

MInternational UON Collider Collaboration



Funded by the European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.



## Muon Collider: Machine-Detector Interface (MDI)

Daniele Calzolari\* on behalf of the IMCC & MuCol MDI WG Workshop on FCC-ee and Lepton Colliders: 22-24 Jan 2025

> \*CERN (SY-STI-BMI) INFN sezione di Padova



## Introduction





- Machine-Detector Interface (MDI) objectives:
  - Study the **beam-induced background (BIB)** and identify mitigation strategies for the **3** and **10(+)** TeV collider options.
  - Develop a credible interaction region (IR) design with background levels compatible with detector operations
- Could profit from previous US MAP studies (N. Mokhov et al): MAP design served as starting point.
- This presentation:
  - General introduction to Muon Collider IR and MDI
  - Status and Achievements in view of ESPPU stategy update (deadline: March 2025)



## Sources of beam-induced background



|                                                             | Description                                                                                                                                                                                                                                                                                                                                                                         | Relevance as background                                                                                                                                                  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Muon decay                                                  | Decay of stored muons around the collider ring                                                                                                                                                                                                                                                                                                                                      | Dominating source                                                                                                                                                        |  |
| Synchrotron radiation<br>by stored muons                    | Synchrotron radiation emission by the beams in magnets near the IP (including IR quads → large transverse beam tails)                                                                                                                                                                                                                                                               | Small                                                                                                                                                                    |  |
| Muon beam losses on the aperture                            | <ul> <li>Halo losses on the machine aperture, can have multiple sources,<br/>e.g.:</li> <li>Beam instabilities</li> <li>Machine imperfections (e.g. magnet misalignment)</li> <li>Elastic (Bhabha) μμ scattering</li> <li>Beam-gas scattering (Coulomb scattering or Bremsstrahlung<br/>emission)</li> <li>Beamstrahlung (deflection of muon in field of opposite bunch)</li> </ul> | Can be significant<br>(although some of the listed source<br>terms are expected to yield a small<br>contribution like elastic μμ scattering,<br>beam-gas, Beamstrahlung) |  |
| Coherent e <sup>-</sup> e <sup>+</sup> pair production      | rent e <sup>-</sup> e <sup>+</sup> pair production Pair creation by real* or virtual photons of the field of the counter-rotating bunch                                                                                                                                                                                                                                             |                                                                                                                                                                          |  |
| Incoherent e <sup>-</sup> e <sup>+</sup> pair<br>production | Pair creation through the collision of two real* or virtual photons emitted by muons of counter-rotating bunches                                                                                                                                                                                                                                                                    | Significant                                                                                                                                                              |  |

\*There are hardly any real photons produced through beamstrahlung

How to deal with the beam-induced background?

International UON Collider

Collaboration

MuCol







## **Interaction region lattices**



0.4

0.6

0.7

8.0





## Final focusing region: decay e<sup>+</sup>/e<sup>-</sup>







## Radiation load to the final focusing magnets



- In all magnets, the limiting quantity is the total ionizing dose (TID) in organic materials insulation, spacers etc.)
- The current limitation assumed for the yearly TID is around 5-10 MGy/y → 50 MGy during the collider lifetime.
- We assume an operational time of 1.2E7 second per year, with 5 to 10 years of operation.
- The damage is cumulative. In case of extended collider use lower limits must be taken.

| Table: radial build for superconducting magnets |                |             |  |  |  |
|-------------------------------------------------|----------------|-------------|--|--|--|
| Shield radial build                             | Thickness (mm) |             |  |  |  |
| beam screen                                     | 0.01           |             |  |  |  |
| shield                                          | 2.53           |             |  |  |  |
| shield support +thermal insulation              | 1.1            |             |  |  |  |
| cold bore                                       | 0.3            |             |  |  |  |
| insulation (kapton)                             | 0.05           | Front mask  |  |  |  |
| clearance + liquid helium                       | 0.01           | in tungster |  |  |  |
| Sum                                             | 4              |             |  |  |  |
|                                                 |                |             |  |  |  |

|   | Table: radia | FLUKA |                             |                                |                     |
|---|--------------|-------|-----------------------------|--------------------------------|---------------------|
| , | Name         | L [m] | Shield<br>thickness<br>[cm] | Coil aperture<br>(radius) [cm] | Peak TID<br>[MGy/y] |
|   | IB2          | 6     | 4.53                        | 16                             | 1.3                 |
|   | IB1          | 10    | 4.53                        | 16                             | 3.1                 |
|   | IB3          | 6     | 4.53                        | 16                             | 4.9                 |
|   | IQF2         | 6     | 2.53                        | 14                             | 7.7                 |
|   | IQF2_1       | 6     | 2.53                        | 13.3                           | 4.6                 |
|   | IQD1         | 9     | 2.53                        | 14.5                           | 1.1                 |
|   | IQD1_1       | 9     | 2.53                        | 14.5                           | 3.7                 |
|   | IQF1B        | 2     | 2.53                        | 10.2                           | 6.4                 |
|   | IQF1A        | 3     | 2.53                        | 8.6                            | 3.6                 |
|   | IQF1         | 3     | 2.53                        | 7                              | 3.5                 |



## Anatomy of decay-induced background







## Anatomy of decay-induced background





## Mucol Mucol





- Nozzle design
  - Most results obtained so far were with 1.5 TeV MAP nozzle
  - Preliminary studies show potential to improve nozzle for 3/10 TeV

## IMCC plans for final ESPPU report:

- A sample with an updated nozzle version has been provided to the detector community
- A conceptual optimization is ongoing with scopes beyond the current ESPPU deadline



## Decay background: impact of lattice choices







## **Incoherent e-/e+ pair production**



- Performed a first-order evaluation of incoherent pair production at 10 TeV
  - Within +/-40 cm from IP, the pair production background contributes a few 10% of the background multiplicity (compared to decay), but the pairs are on average more energetic
- IMCC plans for final ESPPU report:
  - Improved description of pair production by muon beams in the GUINEA-PIG event generator, with BIB sample circulated to the detector community







## Radiation damage in detector (10 TeV)



Radiation damage estimates for 10 TeV Includes only contribution of decay-induced background!



#### Yearly 1 MeV n. eq. fluence in Si in MAIA detector



#### \*For IMCC lattice version v0.8

| Component                | Dose [kGy] |       | 1 MeV neutron-equivalent<br>fluence (Si) [10 <sup>14</sup> n/cm <sup>2</sup> ] |       |
|--------------------------|------------|-------|--------------------------------------------------------------------------------|-------|
|                          | MAIA       | MUSIC | MAIA                                                                           | MUSIC |
| Vertex (barrel)          | 1000       |       | 2.3                                                                            |       |
| Vertex (endcaps)         | 2000       |       | 8                                                                              |       |
| Inner trackers (barrel)  | 70         |       | 4.5                                                                            | 4     |
| Inner trackers (endcaps) | 30         |       | 11.5                                                                           | 10    |
| ECAL                     | 0.58       | 1.4   | 0.15                                                                           | 1     |

#### IMCC plans for final ESPPU report:

- Radiation damage calculation updated with revised nozzle and lattice
- Incoherent pair production is less relevant for the radiation damage in all detector components



## From a conceptual to a technical nozzle design



#### Many questions to be addressed for technical nozzle design, for example:

- Integration and support inside detector
- Shielding segmentation and assembly
- Selection of specific material (tungsten heavy alloy)
   → machining is an important aspect
- Heat extraction (cooling)
- Alignment, vibrations, tolerances, etc.
- Dedicated vacuum chamber inside nozzle



Can learn from existing shielding projects, for example ATLAS

**But:** do not have resources for detailed technical design studies

\*Pictures/info from https://atlas-shielding.web.cern.ch



## Conclusions



- Development of a 10 TeV IR lattice  $\rightarrow$  impact of lattice design choices on the decay background
- IR design ready for a 3 TeV collider
- First comparison of decay background for 3 TeV and 10 TeV + first BIB samples for detector studies
- First study of the incoherent pair production and halo background (10 TeV)
- First estimates of the cumulative radiation damage in the detector (3 TeV and 10 TeV)
- First study of the **nozzle optimization**, novel nozzle proposed and adopted
- Radiation damage in IR magnets estimated, with the corresponding shielding required

#### Next steps

- Integration of the IR region and final focusing to cope with strict beam dynamics requirements and severe radiation load.
- Optimization and integration of the nozzle with other components. Moving from a conceptual to a realistic design.





# Thank you!



16

Muon collider MDI, Daniele Calzolari



## **Recap of collider parameters**



=3 TeV =10 TeV **Beam parameters** 1.5 TeV 5 TeV Muon energy Bunches/beam 1 Bunch intensity (at injection) 2.2×10<sup>12</sup> 1.8×10<sup>12</sup> Norm. transverse emittance 25 µm Repetition rate (inj. rate) 5 Hz **Collider ring specs** Circumference 4.5 km 10 km **Revolution time** 15.0 µs 33.4 µs Luminosity Target integrated luminosity 1 ab<sup>-1</sup> 10 ab<sup>-1</sup> 2 x 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> Average instantaneous luminosity 2 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> (5/10 yrs of op.) / 1 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> / 1 x 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>

See also parameter doc: https://cernbox.cern.ch/s/NraNbczzBSXctQ9





## Workflow in the IMCC









Detector, MDI and collider design are represented in IMCC coord. committee



- WP2 (Physics and Detector Requirements)
  - MDI detector studies
- WP5 (High-energy complex), Task 5.1 "Collider design" and Task 5.4 "MDI design & background to experiments"
  - MDI machine studies, IR lattice design, background simulations as input for WP2

Close collaboration with other WPs (e.g. WP7 magnets)



WG meetings for IMCC and MuCol MDI studies



#### MDI WG (since Nov 2021) – *machine studies for MDI*

- Shall bring together expertise from different areas (interaction region design, particle-matter interactions, detector etc.)
- Meetings every few weeks, usually on Fridays (17h00 CET), see <u>Indico category</u>
- CERN e-group: muoncollider-mdi@cern.ch
- Physics & Detector WG (since Nov 2020) detector studies for MDI
  - Meetings on Physics and Detector simulation & Detector performance and MDI
  - Meetings usually on Tuesdays (16h00 CET), see <u>Indico category</u>
  - CERN e-group: muoncollider-detector-physics@cern.ch

These meetings are <u>open</u> to everyone who is interested to join!





## Muon halo losses on the aperture



#### Muon losses on the aperture are unavoidable

- Many processes can contribute to muon losses
- Liners in final focus and nozzle follow 5 $\sigma$  envelope  $\rightarrow$  aperture bottleneck
- Transverse beam cleaning system will be fundamental to reduce halo-induced background in detector (like in all other high-energy circular colliders)
- Muon beam halo cleaning is a challenge → need novel ideas (halo extraction instead of collimation)

#### IMCC plans for final ESPPU report:

- Refine shower simulations for (generic) halo losses in IR
- Derive the max. allowed halo loss rate in IR (should stay below decay-background) → provide specs for halo cleaning system

<u>But:</u> studying a halo removal system until report is not feasibly with the present resources

Previous concepts of halo extraction developed at Fermilab:





## Summary of MDI studies and plans for ESPPU



| 2020/2021<br>IMCC formed,<br>community meetings | = 3 TeV              | May 2024<br>INFN & European Strategy<br>Interim report completed | <b>Now</b><br>FCCee & lepton collider workshop<br>ESPPU report in progress | March 2025<br>Deadline for ESPPU |
|-------------------------------------------------|----------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|
|                                                 | MAP = 1.5 TeV nozzle |                                                                  | IMCC = 3                                                                   | TeV nozzle                       |
|                                                 | MAP =                | 3 TeV optics                                                     | IMCC = 3 TeV optics ???                                                    |                                  |
|                                                 | = 10 TeV             |                                                                  | Presently no resource                                                      | s                                |
|                                                 | MAP = 1.5 TeV nozzle |                                                                  | IMC                                                                        | C = 10 TeV nozzle                |
| IMCC = 10 TeV optics                            |                      |                                                                  |                                                                            |                                  |
|                                                 |                      |                                                                  |                                                                            |                                  |

#### Main next goals until 2025:

- Further optimization of the nozzle, absorbers, shielding for 3 TeV and 10 TeV, respectively
- Continue 10 TeV IR lattice development
- Engineering considerations for nozzle and integration with detector and solenoid
- Study the permissible halo-induced background in the IR (derive specs for halo cleaning)