupling plane True e.g for ALP, HNL




Complementary reach of three different signatures:

- Prompt
- Decay in inner detector
- Decay in calo/muon detector

Study of coverage for a given model should address all three signatures. Very different experimental requirements

#### FCC-ee: physics vs detector requirements

#### **FCC-ee Physics landscape**



FCC has very large menu of physics topics

Each of these poses a specific experimental challenge and pushes detector optimisation

Unique challenges from BSM: long-lived particles

#### Benchmark studies in FCC-ee PED BSM group

- Z-pole (extendable to all Fcc-ee runs)
  - Axion-like particle searches
  - Heavy Neutral Lepton (HNL) searches
- Higgs sector
  - Higgs decay to long-lived scalars
  - Searches for additional higgses

Reach studies based on parametrised simulation: define requirements on detectors for full exploitation of FCC-ee direct BSM potential.

Next step will be moving to detailed GEANT4 simulation 23/01/2025.

### Recent workshops

Today personal choice out of large material, more info in three recent workshops



2ND "FEE ITHLY & FRANCE WORKSHOP"

VENICE, PALAZZO FRANCHETTI - NOVEMBER 4 - 6, 2024

#### ECFA workshop link

See talk of R. Franceschini there for topics I will not touch Link

#### Venice workshop link



CERN workshop link

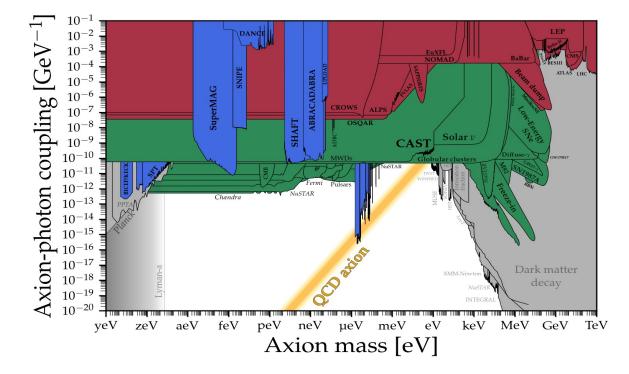
#### Workflow of experimental analyses



•Background files produced centrally based on FCC software.

- •Signal files produced either centrally or by analysis group.
- •DELPHES output stored in EDM4HEP format
- •Use FCCsoftware to produce ntuples for analysis based on FCCanalysis package

•Two large production campaigns, spring2021 and winter2023


•Main limitation: statistics at peak 23/01/2025.

## Z-pole studies

#### ALPs

Axion Like Particles (ALP): hypothetical pseudoscalar with similar interactions as the QCD axion, appearing naturally in many extensions of the SM

Couples to Z/photon, can be abundantly produced at FCC-ee



High statistics of FCC-ee Z-pole run allows exploration of much lower couplings to photons than tested to date in mass range 0.1-90 GeV In BSM group ongoing studies for different ALP decay modes:  $a \rightarrow \gamma \gamma$ ,  $a \rightarrow gluon gluon$ ,  $a \rightarrow \mu \mu$ 

#### Typical vector boson part of ALP Lagrangian Bauer et al:arXv:1808.10323

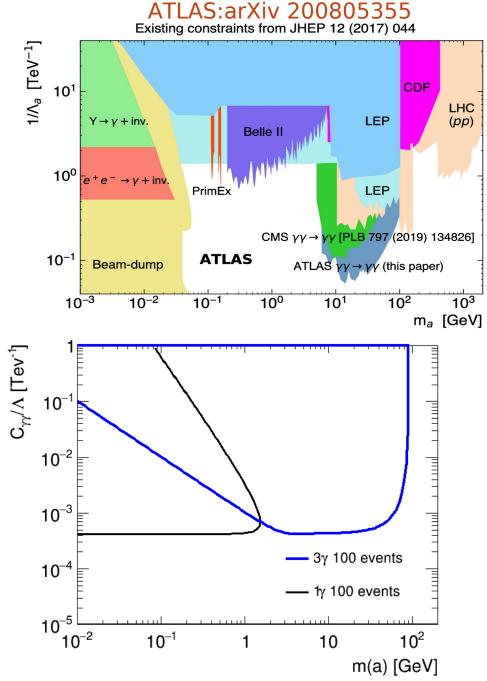
$$\mathcal{L}_{eff} \ni e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^2}{s_w^2 c_w^2} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$
with  $C_{\gamma\gamma} = C_{WW} + C_{BB}, \qquad C_{\gamma Z} = c_w^2 C_{WW} - s_w^2 C_{BB}, \qquad C_{ZZ} = c_w^4 C_{WW} + s_w^4 C_{BB}$ 
Benchmark:Assume a couples to hypercharge and not to SU2 (C<sub>ww</sub>=0)  $C_{\gamma Z} = -s_w^2 C_{\gamma\gamma}$ 

2-d parameter space:  $(m_a, C_{\gamma\gamma})$ Production in FCC-ee Z-pole run



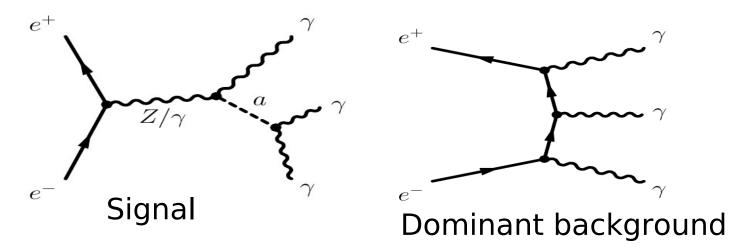
#### $a \rightarrow \gamma \gamma$

Regions of interest:


•0.1< ma < 10 GeV:

loose limits from previous e+e- searches, out of reach of beam dump

•10 <  $m_a$  < 90 GeV:

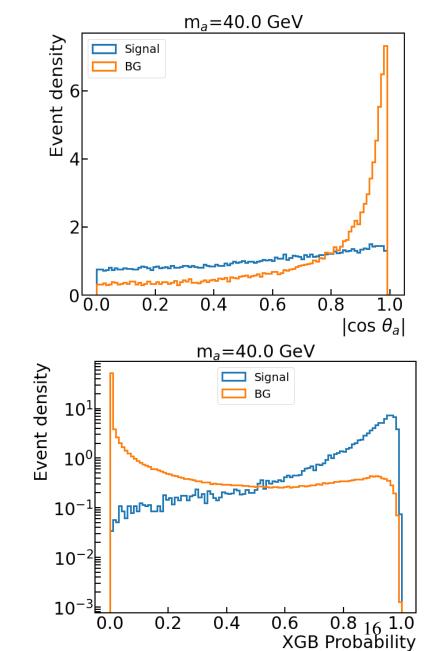

dominated by LHC photon-photon fusion potential for FCC-ee Z pole run

Depending on a lifetime consider two cases
•Three photons are observed in detector
•The ALP decays outside the detector: only a monocromatic photon in the event
Two different regions in parameter space
covered.

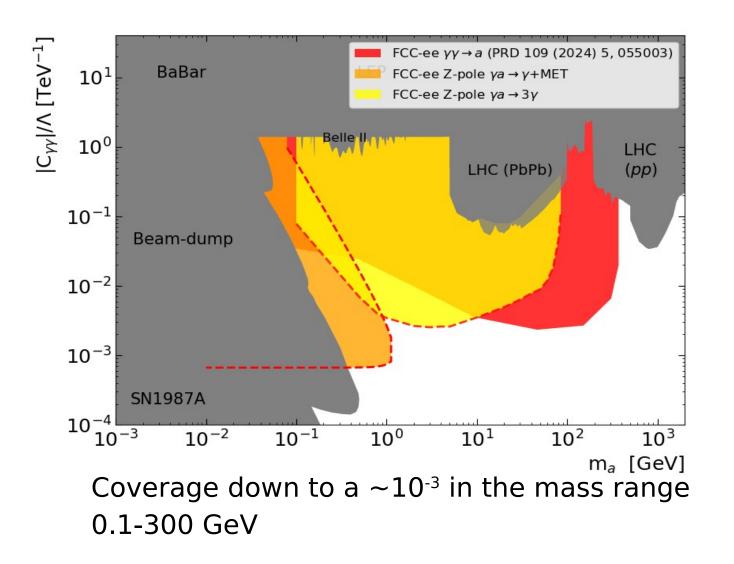


23/01/2025.

#### 3γ ALP analysis



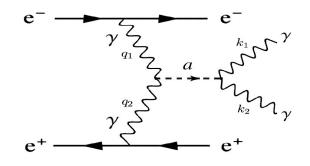

•3 photons within  $|\eta|{<}2.6$  and energy>1 GeV


•Scan test masses *M* between 0.1 and 85 GeV

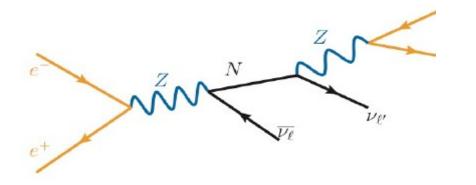
- •Assign 2 photons to ALP decay based on kinematic compatibility ( $\gamma_1, \gamma_2$ ), third photon to Z decay ( $\gamma_3$ )
- •Build BDT probability based on 3 angular variables+  $m(\gamma_1\gamma_2)$ ,  $E_{\gamma_3}$ , and  $E_{\gamma_2}/E_{\gamma_1}$

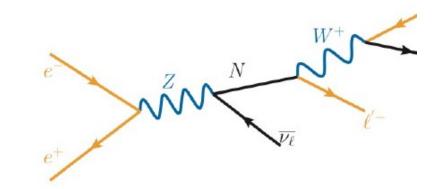
#### G.P. Talk at CERN




# Results




Grey areas : existing exclusions


Yellow and orange: areas with >2 $\sigma$  significance respectively For the 3-photon and 1-photon analysis

Red area is analysis of Rebello Teles et al. addressing ALP production in photon-photon fusion



#### **HNL Models**





Production in Z decay via mixing with light neutrinos

$$BR(Z \to \nu N) = \frac{2}{3} |U_N|^2 BR(Z \to \text{invisible}) \left(1 + \frac{m_N^2}{2m_Z^2}\right) \left(1 - \frac{m_N^2}{m_Z^2}\right) \left|U_N|^2 \equiv \sum_{\ell=e,\mu,\tau} |U_{\ell N}|^2$$

Decay: three-body decay into 3 fermions via virtual W/Z

Decay length:

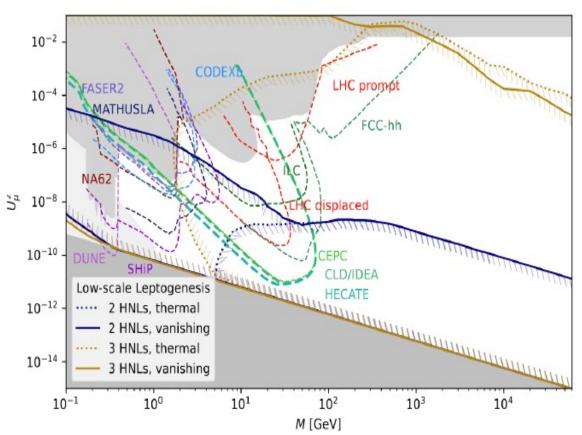
$$L_{N_i} = \simeq \frac{1.6}{U_i^2} \left(\frac{M_i}{GeV}\right)^{-6} \left(1 - (M_i/M_Z)^2\right) \ cm$$

23/01/2025.

For each HNL, phenomenology determined by 4 parameters: mass, mixing with three lepton flavours

#### Benchmark models

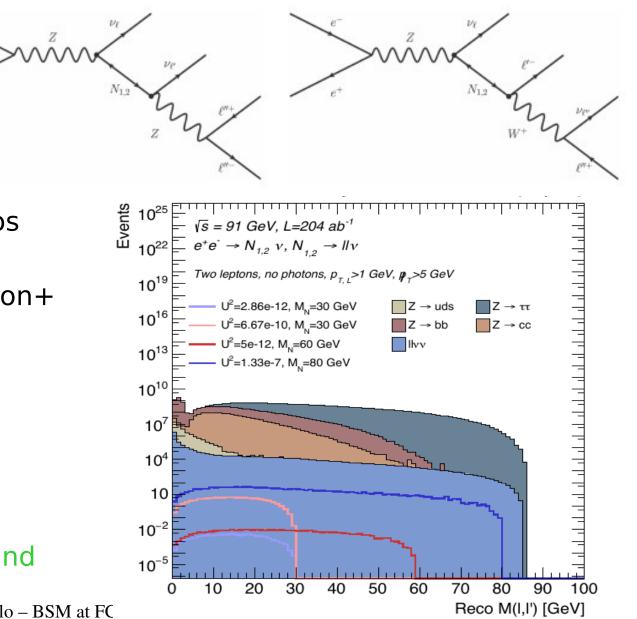
#### Two models:


#### •Minimal realistic seesaw scenario:

Pseudo Dirac pair of semidegenerate Majorana HNLs
Coupling to all leptons
Parameter choices compatible with leptogenesis and oscillation data

#### •Single low-mass HNL

mixing with one lepton flavour I: only 2 parameters  $m_N$  and  $U_I$ , useful for comparing experiments or accelerators


#### ArXiv:2203.05502



For single HNL several analysis with coupling to both e and  $\mu$  and considering fully leptonic and semileptonic N decay: show only semileptonic  $\mu$  case

### **Two HNLs**

#### S. Giappichini et al. arXiv:2410-03615



Consider only decay of N into 3 leptons :

 $e^+e^- \rightarrow N_{1,2}\nu$ ,  $N_{1,2} \rightarrow II\nu$ 

For  $\tau$  consider only leptonic decays Final state with two leptons and two neutrinos

Backgrounds: Z decays from official production+ 4-fermion irreducible:  $e^+e^- \rightarrow |^+|^-\nu\nu$ 

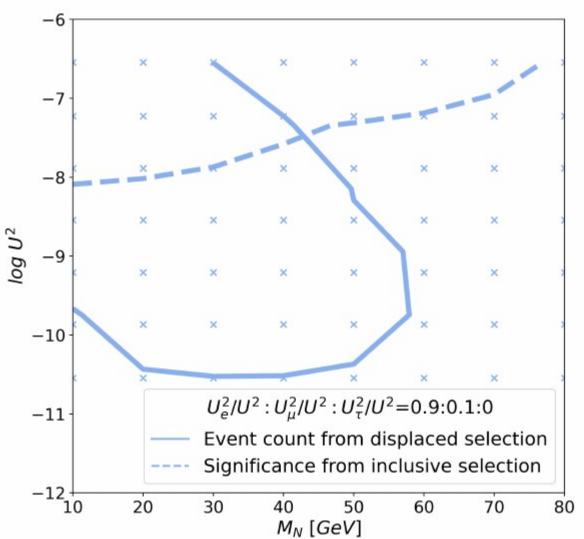
#### **Preselection:**

2 reco leptons pT>1 GeV  $p_T^{miss}$ >5 GeV veto photons and additional tracks

+ kinematic selections to suppress background

23/01/2025.

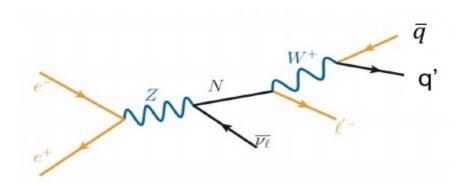
Giacomo Polesello – BSM at FC


# Results

Two different kinematic selections: inclusive and displaced, separated by requirement on impact parameter of leptons Displaced:

|d<sub>0</sub><sup>|</sup>|>0.64 mm

For displaced selection achieve zero background, sensitive up to  $\sim$ 60 GeV

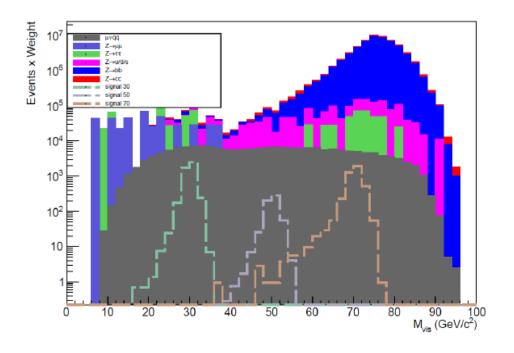

 $N_{1,2} \rightarrow \ell \ell v \text{ at FCC} - ee, \sqrt{s} = 91 \text{ GeV}, \mathcal{L}_{int} = 204 \text{ ab}^{-1}$ 



Giacomo Polesello – BSM at FCC-ee

#### GP, Nicolò Valle

# Single HNL→ µjj




Most favourable decay: 50% cross-section
Full reconstruction of HNL possible.
Momentum of neutrino recoiling against HNL fixed by recoil formula:

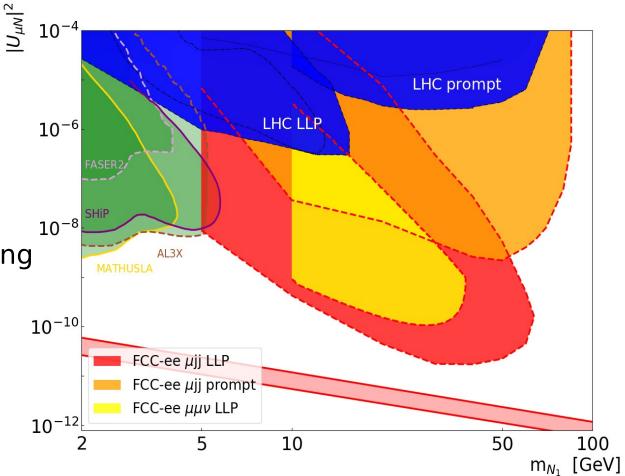
$$p_{\nu}(M_{N_1}) = \frac{M_Z^2 - M_{N_1}^2}{2 M_Z}$$

Strong kinematic constraints allow efficient Background suppression

23/01/2025.



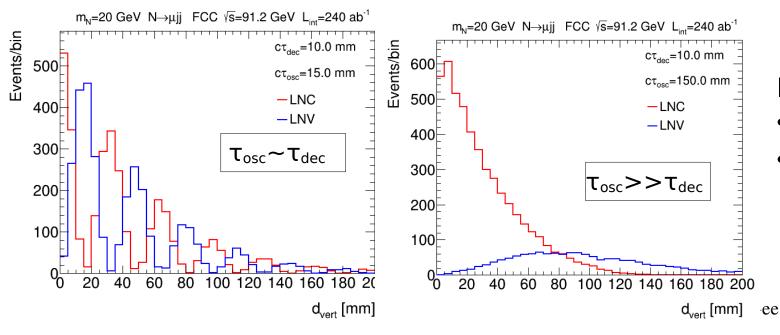
Prompt analysis at Z peak: Reducible backgrounds: Z decays, dominated by Zbb Irreducible background: 4-body μνqq

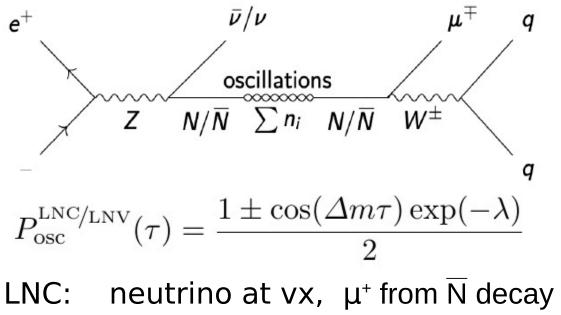

# Results



Reconstruct good vertex from all tracks in event, require most tracks connected to vertex

- Two different kinematic selections depending on radial position of vertex  $r_{vx:}$
- •Prompt (orange)  $r_{vx} < 0.5$ mm •LLP (red):  $r_{vx} > 0.5$ mm  $\rightarrow$  zero background


Also shown LLP μμνν final state (yellow)




## HNL oscillations

Pseudo-Dirac pair, decay  $N \rightarrow \mu j j$ Implemented in pSPSS(phenomenologically symmetry protected seesaw) model S. Antusch et al. JHEP 10 (2023) 129

Two HNL oscillate into each other as they propagate before decaying





LNV: antineutrino at vx,  $\mu^2$  from N decay

Interplay of two times:
•τ<sub>osc</sub>: oscillation period ~Δm
•τ<sub>dec</sub>: determined by mass and mixing angle
GP, Nicolò Valle

ECFA Talk

24

# Oscillation variables

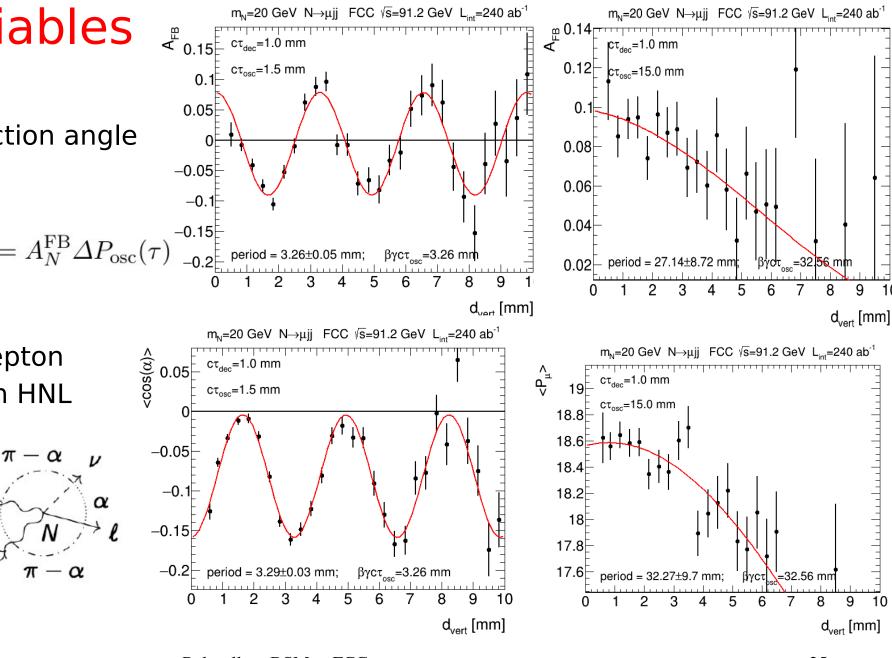
#### **Production:**

Asymmetry in HNL production angle from EWK Z polarization

$$A_{\ell}^{\mathrm{FB}}(\tau) \coloneqq \frac{A_{\ell^{-}}^{\mathrm{FB}}(\tau) - A_{\ell^{+}}^{\mathrm{FB}}(\tau)}{2} = A_{N}^{\mathrm{FB}} \Delta P_{\mathrm{osc}}(\tau)^{-1}$$

W

Ζ


 $\alpha$ 

#### Decay:

Opening angle neutrino-lepton in HNL rest frame ( $\alpha$ ) from HNL polarisation

 $e^{-}$ 

JHEP 11 (2024) 102



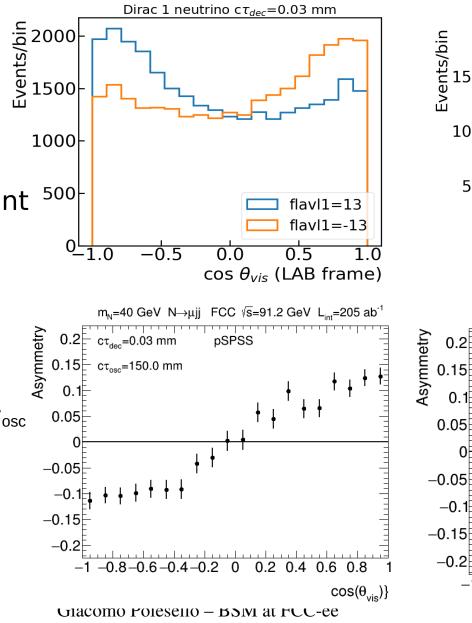
# Dirac-Majorana

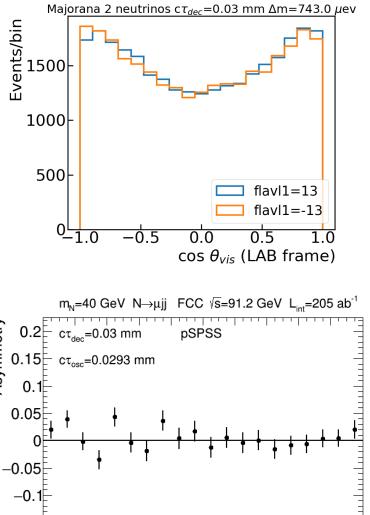
Investigate Dirac or Majorana nature of HNL

HNL production:

Dirac HNL:

HNL production angle  $\vartheta_{vis}$  different <sup>50</sup> for positive and negative  $\mu$ Two-state Majorana:


No difference


```
In pSPPS model:
```

Majorana behaviour for  $c\tau_{dec}=c\tau_{osc}$ Dirac behaviour for  $c\tau_{osc} >> c\tau_{dec}$ 

Plot  $\mu^+\mu^-$  asymmetry in bins of  $\cos\theta_{vis}$  $\frac{\#(\mu^+)-\#(\mu^-)}{\#(\mu^+)+\#(\mu^-)}$ 

# Seminal work:Blondel et al arXiv:2105.06576



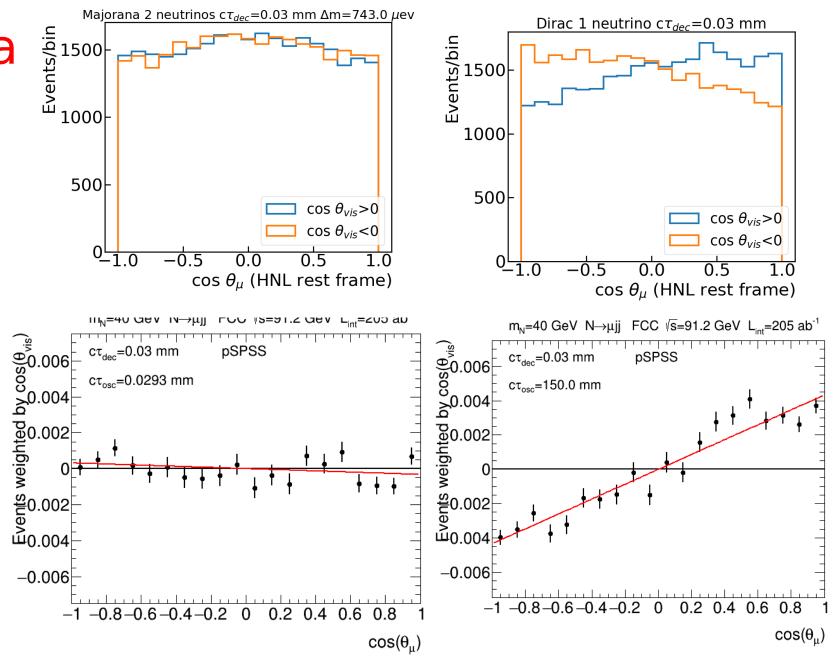


-0.8 - 0.6 - 0.4 - 0.2

0.8

0.2 0.4 0.6

0


# Dirac-Majorana

#### HNL decay:

 $\vartheta_{\mu}$ , angle of  $\mu$  with respect to HNL direction of flight in HNL rest frame sensitive to Dirac-Majorana nature

Different distributions for forward and backward produced HNL for Dirac case

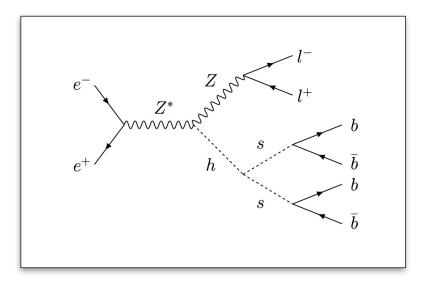
Plot number of events in bins of  $\cos \theta_{\mu}$  weighted by  $\cos \theta_{vis}$ 



# Higgs run

# Higgs decay into long-lived scalars

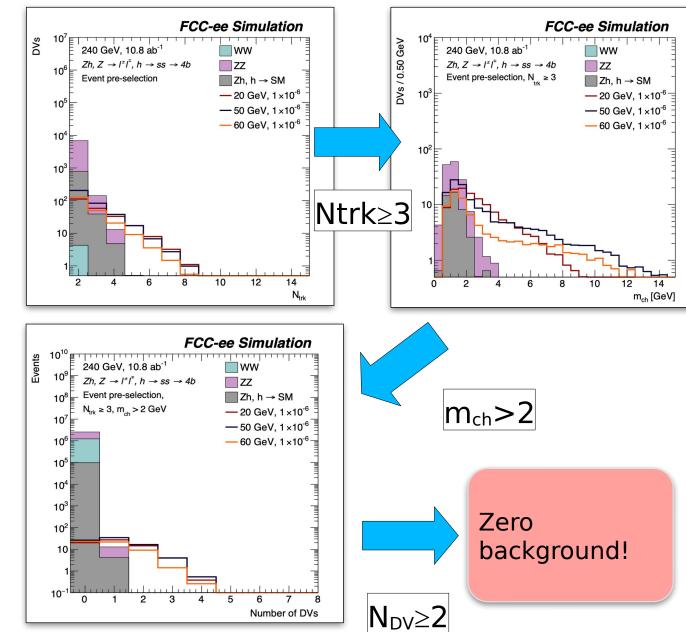
- Hidden sector model with scalar portal
  - New dark scalar mixes with SM Higgs via angle sin $\vartheta$
- Exotic decay of SM Higgs, , into new scalar then decays into SM states
- Small mixing angles yields long-lived scalars:
  - LLPs  $\rightarrow$  Displaced Vertex (DV) search
- Targets Zh stage; 240 GeV & 10.8 ab-1
  Signature generated with HAHM model:


 $e^+e^- \rightarrow Z \rightarrow Zh, Z \rightarrow l^+l^-, h \rightarrow ss, s \rightarrow b^+b^-$ 

• Main backgrounds:WW, ZZ, WZ

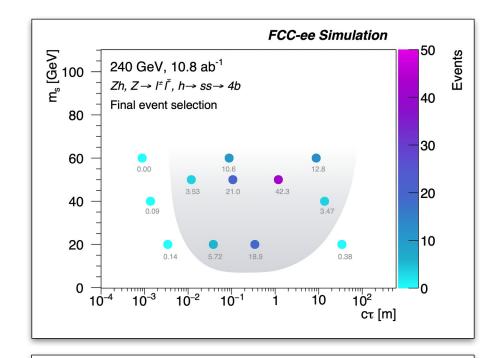
G. Ripellino, M. Vande Voorde, A. Gallén, R. Gonzalez Suarez arXiv:2412.10141

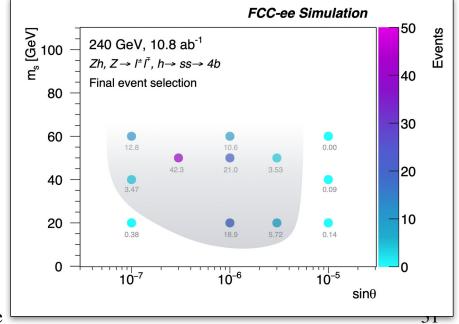
23/01/2025.


Giacomo Polesello – BSM at FCC-ee



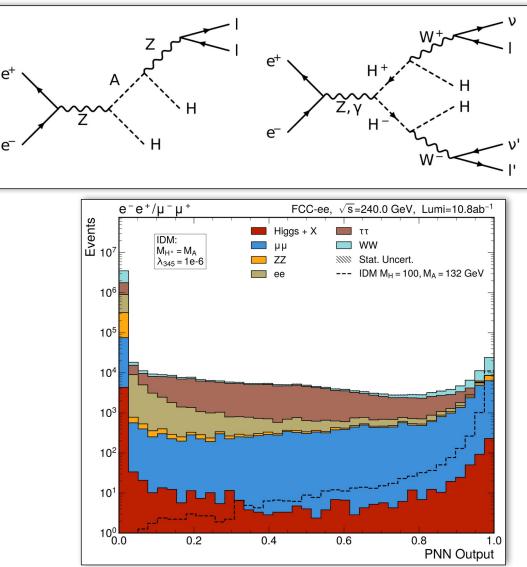
| $c\tau \ [{\rm mm}]$ | $BR(h \rightarrow ss)$                                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 3.4                  | $8.1 	imes 10^{-4}$                                                                                                                |
| 38                   | $8.1 	imes 10^{-4}$                                                                                                                |
| 340                  | $8.1 	imes 10^{-4}$                                                                                                                |
| 34000                | $8.1 	imes 10^{-4}$                                                                                                                |
| 1.4                  | $10.2 	imes 10^{-4}$                                                                                                               |
| 140                  | $10.2 	imes 10^{-4}$                                                                                                               |
| 14000                | $10.2 	imes 10^{-4}$                                                                                                               |
| 12                   | $10.9 	imes 10^{-4}$                                                                                                               |
| 110                  | $10.9 	imes 10^{-4}$                                                                                                               |
| 1200                 | $10.9 	imes 10^{-4}$                                                                                                               |
| 0.9                  | $7.4 	imes 10^{-4}$                                                                                                                |
| 88                   | $7.4 	imes 10^{-4}$                                                                                                                |
| 8800                 | $7.4 	imes 10^{-4}$                                                                                                                |
|                      | $\begin{array}{c c} 3.4\\ 3.4\\ 38\\ 340\\ 34000\\ \hline 1.4\\ 140\\ 14000\\ \hline 12\\ 110\\ 1200\\ \hline 0.9\\ 88\end{array}$ |


# Analysis


- Secondary Vertex finder of <u>LCFIPlus algorithm</u> used
  - Custom track selection:  $p_T>1$  GeV &  $|d_0|>2$  mm
- Selections:
  - Event selection:
    - 2 iso. leptons ( $\mu$  or e), oppositesign, same flavour
    - 70 GeV <  $m_{\parallel}$  < 110 GeV
    - At least 2 DVs passing the full DV selection
  - DV selection:
    - $N_{trk} \ge 3$
    - m<sub>ch</sub>>2 GeV



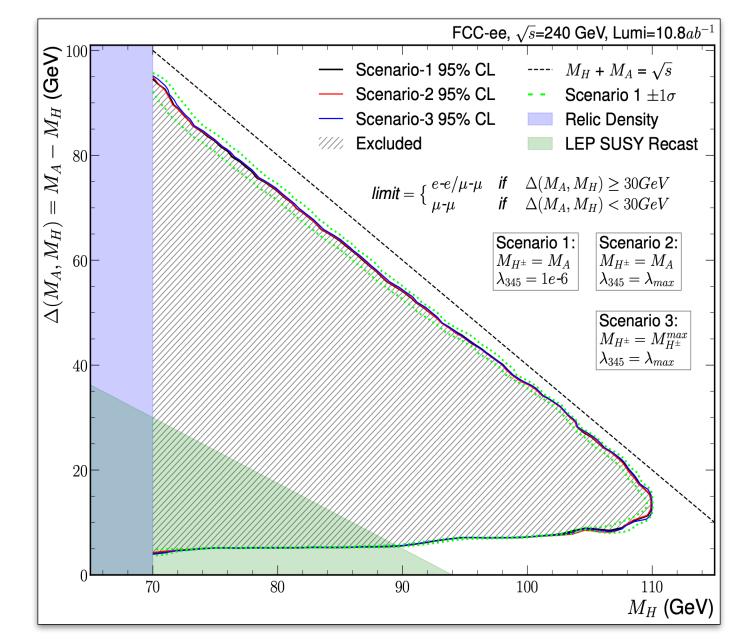
### Results


- SM background free search
- Based on generated grid draw contour of signal points with 3 events in two planes
  - ms vs cτ
  - ms vs sinθ
- Successfully performed sensitivity analysis
  - BR(h $\rightarrow$ ss) probed to 1e-4 for ct~1m





# Additional Higgs bosons


- Inert Two-Higgs-Doublet model (IDM)
  - Five Higgs bosons, h is SM Higgs
  - BSM Higgs do not couple to fermions and are pair-produced
  - Five new free parameters:  $m_{H}, m_{A}, m_{H+}, quartic couplings \lambda_2, \lambda_{345}$
- One new Dark matter candidate: H (invisible)
- Final state: I<sup>+</sup>I<sup>-</sup>HH ( signature 2 leptons + missing energy)
- Backgrounds: inclusive e<sup>+</sup>e<sup>-</sup>→l<sup>+</sup>l<sup>-,</sup> WW,ZZ,ZH, top when open
- Require 2e (2µ) with p>5 GeV + some  $E^{miss}$  and nothing else in event
- Insert kinematic variables for event in parametric neural network (PNN)
   23/01/2025.



#### E. Curtis, A.-M. Magnan & Tania Robens <u>ECFA 2024 presentation</u>, <u>CDS note</u>

### Results

- Results plotted in plane defined by DM mass M<sub>H</sub>, and mass difference M<sub>A</sub>-M<sub>H</sub>
- Three different scenarios with different values of M<sub>H+</sub> and quartic couplings
- Little sensitivity to additional parameters
- Sensitivity dominated by ZA channel
- Most of kinematically accessible parameter space covered



### Conclusions

The FCC-ee has a large potential for new physics through direct searches

- High statistics at Z pole gives access to very rare decays: new physics suppressed by high scales
- Exotics Higgs decays open a portal to dark physics

Exploration of low masses and couplings addresses long-lived signatures which have low SM backgrounds

Vigorous effort in FCC PED group to assess reach of FCC-ee data for most relevant benchmark models, and to extract detector requirements as an input to detector design

# Backup

## List of topics

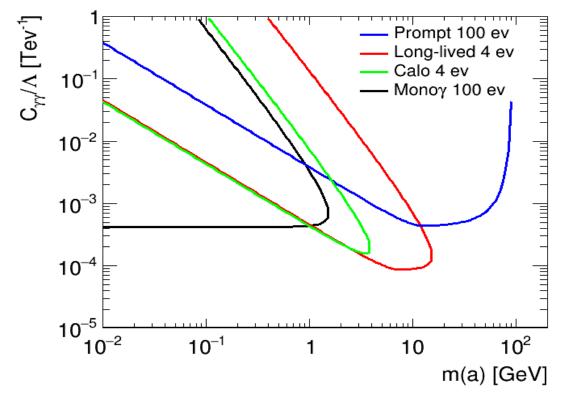
Cross-check a recently circulated list of ECFA-WRG1-SRCH (Rebeca G-S. is convener both for us and for that group)

- Heavy Neutral Leptons \*
- Exotic Higgs boson decays \*
- Light SUSY scenarios and scenarios with light scalars
- Axion-like particles (ALP) \*
- Z', dark photons and other light mediator scenarios

For items with \* organised activity in our community, addressed in talks by

G. Ripellino and S. Kulkarni

23For SUSY I'll discuss some benchmark possibilities


### Long Lived searches: History

Rend. Fis. Acc. Lincei s. 9, v. 12:5-18 (2001)

Fisica. — SUSY Long-Lived Massive Particles: Detection and Physics at the LHC. Nota di Sandro Ambrosanio, Barbara Mele, Aleandro Nisati, Silvano Petrarca, Giacomo Polesello, Adele Rimoldi e Giorgio Salvini, presentata (\*) dal Socio G. Salvini.

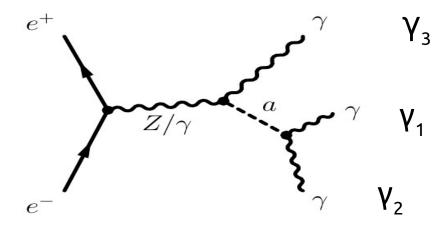
|        | Model                                                                                              | Signature                              | ∫£ dt [fb | <sup>-1</sup> ]                  | Life      | etime limit  |           |              |               |     |                                                                                 | Reference      |
|--------|----------------------------------------------------------------------------------------------------|----------------------------------------|-----------|----------------------------------|-----------|--------------|-----------|--------------|---------------|-----|---------------------------------------------------------------------------------|----------------|
|        | RPV $\tilde{t} \rightarrow \mu q$                                                                  | displaced vtx + muon                   | 136       | t lifetime                       | - · · · · |              |           |              | 0.003-6.0 m   |     | $m(\tilde{t})=1.4$ TeV                                                          | 2003.11956     |
|        | $RPV\tilde{\chi}^0_1 \to eev/e\mu v/\mu\mu v$                                                      | displaced lepton pair                  | 32.8      | ${\widetilde \chi}_1^0$ lifetime |           |              |           | 0.003-1.0 m  |               |     | $m(\tilde{q})=$ 1.6 TeV, $m(\tilde{\chi}_1^0)=$ 1.3 TeV                         | 1907.10037     |
|        | $\operatorname{RPV} \widetilde{\chi}^0_1 \to q q q$                                                | displaced vtx + jets                   | 139       | ${\widetilde \chi}_1^0$ lifetime |           |              | -         |              | 0.00135-9.0 m |     | $m(\widetilde{\chi}_1^0) = 1.0 \text{ TeV}$                                     | 2301.13866     |
|        | $\operatorname{GGM} \tilde{\chi}^0_1 \to Z  \tilde{G}$                                             | displaced dimuon                       | 32.9      | ${\widetilde \chi}_1^0$ lifetime |           |              | -         |              | 0.029-18.     | 0 m | $m(	ilde{g}){=}$ 1.1 TeV, $m(	ilde{\chi}_1^0){=}$ 1.0 TeV                       | 1808.03057     |
|        | GMSB                                                                                               | non-pointing or delayed y              | 139       | ${\widetilde \chi}_1^0$ lifetime |           |              |           | 0.3          | 24-2.4 m      |     | $m(\tilde{\chi}^0_1, \tilde{G})$ = 60, 20 GeV, $\mathcal{B}_H$ = 2%             | 2209.01029     |
|        | GMSB $\tilde{\ell} \to \ell \tilde{G}$                                                             | displaced lepton                       | 139       | $\tilde{\ell}$ lifetime          |           |              | -         | 6-750 mm     |               |     | $m(\tilde{\ell}) = 600 \text{ GeV}$                                             | 2011.07812     |
| 1000   | GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$                                                     | displaced lepton                       | 139       | <sup>∓</sup> lifetime            |           |              | 9-270     | mm           |               |     | <i>m</i> (ℓ)= 200 GeV                                                           | 2011.07812     |
| )      | AMSB $pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-$       | disappearing track                     | 136       | $\tilde{\chi}_1^{\pm}$ lifetime  |           |              |           | 0            | .06-3.06 m    |     | $m(\tilde{\chi}_1^{\pm}) = 650 \text{ GeV}$                                     | 2201.02472     |
|        | AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{+} \tilde{\chi}_1^{-}$ | large pixel dE/dx                      | 139       | $\tilde{\chi}_1^{\pm}$ lifetime  |           |              |           | 0.3-30.      | 0 m           |     | $m(\tilde{\chi}_1^{\pm}) = 600 \text{ GeV}$                                     | 2205.06013     |
|        | Stealth SUSY                                                                                       | 2 MS vertices                          | 36.1      | S lifetime                       |           |              | 0         | l.1-519 m    |               |     | $\mathcal{B}(\tilde{g} \to \tilde{S}g) = 0.1, \ m(\tilde{g}) = 500 \text{ GeV}$ | 1811.07370     |
|        | Split SUSY                                                                                         | large pixel dE/dx                      | 139       | ĝ lifetime                       |           |              |           | > 0          | .45 m         |     | $m({	ilde g}){=}$ 1.8 TeV, $m({	ilde \chi}_1^0){=}$ 100 GeV                     | 2205.06013     |
|        | Split SUSY                                                                                         | displaced vtx + $E_{\rm T}^{\rm miss}$ | 32.8      | ĝ lifetime                       |           |              |           |              | 0.03-13.2 n   | 1   | $m(	ilde{g}) =$ 1.8 TeV, $m(	ilde{\chi}_1^0) =$ 100 GeV                         | 1710.04901     |
|        | Split SUSY                                                                                         | 0 $\ell,$ 2 – 6 jets $+ E_T^{miss}$    | 36.1      | g lifetime                       | -         | -            | -         | 0.0          | )-2.1 m       |     | $m(	ilde{g}) =$ 1.8 TeV, $m(	ilde{\chi}_1^0) =$ 100 GeV                         | ATLAS-CONF-201 |
|        | $H \rightarrow s s$                                                                                | 2 MS vertices                          | 139       | s lifetime                       |           |              |           | 0.31-72      | 2.4 m         |     | <i>m</i> ( <i>s</i> )= 35 GeV                                                   | 2203.00587     |
| 0/01   | $H \rightarrow s s$                                                                                | 2 low-EMF trackless jets               | 139       | s lifetime                       |           |              |           |              | 0.19-6.94 m   |     | m(s)=35 GeV                                                                     | 2203.01009     |
|        | $VH$ with $H \rightarrow ss \rightarrow bbbb$                                                      | 2l + 2 displ. vertices                 | 139       | s lifetime                       |           | 4-85         | i mm      |              |               |     | <i>m</i> ( <i>s</i> )= 35 GeV                                                   | 2107.06092     |
|        | FRVZ $H  ightarrow 2\gamma_d + X$                                                                  | 2 µ-jets                               | 139       | $\gamma_d$ lifetime              |           |              |           | 0.654-939 mm |               |     | $m(\gamma_d) = 400 \text{ MeV}$                                                 | 2206.12181     |
| 066    | FRVZ $H  ightarrow 4 \gamma_d + X$                                                                 | 2 µ-jets                               | 139       | $\gamma_d$ lifetime              |           |              | 2.        | .7-534 mm    |               |     | $m(\gamma_d) = 400 \text{ MeV}$                                                 | 2206.12181     |
|        | $H \rightarrow Z_d Z_d$                                                                            | displaced dimuon                       | 32.9      | Z <sub>d</sub> lifetime          |           | 0.009-24.0 r | n         |              |               |     | $m(Z_d) = 40 \text{ GeV}$                                                       | 1808.03057     |
|        | $H \rightarrow ZZ_d$ 2                                                                             | e, µ + low-EMF trackless               | jet 36.1  | Z <sub>d</sub> lifetime          |           |              |           |              | 0.21-5.2 m    |     | $m(Z_d) = 10 \text{ GeV}$                                                       | 1811.02542     |
|        | $\Phi(200 \text{ GeV}) \rightarrow ss$                                                             | ow-EMF trk-less jets, MS v             | tx 36.1   | s lifetime                       |           |              |           | 0.41         | -51.5 m       |     | $\sigma \times B = 1 \text{ pb}, m(s) = 50 \text{ GeV}$                         | 1902.03094     |
| oraiai | $\Phi(600 \text{ GeV}) \rightarrow ss$                                                             | ow-EMF trk-less jets, MS v             | tx 36.1   | s lifetime                       |           |              | 0.04-21.5 | m            |               |     | $\sigma \times \mathcal{B} = 1 \text{ pb}, m(s) = 50 \text{ GeV}$               | 1902.03094     |
| ด้     | $\Phi(1 \text{ TeV}) \rightarrow ss$                                                               | ow-EMF trk-less jets, MS v             | tx 36.1   | s lifetime                       |           |              | 0.06-5    | 52.4 m       | _             |     | $\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 150 \text{ GeV}$             | 1902.03094     |
| _      | $W \to N\ell, N \to \ell\ell\nu$                                                                   | displaced vtx (µµ,µe, ee) +            | μ 139     | N lifetime                       |           | 0.74-42 mm   |           |              |               |     | m(N)= 6 GeV, Dirac                                                              | 2204.11988     |
|        | $W \to N\ell, N \to \ell\ell\nu$                                                                   | displaced vtx (μμ,μe, ee) +            | μ 139     | N lifetime                       |           | 3.1-33 mm    |           |              |               |     | m(N)= 6 GeV, Majorana                                                           | 2204.11988     |
|        | $W \to N\ell, N \to \ell\ell\nu$                                                                   | displaced vtx (µµ,µe, ee) +            | e 139     | N lifetime                       | -         | 0.49-81      | mm        |              |               |     | m(N)= 6 GeV, Dirac                                                              | 2204.11988     |
|        | $W \to N\ell, N \to \ell\ell\nu$                                                                   | displaced vtx (µµ,µe, ee) +            | e 139     | N life <mark>time</mark>         | 1         | 0.39-51 mm   |           |              |               |     | m(N)= 6 GeV, Majorana                                                           | 2204.11988     |
|        |                                                                                                    | √s = 13 TeV √s = 13                    |           |                                  | 0.001     | 0.01         | 0.1       |              | 1 10          |     | <sup>100</sup> cτ [m]                                                           |                |

### Parameter space coverage for $e^+e^- \rightarrow \gamma a \rightarrow \gamma \gamma \gamma$



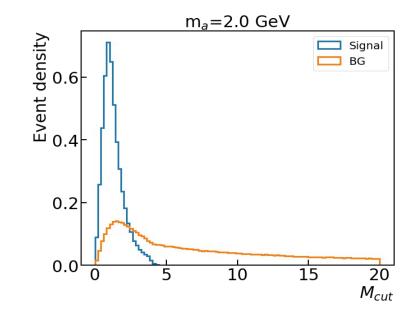
4 experimental regions depending on decay length L of ALP

- •100 events for L<10 mm (prompt)
- •4 events for 10<L<2000 mm (Long lived) Decay in ID
- •4 events for 2000<L<4500 mm (Calo) Decay in calorimeter
- •100 events for L>4500 mm: ALP decays outside the detector, only accompanying photon detected (monophoton)


Experimental distinction of  $3\gamma$  prompt analysis and LLP analyses depends on how well one can detect a ALP decay away from vertex  $\rightarrow$  today show  $3\gamma$  analysis making no assumptions on vertex detection. In addition study very long-lived ALP resulting in a single photon recoiling against MET from undetected ALP

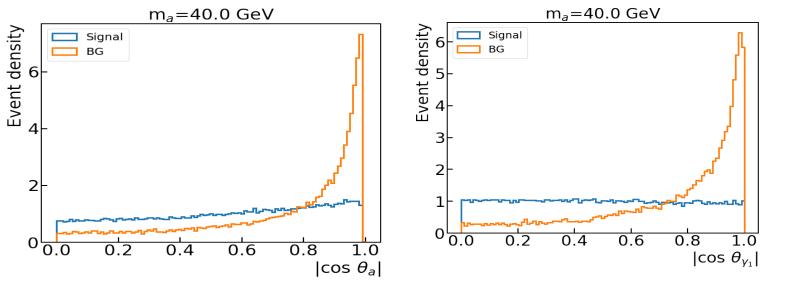
23/01/2025.

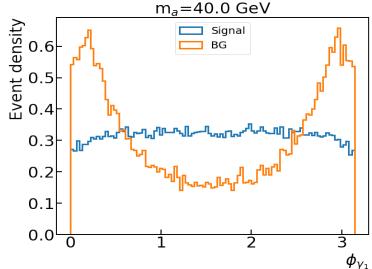
# 3γ analysis


•3 photons within detector acceptance ( $|\eta| < 2.6$ ) and energy>1 GeV •Scan test masses M between 0.1 and 85 GeV For each M and  $E_{CM}$  photon produced alongside ALP has energy Assign three photons to ALP or to Z decay: For given test mass and assignment: Measure compatibility with expected kinematics

$$M_{cut} = \sqrt{(M_a - M)^2 / \sigma_{M_a}^2 + (E_{\gamma_3} - E_{\gamma})^2 / \sigma_{E_{\gamma_3}}^2)}$$




Choose assignment minimising M<sub>cut</sub>


m(γ1, γ2)≡M<sub>a</sub>

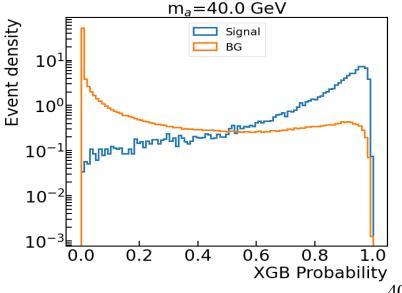


 $E_{\gamma} = \frac{E_{CM}^2 - M^2}{2E_{CM}}$ 

## **Discriminant variables**





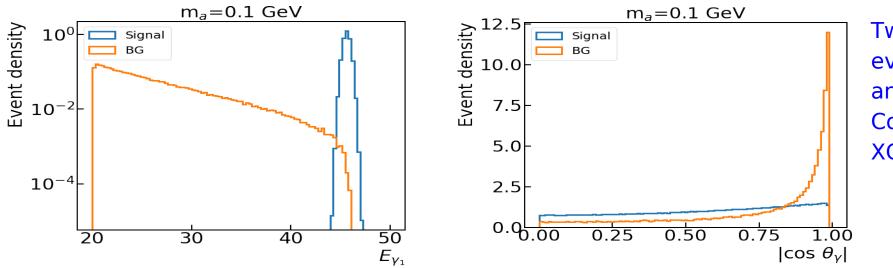

Require that event only contains three photons. For a fixed mass, signal fully defined by three variables, after rotation such that  $\varphi_{\gamma3}=0$ :

•Polar angle of ALP in lab system  $|\cos \theta_{\alpha}|$ 

•Polar angle of  $\gamma_1$  in ALP rest system  $|\cos \theta_{\gamma_1}|$ 

•Azimuthal angle of  $\gamma_1$  in ALP rest system  $\phi_{\gamma 1}$ 

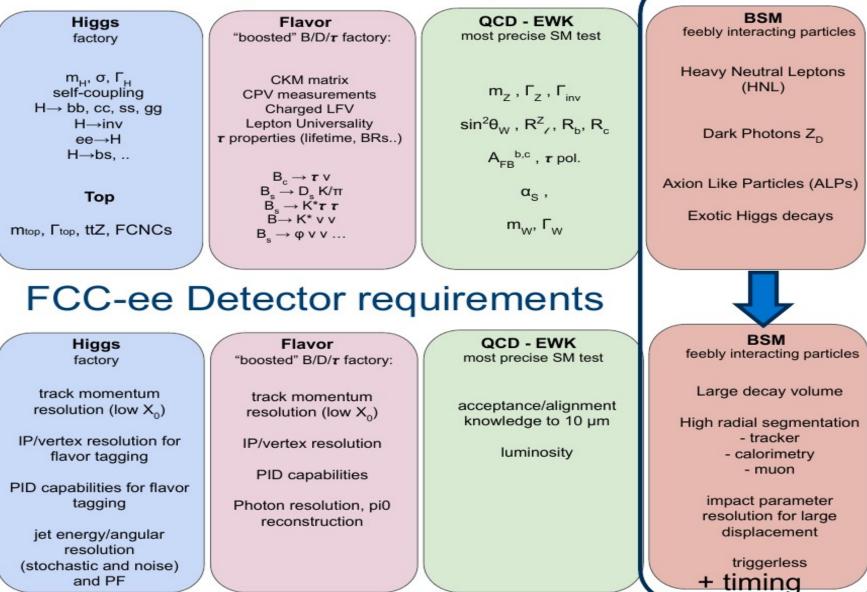
Train a boosted decision tree (XGB) on 5 variables, the three above+  $E_{\gamma 2}/E_{\gamma 1}$  and  $M_{cut}$ 




# $\gamma$ +MET analysis

Relevant mass range below ~2~GeV  $\rightarrow$  signature is a monochromatic photon of energy ~45.5 GeV and nothing else in the detector Consider two backgrounds: irreducible: e<sup>+</sup>e<sup>-</sup> $\rightarrow\gamma\nu\nu$ 

reducible: e+e-→γe+e- where the electron and positron are outside detector acceptance (|η|>3).


Signal and backgrounds produced with MG5MC@NLO and passed through the usual PYTHIA-DELPHES chain



Two variables characterise event, energy and polar angle of photon. Combine them through XGB as for prompt analysis

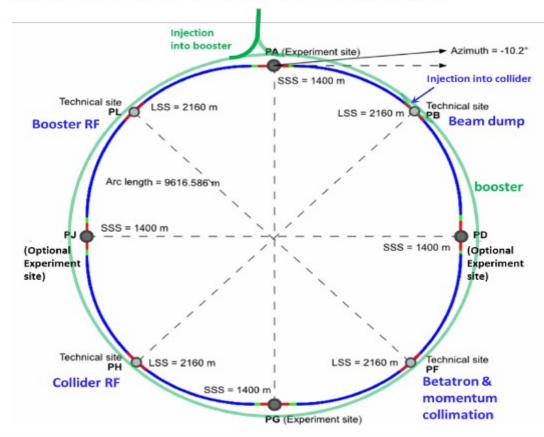
### FCC-ee: physics vs detector requirements

#### **FCC-ee Physics landscape**

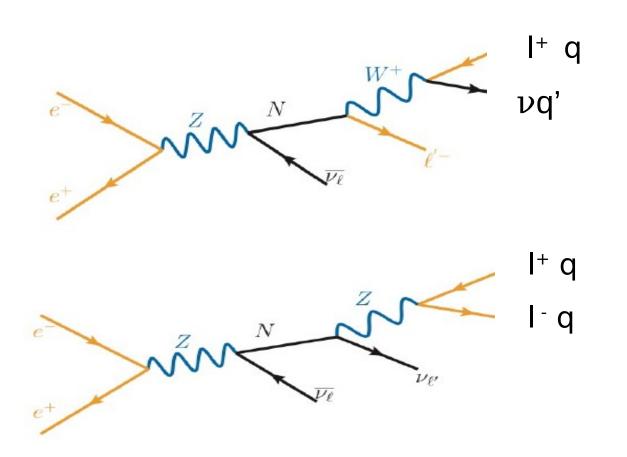


FCC has very large menu of physics topics

Each of these poses a specific experimental challenge and pushes detector optimisation


Unique challenges from BSM: long-lived particles

# Luminosity scenario


#### Lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold superperiodicity, possibility of 2 or 4 IPs

Whole project now adapted to this placement

4 Interaction points (IP): For Z pole run assume an Integrated luminosity of 205 ab-<sup>1</sup>, corresponding to 6 10<sup>12</sup> Z

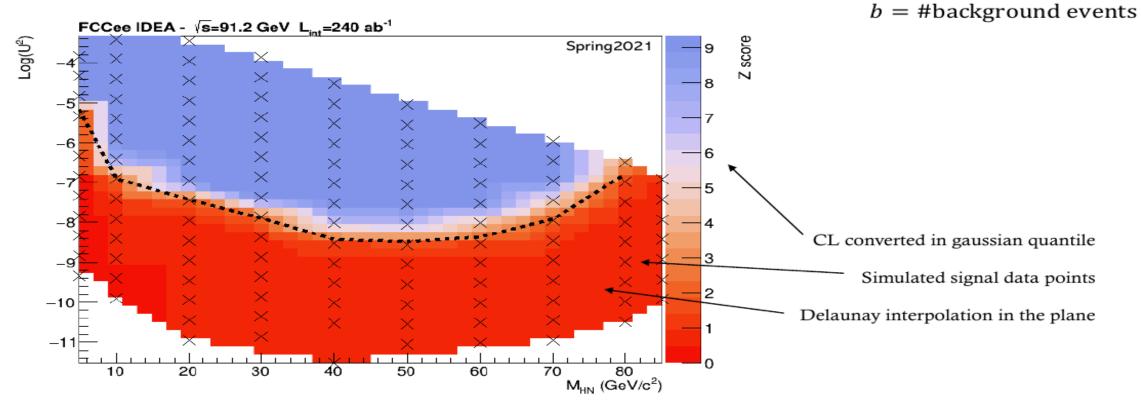


# Decay signatures



Analysis matrix: for HNL •Decay final state  $(I=e,\mu)$ :

- j j l ~50% \*
- j j' nu ~20%
- I I nu ~5% \*
- I l' nu ~9%
- •lτnu ~9%
  - (BRs for  $m_{HN}$  < 80 GeV)
- Decay lengths
  - Prompt
  - LL decay In ID
  - LL decay in Calo

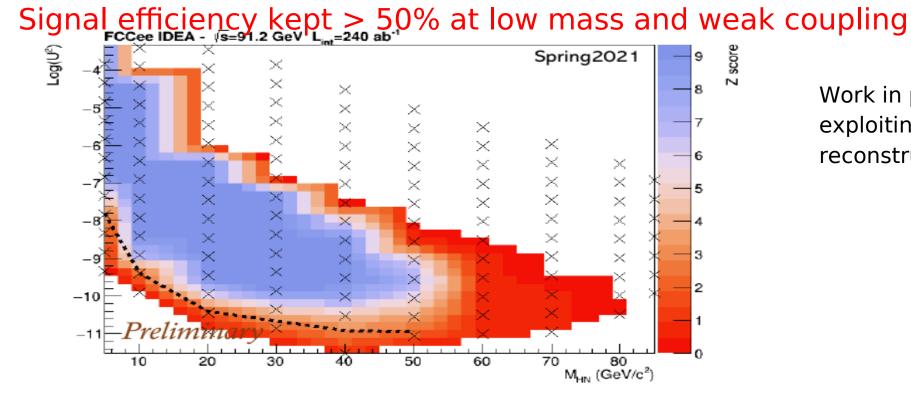

Signatures with \* studied in group

## Prompt results

#### GP, Nicolò Valle

- Baseline: Integrated Lumi =  $240 \text{ ab}^{-1} \leftrightarrow 8 \times 10^{12}$  Z boson events
- Looking for  $U^2$  producing 95% CL excess of events

For each HNL mass *M*:  $P[n < b | HNL(M, U^2)] = 1 - CL$ 



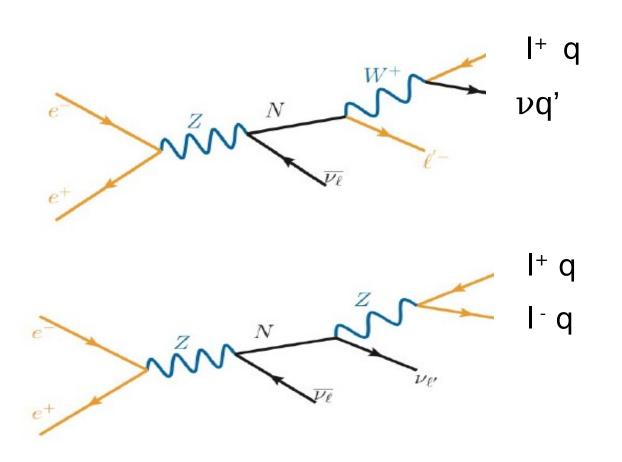

# LL results

Low mass (  $\leq$  40 GeV/c 2 ) HNL long-lived for couplings of interest, loss of efficency when requiring muon prompt


Background highly suppressed

Use detailed parameterization of IDEA tracking performance in DELPHES-FCC Kinematic selection not modified, prompt background suppressed by  $D_{\parallel} > 1 \text{ mm}$ 




Work in progress on approach exploiting detailed HNL vertex reconstruction

# Linear scale



Prompt decays dominate for  $m_{HNL}$  >70 GeV

# Decay signatures



Analysis matrix: for HNL •Decay final state  $(I=e,\mu)$ :

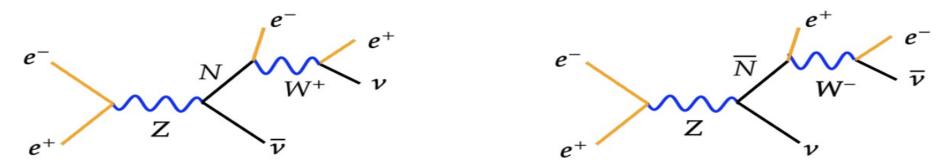
- j j l ~50%
- •jjnu ~20%
- •llnu ~5%
- I l' nu ~9%
- •lτnu ~9%
  - (BRs for  $m_{HN}$  < 80 GeV)
- •Decay lengths
  - Prompt
  - LL decay In ID
  - LL decay in Calo

| + |  | (1/ | р <sub>т</sub> ) |
|---|--|-----|------------------|
|---|--|-----|------------------|

- high precision measurement at the end of tracker
- σ<sub>rΦ</sub>
  - finely segmented vertex detector
- Challenging requirements for detector materials

| Physics<br>process                                | Measurands                                                        | Detector<br>subsystem | Performance<br>requirement                                                              |
|---------------------------------------------------|-------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|
| $ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$ | $m_H, \sigma(ZH)$<br>BR( $H \to \mu^+ \mu^-$ )                    | Tracker               | $\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$ |
| $H  ightarrow b ar{b} / c ar{c} / g g$            | $BR(H \rightarrow b\bar{b}/c\bar{c}/gg)$                          | Vertex                | $\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) 	imes \sin^{3/2}	heta}(\mu{ m m})$      |
| $H \rightarrow q\bar{q}, WW^*, ZZ^*$              | $\begin{array}{c} BR(H \to q\bar{q}, \\ WW^*,  ZZ^*) \end{array}$ | ECAL<br>HCAL          | $\sigma_E^{ m jet}/E=3\sim4\%$ at 100 GeV                                               |
| $H \to \gamma \gamma$                             | $\mathrm{BR}(H\to\gamma\gamma)$                                   | ECAL                  | $\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$                      |

Slide by R.Ferrari


#### DELPHES setup for Spring 2021:

- •Detailed parametrisation of IDEA tracker, including covariance matrices
- •Calo resolution: EM 11%/sqrt(E), HAD: 30%/sqrt(E), 1% constant term
- •Particle flow approach to jet reconstruction

# Dirac versus Majorana

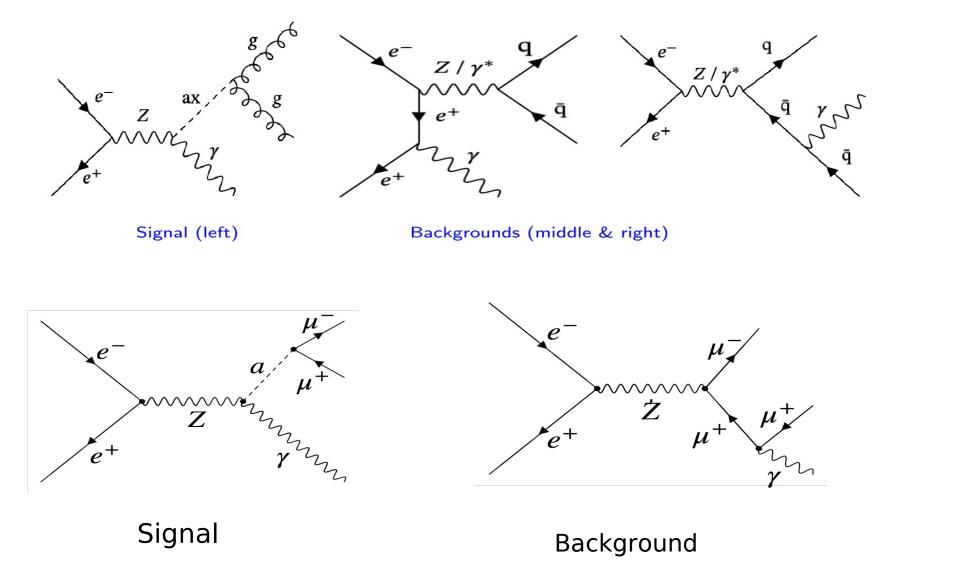
Blondel et al arXiv:2105.06576

No same-sign lepton signature as for  $W \rightarrow I HNL$ , rely on final state kinematics

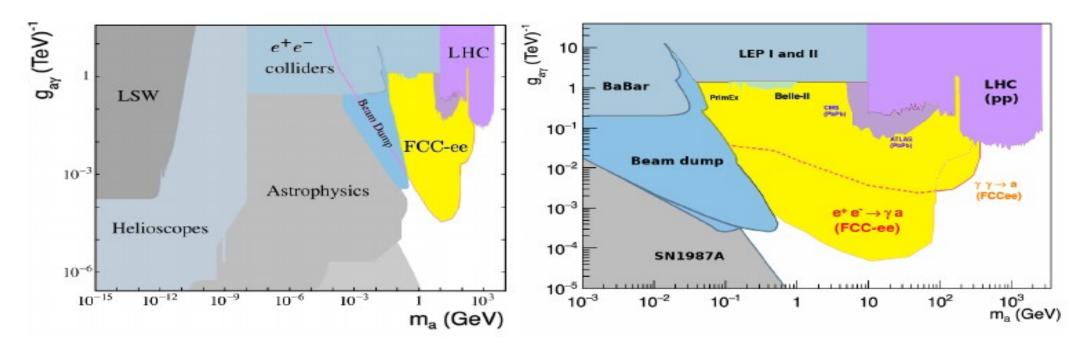


• Dirac neutrinos  $(e^+e^- \rightarrow Z \rightarrow \nu \bar{N}; e^+e^- \rightarrow Z \rightarrow \bar{\nu}N)$ 

$$\frac{1}{\sigma_{N,\bar{N}}} \frac{d\sigma_{N,\bar{N}}}{d\cos\theta} \propto \left( g_R^2 (1 \mp \cos\theta)^2 + g_L^2 (1 \pm \cos\theta)^2 + \frac{M_N^2}{m_Z^2} (g_L^2 + g_R^2) \sin^2\theta \right)$$


• Majorana neutrinos ( $e^+e^- \rightarrow Z \rightarrow \nu N$ )

$$\frac{1}{\sigma_N} \frac{d\sigma_N}{d\cos\theta} \propto \left(1 + \cos^2\theta + \frac{M_N^2}{m_Z^2}\sin^2\theta\right)$$

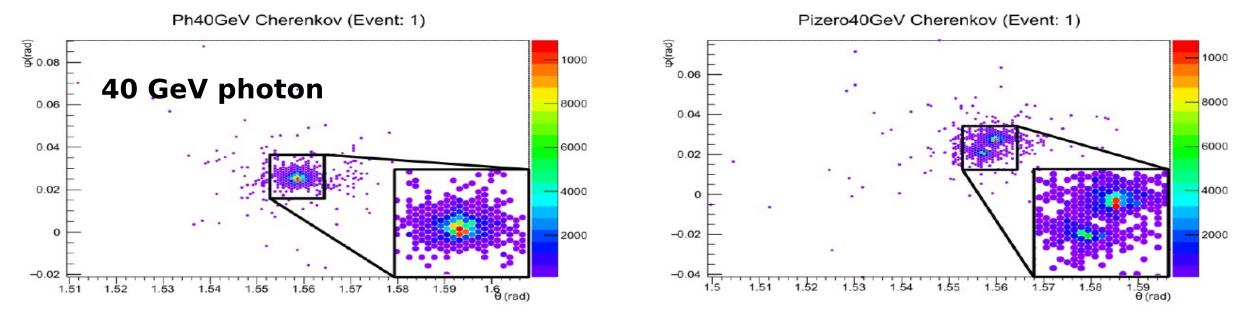

Relevant both for prompt and LLP, LLP has additional handle in lifetime 23/01/2025.

Giacomo Polesello – BSM at FCC-ee

### Additional ALP decay modes considered



#### Parameter space coverage




Plot in the MT report:  $e^+e^- \rightarrow \gamma a$  line is theory calculation requiring 4 ALP decays inside detector. 4 events might work for long-lived but prompt analysis has a huge irreducible background  $e^+e^+ \rightarrow \gamma \gamma \gamma$ , requiring detailed background analysis

Plots originally from Rebello Teles et al.

### Example: exploiting the full granularity of IDEA DR Calo

With Silicon PMs it is possible to read one by one all of the fibers in the calorimeter  $\rightarrow$  possibility to separate very close photons and to precisely measure invariant mass



Ideal field of application for ML image recognition, work ongoing in Pavia (master thesis A. Villa) 23/01/2025.

Giacomo Polesello - BSM at FCC-ee

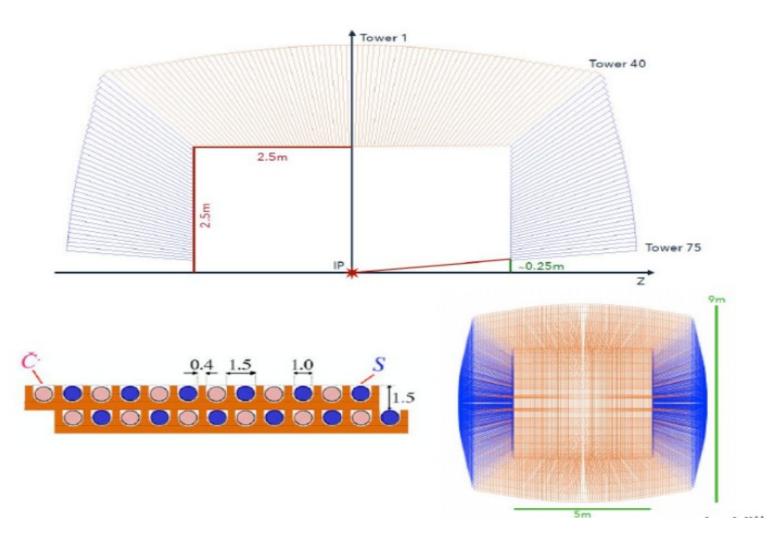
### **Calorimeter parametrisation**

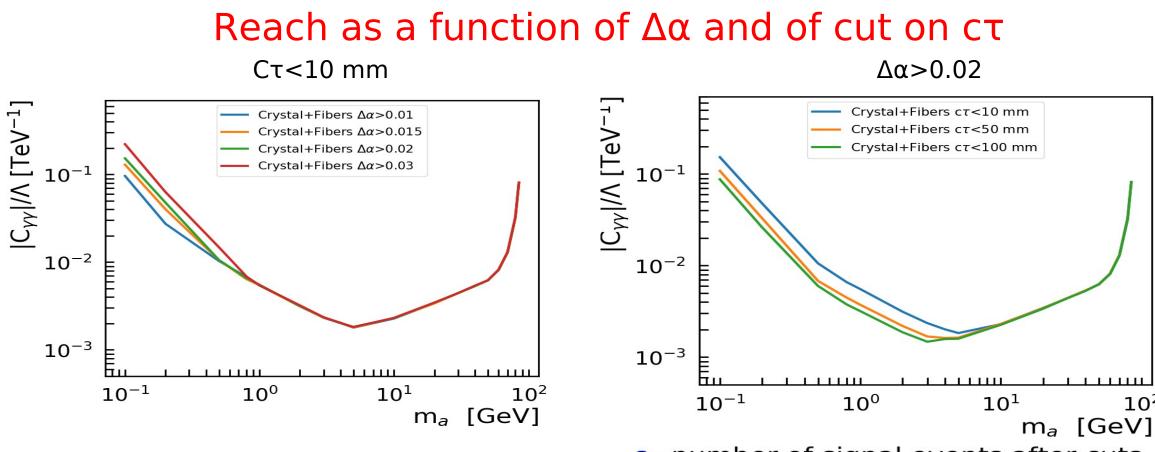
Take truth stable photons from PYTHIA tree in edm4hep, and smear them according to:

For DR fiber: performance figures from full simulation of testbeam prototype. Shown e.g in talk at ICHEP

$$\frac{\sigma(E)}{E} = \frac{0.139}{\sqrt{E}} + 0.006$$

$$\sigma(x) = \frac{4.05}{\sqrt{E}} + 0.0$$
  $\sigma(y) = \frac{3.23}{\sqrt{E}} + 0.0055$ 


For crystal: energy resolution as in DELPHES card, Position resolution from Lucchini et al. paper


$$\frac{\sigma(E)}{E} = \frac{0.03}{\sqrt{E}} \oplus 0.005 \oplus \frac{0.002}{E}$$
$$\sigma(\theta) = \frac{1.5}{\sqrt{E}} \oplus 0.33$$

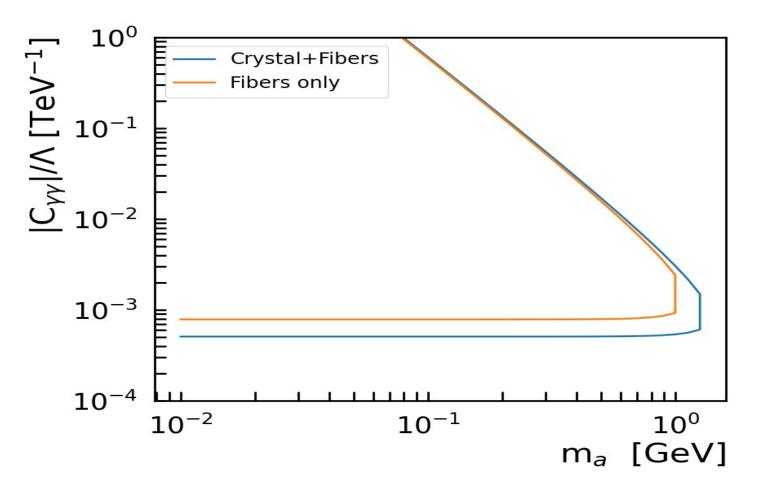
23/01/2025.

Giacomo Polesello – BSM at FCC-ee

## IDEA DR Calorimeter, old version






Plot  $2\sigma$  reach as function of mass and coupling, assuming 0.1% systematics Define significance as:

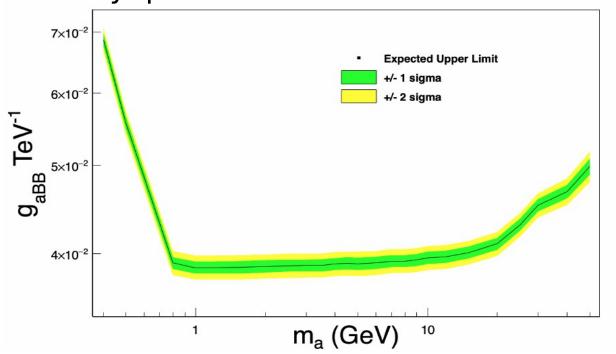
s=number of signal events after cuts b=background events after cuts n=s+b,  $\sigma =$  systematic uncertainty on b

$$Z = \sqrt{2\left(n \ln[\frac{n(b+\sigma^2)}{b^2 + n\sigma^2}] - \frac{b^2}{\sigma^2} \ln[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2]}]\right)}$$

10<sup>2</sup>

## Results




Irreducible background small at 45.6 GeV, but it increases very fast as energy goes down.

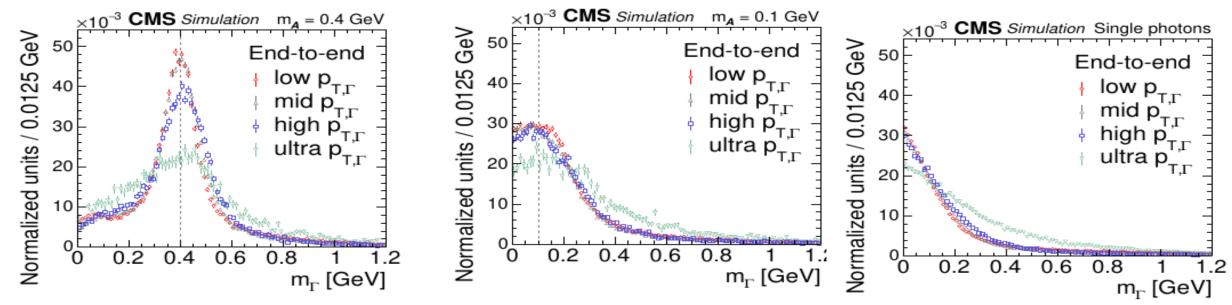
Smaller energy window determined by better resolution significantly increases reach

## A similar exercise

Recent paper: Steinberg, Wells, arXiv:2101.00520

Addressing the same model in the framework of ILC GigaZ ILC detector: R(ECal)~1.85 m. GARLIC photon reco: require photons with  $\Delta R > 0.035$  and with less than 10% of energy in reconstructed cone from nearby photon

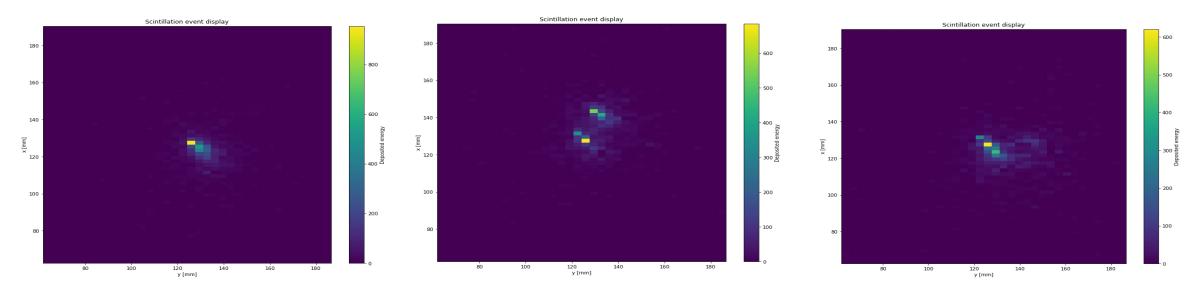



Simple analysis, require: •3 non-overlapping photons E>2 GeV •Εγ-Εγ<sup>recoil</sup><5 GeV

$$E_{\text{recoil}}^{\gamma}(m_a) = (M_Z^2 - m_a^2)/2M_Z$$

Significant loss in sensitivity, but in this setup search extended down to ALP masses if few hundred MeV

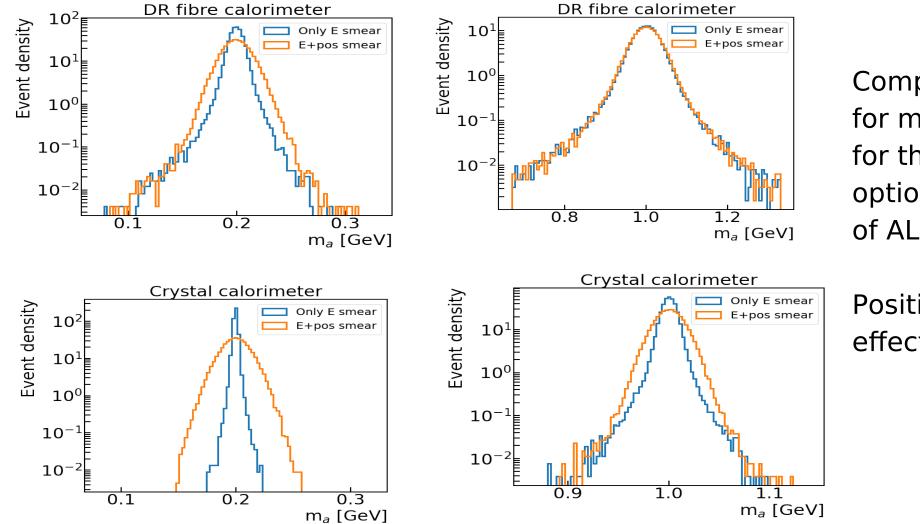
### An encouraging example from CMS


#### PRD 108 (2023) 052002



Using a CNN-based algorithm, reconstruct peak of 100 MeV particle. CMS granularity: 2.3 cm, IDEA Crystal: 1 cm IDEA Fiber: 2 mm Can probably improve on CMS result

### Two photons in fiber calorimeter


#### One fiber every 2 mm read with SiPMs



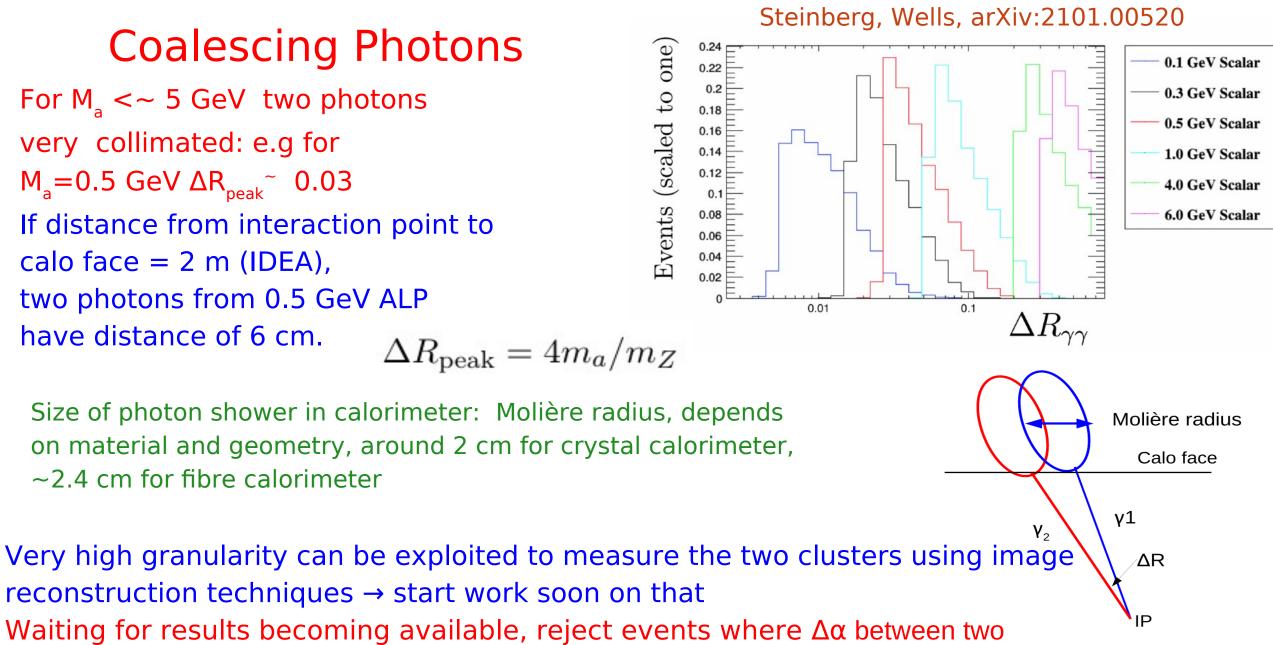
G4 simulation of energy deposition of a 40 GeV photon (left), and of two examples 40  $\pi^{\rm o}\,$  produced at 2m from a fiber calorimeter prototype

(Master thesis G.Salsi) Very high granularity can be exploited to measure the two clusters using image reconstruction techniques  $\rightarrow$  start work soon on that Waiting for results becoming available, reject events where  $\Delta \alpha$  between two PMONTOF is smaller than 0.01, 0.015, 0.02 0.03 and study reach as a function of cut

### Mass resolution



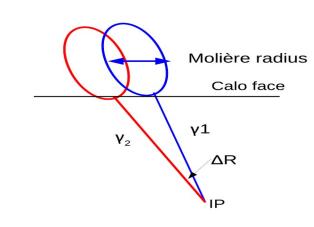
Compare mass resolution for  $m_a=0.2$ , 1 GeV for the two calorimeter options, for prompt decays of ALP


Position resolution dominant effect up to  $\sim 1 \text{ GeV}$ 

23/01/2025.

## **Coalescing Photons**

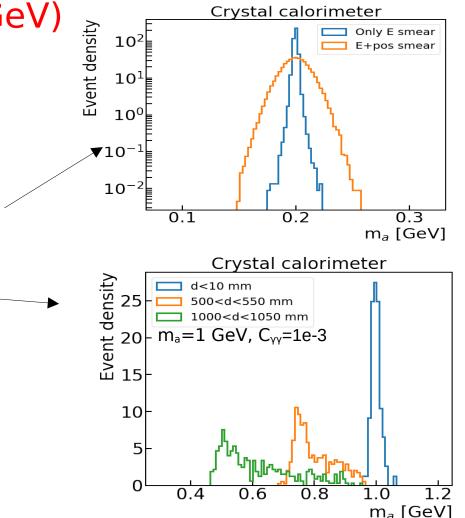
For  $M_a < \sim 5$  GeV two photons very collimated: e.g for  $M_a = 0.5 \text{ GeV } \Delta R_{\text{peak}} \sim 0.03$ If distance from interaction point to calo face = 2 m (IDEA), two photons from 0.5 GeV ALP have distance of 6 cm.


 $\sim$ 2.4 cm for fibre calorimeter

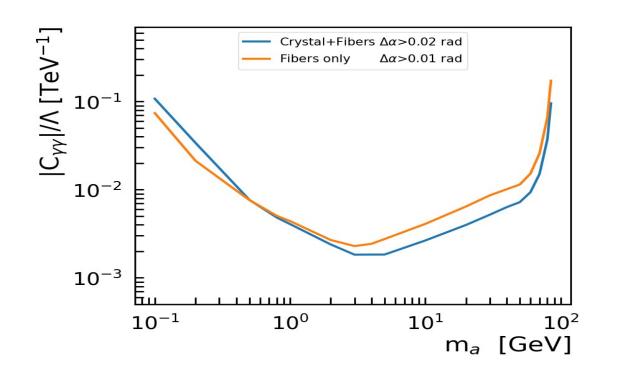


photons, smaller than 0.01, 0.015, 0.02, 0.03 and study reach as a function of cut Giacomo Polesello – BSM at FCC-ee

Experimental issues at low masses (~<5 GeV)


- Signal acceptance strongly affected by width of measured ALP mass
- At low masses three geometrical effects:
  - •γγ Mass resolution of dominated by uncertainty on measured photon impact point
    •ALP decaying far from interaction point: mass reconstruction assumes photons produced in centre of detector. If long decay path, γγ angle Δα and mass underestimated
    •γγ from ALP decay coalesce in calorimeter:




$$\Delta R_{\rm peak} = 4m_a/m_Z$$

Need full simulation for separation of nearby photons For this study assume two photons reconstructed as one If  $\Delta \alpha > 02$  (0.1) for crystal (fibre) EM calo

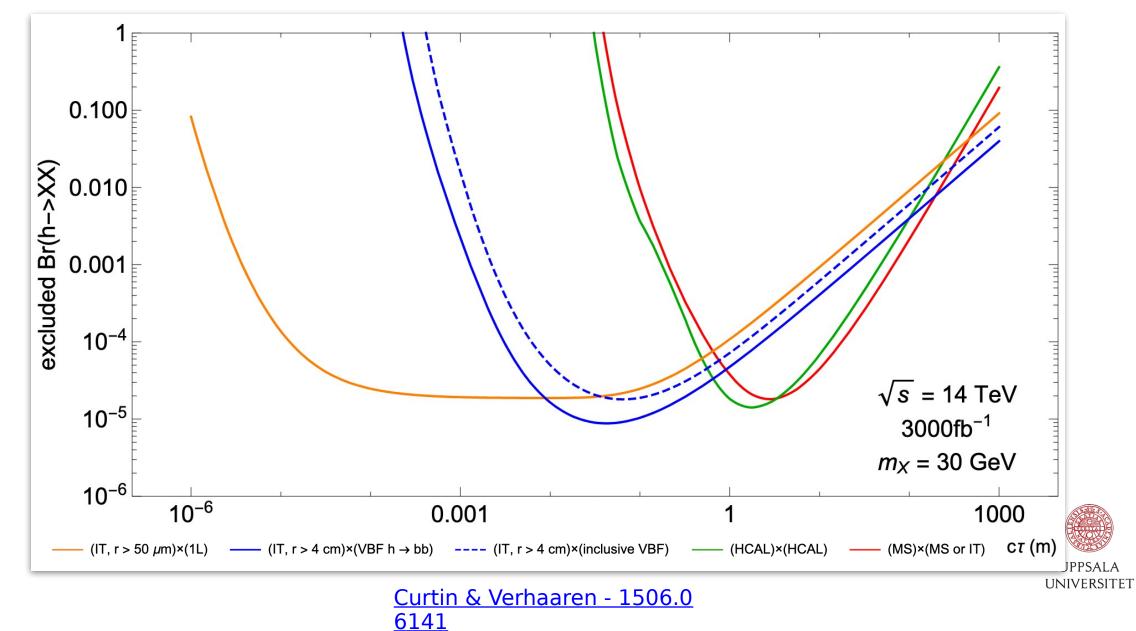
Giacomo Polesello – BSM at FCC-ee



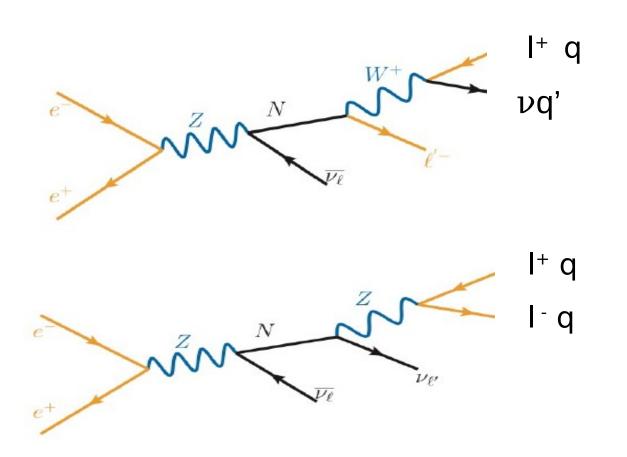
## Results



For each signal and background sample events after cuts normalised to FCC-ee lumi s=number of signal events after cuts b=background events after cuts n=s+b,  $\sigma =$  systematic uncertainty on b Find cut on XGB output maximising significance calculated as:


$$Z = \sqrt{2\left(n \ln[\frac{n(b+\sigma^2)}{b^2 + n\sigma^2}] - \frac{b^2}{\sigma^2} \ln[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2]}]\right)}$$

Significant advantage of better energy resolution at high masses At low masses better granularity should allow better separation of close-by photons


Cross-section proportional to  $C_{\gamma\gamma}^{2}$ For each test mass plot  $C_{\gamma\gamma}$  such that Z=2

23/01/2025.

### Projected HL-LHC limits for exotic Higgs decays



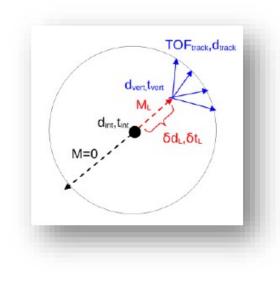
# Decay signatures

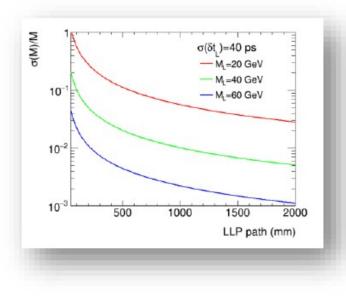


Analysis matrix: for HNL •Decay final state  $(I=e,\mu)$ :

- j j l ~50% \*
- j j' nu ~20%
- I I nu ~5% \*
- I l' nu ~9%
- •lτnu ~9%
  - (BRs for  $m_{HN}$  < 80 GeV)
- Decay lengths
  - Prompt
  - LL decay In ID
  - LL decay in Calo

Signatures with \* studied in group

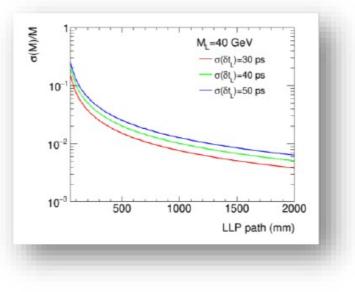

## Mass measurement through timing


$$m_N = E_{cm} \sqrt{\frac{1 - \beta_N}{1 + \beta_N}} = E_{cm} F(\beta_N) \qquad \qquad \sigma(m_N) \sim E_{cm} F'(\beta_N) \sigma(\beta_N) \qquad \qquad \beta_N = \frac{\delta d_N}{\delta t_N}$$

The HNL mass can be constrained by measuring its decay timing and path

Resolution controlled by the uncertainty on HNL decay time and on the undetected interaction point \*

\*  $\sigma_x$  = 5.96 µm,  $\sigma_y$  = 23.8 nm,  $\sigma_z$  = 0.397 mm,  $\sigma_z$  = 36.3 ps

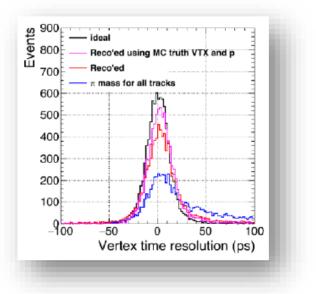


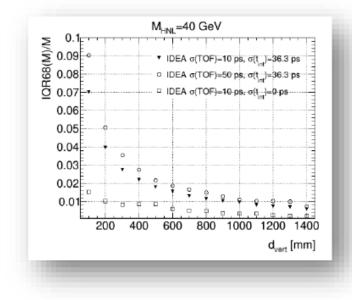


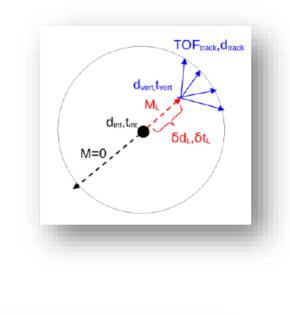

Measurement below the percent level is possible with plausible detector performance,

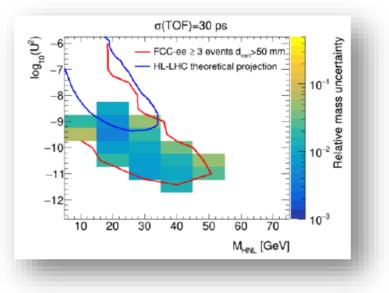
for sufficiently high masses

and long lifetimes

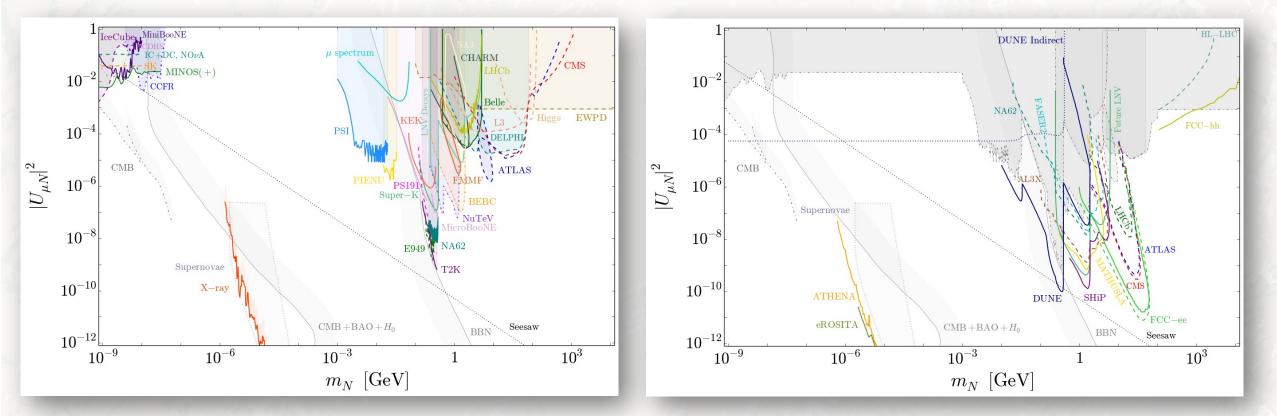




# Mass measurement through timing


#### arXiv:2406.05102


#### **Realistic conditions** simulated in IDEA, using the $N \rightarrow \mu j j$ channel

- arphi  $\sigma$  (TOF) determined only by detector technology
- $\checkmark$  The HNL vertex is known and its flight distance is computed
- Iterative procedure set up to optimize the mass hypotheses, possibly spoiled by the long HNL flight distance
- $\checkmark$  Timing resolution roughly scaling with sqrt of number of tracks
- $\sphericalangle~200 \mu m \simeq \sigma(d_{vert})$  dominated by the uncertainty on the interaction point
- $\checkmark$  Dependence on HNL yield vs ( $m_N$ , U): evaluated with MC for the expected Z-pole run luminosity










## Existing limits and projections



arXiv:1912.03058

#### Dependence on hadronic resolution

- Window for baseline study from DELPHES
- Assume signal efficiency unchanged after enlarging mass window according to resolution 2.
- 3. Calculate number of background events for enlarged window and calculate significance

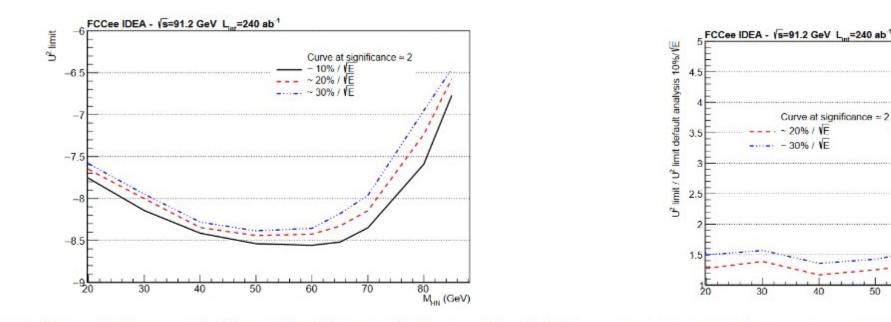



Fig. 24 Curves at Significance = 2 for different values of the assumed hadronic resolution. Each line is a linear interpolation of Z vs.  $\log(U)$  at the value Z = 2.

Fig. 25 Ratio of the  $U^2$  limit obtained with 20% and 30% resolutions with respect to the nominal resolution as a function of  $M_{N_1}$ .

50

60

70

80

M<sub>HN</sub> (GeV)