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C and the SM calculationsμ
C looks like as an “EW collider” as much as the LHC is a “QCD collider”.μ

Partons of the proton at the LHC:           q, q̄, g, γ
Partons of the muon at a C:                 μ μ, γ, W, Z, ν

Size of NLO QCD corrections at LHC:    ~ 10-100 % 
Size of NLO EW corrections at a C:      ~ -(10-100) %μ

In other words, it looks like that EW is the new QCD. Is it?

In this talk I will try to discuss at which level this picture is helpful/correct or 
misleading/imprecise.
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C as VV colliderμ
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Figure 1. Diagrammatic representation of µ ! V�` splitting and V V
0 scattering in µ

+
µ
� collisions.

theorems and Sudakov exponentiation in QED and pQCD, which at times rely more on the
presence of multiple, well-separated (hierarchical) mass scales than on being unbroken gauge
theories [62–70]. Clearly, being an Abelian/non-Abelian or weakly/strongly coupled theory
is less crucial for sufficiently inclusive processes. At the same time, differences between
collinear factorization in pQCD and the EW theory must exist since lepton and hadron
beams are not composed of weak isospin-averaged states.

More specifically, the fact that muons carry EW quantum numbers implies that their
collisions do not represent an inclusive summation over all initial-state weak isospin charges.
(This would require µ � ⌫µ and ⌫µ � ⌫µ beams.) As a result, infrared logarithms beyond
lowest order in perturbation theory do not fully cancel, leading to violations of the Block-
Nordsieck Theorem [4, 71–76]. The analogy in pQCD is the violation of the Collinear
Factorization Theorem at three-loops when applied to exclusive hadronic final states, e.g.,
dijet production [70, 77, 78]. However, despite this violation, application of the Collinear
Factorization Theorem, which is presently only proved for a handful of processes [64, 65, 70],
to arbitrary processes remains a quantitatively successful paradigm. Motivated by this
success, we consider whether such a paradigm can also work for high-energy lepton collisions.

As a step to better understanding collinear factorization in the EW sector and to further
explore the ability of the EWA to predict total and differential cross sections, we consider
a framework that combines the EWA for helicity-polarized W and Z bosons with the
Weizsäcker-Williams Approximation for helicity-polarized photons. We collectively label
this the Effective Vector Boson Approximation (EVA).† In this framework and in the context
of a multi-TeV µ

+
µ
� collider, we investigate the impact of and validity of (helicity-polarized)

�/W/Z PDFs in 2 ! n process. To focus on the role of partonic kinematics, we restrict
ourselves to leading order (LO) matrix elements and bare, i.e., unrenormalized �/W/Z

PDFs, which are finite at LO. Processes that we consider include: associated and many-
Higgs production, many-boson production, as well as associated and multi-top production.
We extend recent studies [22, 26, 42, 79, 80] by investigating universal and quasi-universal
corrections to weak boson PDFs that appear naturally in their derivations. Specifically,

†
Throughout this text, we use the term “EVA” when speaking generically about unpolarized or polarized

EW boson PDFs, but use “EWA” when speaking exclusively about (un)polarized W/Z PDFs.
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on muons, the EVA is, in principle, applicable to any lepton-lepton, lepton-hadron, and
hadron-hadron collider configuration. Extension to other colliders, however, may require
substitutions of gauge coupling charges and/or convolutions with additional PDFs [5]. In
Sec. 2.1, we state a scattering formula that will be the basis for all our numerical results and
validation checks. In Sec. 2.2, we list the q

2 and p
2

T
-evolved collinear PDFs that describe

the density of EW bosons in muons at LO. Finally, we document for the completeness in
Sec. 2.3 the PDFs for SM neutrinos from muons.

2.1 A scattering formula for µ
+
µ
� collisions

To described the fully differential production of an n-body, final state F with momenta {pf}
via the high-energy VBF process V�AV

0
�B

! F , where V�A and V
0
�B

are helicity-polarized
EW gauge bosons, in µ

+
µ
� collisions at a center-of-mass (c.m.) energy of

p
s, we invoke

the EVA. In practice, this means working from a scattering formula given by

�(µ+
µ
� ! F +X) = f̃ ⌦ f̃ ⌦ �̂ + Power and Logarithmic Corrections (2.1)
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Here, � is the muon-level (beam-level) inclusive cross section for the production of F
in association with an arbitrary state X. Explicitly, X consists of at least two leptons
l, where l = µ

±
, ⌫µ, or ⌫µ, in addition to particles originating from radiative corrections.

The summation runs over all polarized EW boson V� 2 {W±
�
, Z�, ��}, with � 2 {0,±1}.

Formally speaking, when the collection of states {V�} is extended to left-handed (LH) and
right-handed (RH) states ⌫µL and (⌫µ)R, the beam remnant X includes weak bosons.

For beams k =1,2, the quantities f̃V�/µ
±(⇠k, µf ) are the bare PDFs that describe the

likelihood that an unpolarized muon µ
± with energy Eµ =

p
s/2 and momentum pµ =

Eµ(1, 0, 0,±1) contains a “parton” V with helicity �, mass MV , energy EV = ⇠kEµ, and
no transverse momentum pT,V� . Following Ref. [84], we adopt the f̃ notation to stress that
the PDFs in Eq. (2.2) are not resummed. The f̃ are related to resummed PDFs f by

fV�(⇠, µf ) = f̃V�(⇠, µf ) + O ((↵W (µf )) . (2.3)

Generally, EV 6= EV 0 in the frame of the (V V
0)-system since generally MV 6= M

0
V

. In
f̃V�/µ

± , the quantity µf is the collinear factorization scale and acts as the ultraviolet reg-
ulator of the bare PDF. Physically, µf is the phase space upper bound on the norm of
the space-like momentum transfer q = (pµ � pl) carried by V�(q); alternatively, µf can
be interpreted as the upper bound on the pT of lepton l in µ

± ! V� + l splitting. The
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Figure 2. (a) The invariant mass distribution M(HH) of the process W
+
W

� ! HH, as
predicted by the full 2 ! 4 ME (solid) and the EWA W

+
0 W

�
0 ! HH ME (dash) at

p
s = 4 TeV,

assuming the SM vev
p
2h�i = vSM ⇡ 246 GeV (darker, lower curves) and a scenario wherep

2h�i = vSM/10 (lighter, upper curves). (b) Same but for the M(���) distribution of the process
W

+
W

� ! ���, assuming the fiducial cuts in Eq. (4.4), and for the W
+
T W

�
T ! ��� ME in the

EWA with µf = M(���) (dash) and µf = M(���)/4 (dots).

power corrections. To show this, we plot in Fig. 2(a) the invariant mass distributions atp
s = 4 TeV of the (HH)-system using the full 2 ! 4 ME (solid) and the EVA 2 ! 2

ME (dashed). We assume two scenarios: one where the SM Higgs vev is its usual valuep
2h�i = vSM ⇡ 246 GeV (dark, lower curves), and a hypothetical situation where the vev

is reduced by a factor 10 (light, upper curves), i.e., where
p
2h�i = vSM/10 ⇡ 24.6 GeV.

In the small-vev scenario, we keep MH and all EW gauge couplings to be their SM values
in the Thomson limit. This implies MW ⇡ 8.04 GeV and MZ ⇡ 9.14 GeV.

Focusing first on the SM case, we clearly see that the EWA and the full ME com-
putations are in agreement for M(HH) & 1 TeV. Below this threshold, the EWA curve
significantly overestimate the full ME. In the lowest bins, the differences between the curves
reach approximately factors of 3 � 5. This excess in the EVA prediction accounts for the
differences in cross sections reported in Table 2. Differences between the full ME and f

W
±
0

PDFs consist of corrections associated with expanding in powers of (M2

W
/M

2(HH)) and
(p⌫2

T
/M

2(HH)) ⇠ (M2

W
/M

2(HH)). Importantly, we can rule out a meaningful dependence
on µf since W

+

�A
W

�
�B

! HH is driven almost exclusively by W
+

0
W

�
0

scattering. To check
that these power corrections are driving the disparity between the full and approximated
MEs, we turn to the reduced-vev case. Remarkably, if we reduce MW by a factor of 10,
the disagreement between the EWA and the full ME disappears to within MC statistical
uncertainties.

The same scenarios are presented for ��� production in Fig. 2 (b). There, we plot
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 processes can be described as a  
convoluted with EVA (effective vector boson approx.)
2 → n + 2 2 → n

Logarithmically enhanced contributions are captured. 
Additional power-corrections are not included.

Automated in MadGraph5_aMC@NLO and leads to 
simpler computations (scale dependent).

Ruiz, Costantini, Maltoni, Mattelaer ’21
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EW: from EVA to PDFs of the muon
Having logs from EW splittings, it is natural to think about EW PDFs and resum these logs.

3

FIG. 2. Distributions for (a) EW PDFs fi(x) and, (b) par-
ton luminosities dLij/d⌧ versus

p
⌧ for

p
s = 30 TeV with a

factorization scale Q =
p
ŝ/2 (solid) and

p
ŝ (dashed).

partonic sub-process cross section �̂

�(`+`� ! F +X) =
R 1
⌧0
d⌧

P
ij

dLij

d⌧ �̂(ij ! F ), (6)

dLij

d⌧ = 1
1+�ij

R 1
⌧

d⇠
⇠

h
fi(⇠, Q2)fj

⇣
⌧
⇠ , Q

2
⌘
+ (i $ j)

i
,

where ⌧ = ŝ/s with
p
s (

p
ŝ) the collider (parton)

c.m. energy. The production threshold is ⌧0 = m
2
F /s.

In presenting our results for production of SM parti-
cles at a high-energy lepton collider, for definitiveness,
we consider a future µ

+
µ
� collider with multi-TeV en-

ergies. It is informative to first examine the parton lu-
minosities as shown in Fig. 2(b) for

p
s = 30 TeV versus

p
⌧ , with a variety of partonic initial states. The up-

per horizontal axis labels the accessible
p
ŝ. Although

we properly evolve the EW PDFs according to the un-
broken SM gauge groups, we convert the states back for
the sake of common intuition, shown in the figure for
µ
+
µ
�
, ⌫µ⌫̄µ, ��/ZZ/�Z, WTWT and WLWL. We see

that the fermionic luminosities peak near the machine
c.m. energy ⌧ ⇡ 1, while the gauge boson luminosities,
generically called vector boson fusion (VBF) dominate at
lower partonic energy

p
ŝ. As noted earlier, the neutral

gauge boson luminosities are the largest, followed by WT

and WL.
We emphasize the “inclusiveness” of the production

processes. For example, for an exclusive final state of
tt̄ production, one needs to sum over all the observa-
tionally indistinguishable partonic contributions in the

initial state µ
+
µ
�
, ��, �Z,ZZ,W

+
W

�
! tt̄. Contribu-

tions from the quark and gluon initial states are sub-
leading as seen in the parton luminosities in Fig. 2(b),
and we do not include them in the cross section calcula-
tions throughout this letter. Since the collinear remnants
are not observationally resolved, one cannot separate the
µ
+
µ
�
/⌫µ⌫̄µ annihilations from the VBF. For this reason,

we call such processes, i.e., µ+
µ
�
! tt̄ “semi-inclusive”.

This is analogous to the tt̄ production at hadron colliders
from the partonic sub-processes qq̄, gg ! tt̄.
In Fig. 3(a), we show the semi-inclusive production

cross sections at a µ
+
µ
� collider versus the collider

c.m. energy
p
s from 1 TeV to 30 TeV. We choose the fac-

torization scale Q =
p
ŝ/2 in calculating the EW PDFs.1

The solid curves are the total cross sections for the semi-
inclusive processes for

µ
+
µ
�
! W

+
W

�
, H, ZH, tt̄, HH and tt̄H, (7)

combining the contributions from both fermionic initial
states and the VBF. We indicate the VBF contributions
by the dashed curves,2 and the fermionic contributions
by the dotted curves, respectively, below the solid curves.
It is important to note that, although there is no logarith-
mic evolution for the WL PDF, the partonic sub-process
cross sections are much enhanced for WLWL, ZLZL !

tt̄, tt̄H and H,ZH,HH, due to the Goldstone-boson in-
teractions. The VBF processes take over the annihilation
channels at higher energies

p
s ⇡ 2.3, 3.5, 6.5 TeV for

W
+
W

�
, tt̄ and tt̄H, respectively. To appreciate the in-

dividual contributions from the underlying partonic sub-
processes, we decompose them for the process µ+

µ
�
! tt̄

versus the c.m. energy, as shown in Fig. 3(b) for µ
+
µ
�,

��/�Z/ZZ, WTWL, WLWL as well as WTWT . As ex-
pected, the QED contribution remains to be the leading
channel. Not well appreciated, the WTWL/WLWL con-
tributions become as significant.
We now examine the kinematic distributions for

the final state tt̄ system, for the individual contribu-
tions µ

+
µ
�
, �/Z,WTWL,WLWL and WTWT . Shown in

Fig. 4(a) are the normalized invariant mass distributions
mtt̄. We see that, for the µ

+
µ
� annihilation, the distri-

bution is sharply peaked at the collider c.m. energy, with
a tail due to the radiative return. For the VBF, they are
peaked after the 2mt threshold. We show in Fig. 4(b)
the normalized rapidity distributions of the system ytt̄.
Again, events from the µ

+
µ
� annihilation are sharply

central, while those from VBF are spread out, reflecting
the boost due to the momentum imbalance between the
two incoming partons.

1To validate the EW PDF approximation, we have imposed an
angular cuto↵ for the W/Z initiated processes in the c.m. frame
cos ✓ < 1 � m

2
/ŝ, where m is the relevant particle mass involved

in the process. We have included a tighter cut cos ✓ < 0.99 andp
ŝ > 500 GeV for the W

+
W

�
, ZH final states.

2Many of the VBF processes have been calculated recently in
Ref. [27] at the tree-level. We have good agreements with theirs
where ever they overlap.

EW Leading Log PDFs of the muon are available.
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Figure 4. (Top panel): Sample of PDFs evaluated at a scale Q = 3 TeV for a muon. For this plot
we sum over polarisations and q represents the sum of all quark PDFs except for the top. (Bottom
panel): PDFs for the scalar degrees of freedom in the SM. Solid (dashed) lines are evaluated at a
scale of Q = 3 (30) TeV.

the dominant contribution from the ultra-collinear splitting off a muon. On the other hand,
the ultra-collinear contribution to the W

+
L PDF comes mostly from the muon neutrino,

which has a PDF suppressed with respect to the muon one. Therefore, other contributions
from standard splitting functions (e.g. from P

h
hV and P

V
hh) are sizeable and induce a scale

dependence. In case of the Higgs boson there is no ultra-collinear contribution from massless
fermions, so one does not expect ultra-collinear terms to dominate and indeed its PDF
shows a large scale dependence.

The fraction of the momentum carried by each of the partonic components is given by
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field Q = 3 TeV Q = 10 TeV Q = 30 TeV

µL 49.48% 48.72% 47.76%

µR 46.98% 44.12% 41.12%

⌫µ 1.28% 2.83% 4.85%

⌫` 0.0004% 0.0009% 0.001%

` 0.005% 0.007% 0.01%

q 0.038% 0.05% 0.07%

� 1.3% 1.4% 1.46%

W
�
T 0.52% 0.64% 0.74%

W
+
T 0.03% 0.06% 0.11%

ZT 0.17% 0.22% 0.28%

g 0.001% 0.002% 0.003%

Table 2. Fraction of the momentum carried by each parton at Q = 3, 10, 30 TeV.

MuC 10 TeV luminosities

LePDF
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-WT

+

WL
-WL

+

ZTZT

gg uu

��

�L��

500 1000 5000 104
10-5

0.001
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10

s� [GeV]

�
ij(
s� )

Figure 5. Examples of parton luminosities at a 3 TeV (left) and 10 TeV (right) MuC. Unless
specified, for this plot we sum over polarizations.

the n = 2 Mellin transform of the PDF (see App. C for more details) and it can be used to
evaluate the relevant role of the various individual components at different scales. To this
end, in Table 2 we give three examples for the set of PDFs shown in Fig. 4 at scales 3 TeV,
10 TeV, and 30 TeV. We observe that as the energy of the hard process is increased the
percentages of both the left- and right-handed muon components are decreased and those of
all other partons increased, which illustrates the importance of electroweak interactions at
higher energies.

In Fig. 5 we show some examples of parton luminosities for a 3 and 10 TeV muon
colliders where, unless specified, we sum over polarizations. Parton luminosities can be
useful for computing cross sections integrated over angular variables. In case of a muon
collider they are defined from the convolution of the PDFs of parton i from the muon and
parton j from the anti-muon, as follows:

Lij(ŝ) ⌘

Z 1

ŝ/s0

dx

x
f
(µ)
i

 
x,

p
ŝ

2

!
f
(µ̄)
j

 
ŝ

xs0
,

p
ŝ

2

!
, (4.1)
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Han, Ma, Xie ’20 Garosi, Marzocca, Trifinopoulos ’23
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Phenomenology with PDFs

4

FIG. 3. Production cross section for semi-inclusive processes
at a µ

+
µ
� collider versus the c.m. energy. The solid curves are

for (a) the total cross sections and the dashed (dotted) curves
from VBF (µ+

µ
� annihilation) with EW PDF, and (b) for tt̄

production decomposed to the underlying contributions from
µ
+
µ
�
, �/Z/�Z,WTWL, WLWL and WTWT .

We summarize our results utilizing the EW PDFs in
Table II for a few characteristic processes for a muon col-
lider with a few representative energies 3, 6, 10, 14 and 30
TeV. For the sake of illustration, we once again separate
the partonic sub-processes by the fermionic annihilation
and by VBF.

IV. Discussions and Conclusion
• The naive EPA is inadequate at high scales. The QED
evolution of ln

�
Q

2
/m

2
`

�
in the �-PDF should capture the

dominant e↵ect at an appropriate physical scale Q
2. Al-

though the Z contribution is typically small until reach-
ing a very high scale, the mixed state �Z(BW

3) needs to
be taken into account that often interferes destructively.
• The EW PDF approach allows for calculating individ-
ual contributions from the polarized initial state partons,
with correlations to the corresponding sub-process ma-
trix elements. This is an important feature when polar-
ization is needed for exploring a certain type of under-
lying dynamics. This option would be unavailable with
the fixed order (FO) diagrammatic calculations [27–29].
In addition, the FO calculations may face a tremendous
challenge for numerical stability dealing with the large

...

... ...

FIG. 4. Normalized di↵erential distributions for the final state
tt̄ system (a) the invariant mass mtt̄ and (b) the rapidity ytt̄.

collinear logs ln
�
Q

2
/m

2
`

�
.

• Although no logarithmic growth for the longitudinally
polarized gauge boson PDFs, the large Yukawa coupling
to the top quark and the scalar self-interaction of the
Goldstone bosons make the sub-processes substantially
enhanced, as seen for the VBF production of tt̄, tt̄H, ZH

and HH.
• For the PDFs of fermions with a bare SU(2) charge, due
to the incomplete cancellation of the infrared divergence,
they are not exactly factorizable. This is known as the
violation of the Bloch-Nordsieck theorem [15, 20]. This
does not pose a problem to the beam (valence) lepton
because it is a numerically small higher-order correction.
This could lead to an unphysical solution to the dynam-
ically generated neutrinos. We impose an infrared cuto↵
as a regulator ⌧

max = 1 �MZ/Q, which assures the re-
summation to a double-log accuracy [16].
• We have not taken into account the e↵ects of the final-
state radiations (FSR). This could become one of the
dominant features at very high energies, properly de-
scribed by the “fragmentation functions” [15, 30]. We
leave this topic for future explorations.
• We did not quantify the potentially large corrections
near the threshold Q

2
� 4m2. On the one hand, our for-

malism aims to address the physics far above the thresh-
old Q

2
� M

2
Z . On the other hand, the infrared behavior

of the gauge boson radiation tends to populate the events
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and HH.
• For the PDFs of fermions with a bare SU(2) charge, due
to the incomplete cancellation of the infrared divergence,
they are not exactly factorizable. This is known as the
violation of the Bloch-Nordsieck theorem [15, 20]. This
does not pose a problem to the beam (valence) lepton
because it is a numerically small higher-order correction.
This could lead to an unphysical solution to the dynam-
ically generated neutrinos. We impose an infrared cuto↵
as a regulator ⌧

max = 1 �MZ/Q, which assures the re-
summation to a double-log accuracy [16].
• We have not taken into account the e↵ects of the final-
state radiations (FSR). This could become one of the
dominant features at very high energies, properly de-
scribed by the “fragmentation functions” [15, 30]. We
leave this topic for future explorations.
• We did not quantify the potentially large corrections
near the threshold Q

2
� 4m2. On the one hand, our for-

malism aims to address the physics far above the thresh-
old Q

2
� M

2
Z . On the other hand, the infrared behavior

of the gauge boson radiation tends to populate the events

At large energies, VBF configurations become 
the dominant production mode. 

Given , for  VBF is dominant, while 
for  the direct production is dominant.

S m(X) ≪ S
m(X) ≃ S

Han, Ma, Xie ’20, ‘21

Figure 6. Invariant mass (mij , upper panels) and rapidity (yij , lower panels) distributions for the
di-jet (or W+W�) system from various sub-processes for an e+e� collider at

p
s = 3 TeV (left panels),

and a µ+µ� collider at
p
s = 10 TeV (right panels), respectively.

photon and is roughly 5% for an electron beam, and 3% for a muon beam, estimated from
Table 1. Second, in our treatment of the full DGLAP evolution, the running e↵ect of the
QED coupling ↵(Q) is properly taken into account, with the boundary condition at the
lepton mass set to be ↵(m2

e) = 1/137 (↵(m2
µ) = 1/136) and proper matching cross the mass

thresholds. As expected, both e↵ects tend to reduce the rate for photon-initiated processes
with respect to the naive EPA calculations. As such, the cross section for �� ! qq̄ receives
about 16% (8%) reduction over the EPA results for electron (muon) colliders evaluated with
the fixed value ↵ = 1/132.5. Finally, we note that the other EW VBF contributions such as
�Z,W+W�,W±Z ! qq̄0 are sub-leading and contribute less than 1%, due to the suppression
of the EW threshold above MZ or 2MW .

One of the most striking aspects for a high-energy lepton collider is the combination of
two characteristically di↵erent production mechanisms: the direct e+e�/µ+µ� annihilation
channels and the fusion processes. The former carries the full collider energy to reach a
high threshold and the latter starts from the low energy to scan over the full spectrum.
These distinctive kinematic features can be best shown by the invariant mass (mij) of the
final state di-jet system as in the upper panels of Fig. 6 at

p
s = 3 TeV for e+e� and 10

TeV for µ+µ�, respectively. We see the clear separation of events from these two classes
of reactions, peaked around the low threshold in mij for the partonic fusion processes, and
sharply peaked at the beam collision energy

p
s for the annihilation process (a factor of 100
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Phenomenology with EW PDFs: open questions

How do we calculate NLO EW corrections with EW PDFs?
We need EW factorisation counter-terms in order not to double-count the logs. Anyway, also with 
them, current PDFs are LL-accurate. Therefore an NLO EW calculation would lead to an artificially 
small scale-dependence.

Is more important resumming logs or taking into account power corrections?
Besides the case of photon initial state, it is not obvious that VBF calculated with PDFs is superior 
w.r.t. exact matrix-element calculations. 

How do we improve the accuracy?
For , the muon PDF in the muon is the dominant one. We see it later in the talk. 
For  answer to previous questions are crucial: estimate scale unc. and EW corrections. 

m(X) ≃ S
m(X) ≪ S

Are new channels appearing without PDFs?

Should be only QCD and QED involved in the PDFs but not the Weak component?
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An example:  productione−ν̄e
10TeV MuC

LePDF

W-W+

W-�

W-Z

W-Z/�+

��

�L��

����

500 1000 5000 104
10-5

10-4

0.001

0.010

0.100

1

10

s� [GeV]

�
ij(
s� )

Figure 2. Some examples of parton luminosities for a 3 TeV (left) and 10 TeV (right) MuC. The
factorization scale is chosen as Q =

p
ŝ/2. Unless written explicitly, different polarizations are

summed. For the W�-Z/� luminosity we sum over the W polarization and show with a solid
(dashed) green line the absolute value of the positive (negative) Z/� helicity.

muon neutrino PDF to increase when x nears 1. This features can indeed be observed in
Fig. 1. The subsequent fall of the muon neutrino PDF very close to x = 1 is instead due to
the infrared cutoff set by the W mass.

As shown in Ref. [41], by solving the EW DGLAP equations iteratively at O(↵2) we
can derive an approximate analytic expression for the neutrino PDF:

f (↵2)
⌫µ (x, Q2) =

↵2(Q)

8⇡
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W
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Q2 + xm2
W

m2
W

+

+ log
(1 � x)2

1 + x(1 � x)2
+

xm2
W

Q2 + xm2
W

+
1

1 + x(1 � x)2
� 1

◆

+
2x2(1 � x)2

(1 � x)(1 + x(1 � x)2)

Q2
� m2

W

Q2 + xm2
W

�
,

(2.1)

where ✓ is the Heaviside step function that follows from the IR cutoff mentioned above. The
last line is due to ultra-collinear emission of a longitudinal W boson from the muon. This
analytic result is shown as a dashed gray line in Fig. 1, showing a good agreement with the
full numerical result from LePDF. Further contributions to the neutrino PDF are expected
at O(↵2

2) mainly via the splitting Z ! ⌫̄⌫ and indeed we observe that the deviation grows
at small x and for larger factorization scales, where the Z PDF is larger.

An estimate of the PDF uncertainties due to missing higher orders is typically obtained
by varying the factorization scale. In Fig. 1 we show with colored bands the envelope, for
each PDF, obtained by varying the factorization scale Q by a factor of 1/2 and 2 around the
central value of 500 GeV (left) or 3 TeV (right). We see that these uncertainties are small
for the photon, muon and the longitudinal polarization of EW bosons, while they are much
larger for the transverse polarizations of W and Z, and for the muon neutrino. This can be
understood as follows. The longitudinal WL and ZL PDFs receive the dominant contribution
from ultra-collinear emission off the valence muon. Such terms have no logarithmic scaling
with Q and approach instead a constant value at large scales [31], hence the very small
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Figure 2. Some examples of parton luminosities for a 3 TeV (left) and 10 TeV (right) MuC. The
factorization scale is chosen as Q =

p
ŝ/2. Unless written explicitly, di�erent polarizations are

summed. For the W�-Z/� luminosity we sum over the W polarization and show with a solid
(dashed) green line the result for the positive (negative) Z/� helicity, in modulus.
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Figure 3. Leading partonic diagrams, in unitary gauge, contributing to e�⌫̄e production at a MuC.

µ�µ+ and µ�
L ⌫̄µ luminosities dominate over the gauge bosons ones, as a consequence of the

growth of both muon and neutrino PDFs for x ! 1.

3 Assessing the ⌫µ PDF at a Muon Colliders

In this Section, we investigate processes that are particularly sensitive to the neutrino PDF.

Specifically, we focus on µµ̄ ! e�⌫̄e and µµ̄ ! W��, where the contribution from the ⌫µ

PDF plays a leading role. These examples allow us to assess quantitatively the potential

for testing experimentally the related SM predictions and could be used in the future to

establish a proper treatment of EW-radiation e�ects in high-energy processes.
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Figure 3. Leading partonic diagrams, in unitary gauge, contributing to e�⌫̄e production at a MuC.

We can start to understand the relative weights of signal and background processes with
simple estimates. The partonic cross sections of the two processes, for partonic invariant
masses above the EW scale ŝ � mW , follow the same scaling �̂µ⌫̄ ⇠ �̂VBF ⇠ ↵2

EW/ŝ.
The physical cross section is obtained by convoluting these with the corresponding parton
luminosities in Fig. 2. Since the µ⌫̄µ luminosity dominates over the V V ones at large
invariant masses, we can expect that the signal will dominate the cross section in the
high-energy region. This makes the e�⌫̄e process particularly sensitive to the neutrino PDF.

The physical triple differential cross sections for both signal and background are obtained
by convoluting the partonic ones with the PDFs of the initial-state partons:3

d3�(µµ̄ ! e�⌫̄e + X)

dyedy⌫dpT
=

X

i,j

fµ
i

✓
x1,

ŝ

4

◆
f µ̄

j

✓
x2,

ŝ

4

◆✓
2pT ŝ

s0

◆
d�̂

dt̂
(ij ! e�⌫̄e)(ŝ, t̂) , (3.3)

We refer to Appendix A for details and the expressions of the kinematical variables in terms
of the final state’s rapidities ye,⌫ and pT . Since the neutrino cannot be detected, we integrate
over y⌫ to obtain the double differential cross section in terms of ye and pT . We then bin
these two variables to derive the total cross sections for both the signal and the background
in each bin. Our results are shown in Fig. 4. The top-left panel displays the signal cross
section (denoted by �µ⌫), while the top-right panel shows the background cross section
(denoted by �bg). These cross sections correspond to a 3 TeV muon collider. We restrict
the pT of the electron to values greater than 500 GeV to ensure the validity of the collinear
approximation for electroweak PDFs, where mEW ⌧ Ehard ⇠ pe

T . The rapidity is considered
within the interval [-2, 2], motivated by the geometric acceptance of the detector, ensuring
that we focus on events away from the forward nozzles [58], which are generally cleaner and
less affected by beam-induced backgrounds [59].

3
The formula is exact when the two partons and the final states are all massless. The generalization to

massive partons, which is the case for the background, is straightforward and we checked that differences

are negligible in the kinematical regime where collinear factorization can be applied, i.e. pT � mW .
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Figure 7. Leading-order Feynman diagrams for µ�µ+
! e�⌫̄eW+.

case of the simple process of e�⌫̄e production. Specifically, in the following we focus only

on the µ�⌫̄µ fusion contribution, neglecting VBF. As shown in Section 3.1, the former is

by far the dominant contribution in the hard region of large electron pe
T . We study the

cross section in di�erent bins of pe
T . For the PDF approach at a 3 TeV MuC we can use the

result reported in Fig. 4, integrating over the electron rapidity ye between -2 and 2. The

corresponding cross section in pe
T bins, for both the 3 TeV and 10 TeV MuC are shown as a

blue line in Fig. 8, with the blue band representing the factorization scale uncertainty.

At leading order, single-electron production at muon colliders proceeds via µ�µ+
!

e�⌫̄eW+. The leading order Feynman diagrams are shown in Fig. 7. For the purpose of the

comparison with the PDF approach we are interested in the region where the final-state W

is collinear and is emitted by the initial µ+, diagram (a). This process however receives two

other contributions, that should be removed with appropriate cuts to isolate the collinear

W emission. The first arises from on-shell W�W+ pair-production, with W� decaying to

electron-neutrino (Fig. 7-(b)). This contribution is characterized by an invariant mass of

the electron-neutrino pair close to the W mass and central W s. The second is through

production of e�e+ or ⌫e⌫̄e via neutral current, with subsequent emission, like final state

radiation (FSR), of a W+ boson from either the e+ or the ⌫e (Fig. 7-(c,d)). These W+ are

typically emitted collinearly from the lepton and with small energies, due to the infrared

singularity of the splitting function.

To evaluate the cross section as a function of pe
T , we generate with MadGraph5 aMC [67]

µ�µ+
! e�⌫̄eW+ events at leading order with 3 and 10 TeV of total invariant mass. Since

our only goal is to compare the two theoretical approaches, in the following we pretend

that the four momenta of all final-state particles can be fully reconstructed, including the

neutrino. At generation level we impose the following cuts:

MuC3TeV (1) |ye| < 2 , pe
T > 500 GeV , p⌫

T > 500 GeV , M(e, ⌫e) > 200 GeV ,

MuC10TeV (1) |ye| < 2 , pe
T > 1 TeV , p⌫

T > 1 TeV , M(e, ⌫e) > 500 GeV .
(3.7)
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Figure 7. Leading-order Feynman diagrams for µ�µ+
! e�⌫̄eW+.

is collinear and is emitted by the initial µ+, diagram (a). This process however receives two
other contributions, that should be removed with appropriate cuts to isolate the collinear
W emission. The first arises from on-shell W�W+ pair production, with W� decaying to
electron-neutrino (Fig. 7-(b)). This contribution is characterized by an invariant mass of
the electron-neutrino pair close to the W mass and central W s. The second is through
production of e�e+ or ⌫e⌫̄e via neutral current, with subsequent emission, like final-state
radiation (FSR), of a W+ boson from either the e+ or the ⌫e (Fig. 7-(c,d)). These W+ are
typically emitted collinearly from the lepton and with small energies, due to the infrared
singularity of the splitting function.

We study the cross section in different bins of pe
T . For the PDF approach at a 3 TeV

MuC we can use the result reported in Fig. 4, integrating over the electron rapidity ye

between �2 and 2. The corresponding cross section in pe
T bins, for both the 3 TeV and 10

TeV MuC are shown as a blue line in Fig. 8, with the blue band representing the factorization
scale uncertainty. To evaluate the fixed-order cross section we generate with MadGraph5_aMC
[49] µ�µ+

! e�⌫̄eW+ events at leading order with 3 and 10 TeV of total invariant mass.
Since our only goal is to compare the two theoretical approaches, in the following we pretend
that the four momenta of all final-state particles can be fully reconstructed, including the
neutrino. At generation level we impose the following cuts, that we label as (1):

(1)3TeV : |ye| < 2 , pe
T > 500 GeV , p⌫

T > 500 GeV , M(e, ⌫e) > 200 GeV ,

(1)10TeV : |ye| < 2 , pe
T > 1 TeV , p⌫

T > 1 TeV , M(e, ⌫e) > 500 GeV .
(3.7)

The former two cuts are the same as the ones used in Fig. 4 while the latter two, that are
automatically satisfied in the PDF approach (since in that case p⌫

T = pe
T and M(e, ⌫e) =

2pT cosh ((ye � y⌫)/2) > 2pT ), are used to remove the otherwise overwhelming contribution
from on-shell WW production and to ensure the hardness of the e�⌫̄e system. We note
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Figure 8. Comparison between PDF and fixed-order results for e�⌫̄e production at a 3 TeV (left)
and 10 TeV (right) MuC, with subsequent cuts imposed on the events generated with MadGraph5_aMC.
Dashed magenta and green lines correspond to the cuts shown in parentheses.

that at this point almost all events have M(e, ⌫e) & 1 (2) TeV for the 3 (10) TeV MuC and
��(e, ⌫e) ⇡ ⇡. The resulting cross section in bins of pe

T is shown as a red line in Fig. 8. One
can notice a large mismatch with the result obtained from the PDF approach, that does not
even improve with large pe

T . This is due to the W+ emitted as FSR from final-state leptons,
i.e. diagrams (c,d) in Fig. 7.

To remove this contribution and ensure that only the collinear W region is selected, we
present two alternatives. The first, that we denominate as (A), is to impose an isolation
criteria on both the electron and the neutrino, requiring

(A) : �R(i, j) > 2 or 1.5 , (3.8)

for all three final state particles i, j = e�, ⌫̄e, W+, and �R =
p

(�⌘)2 + (��)2. While
this is automatically satisfied for the electron-neutrino pair, given they have ��(e, ⌫e) ⇡ ⇡,
this cut ensures that the W+ is not collinear with the final-state leptons. The electron-pT

distribution for this case is shown with magenta lines (respectively solid and dashed for the
two values of the cut) in Fig. 8, and shows a good agreement with the PDF result.

The second alternative, denominated as (B), is to impose a mild cut on the W pseudo-
rapidity,

(B) : |⌘W | > 1.5 or 1.0 . (3.9)

Also this cut brings the fixed-order result in good agreement with the PDF one for both cut
values, as shown with the green lines in Fig. 8 (respectively solid and dashed for the two
cuts).

The pT distribution of the W boson, normalized to 1, for each stage of the cuts described
above is shown in Fig. 9 and shows how the collinear condition is well satisfied once the
cuts (A) or (B) are applied.

These results clearly demonstrate that the cuts used are effective in isolating the collinear
W emission and that the fixed-order calculations agree with the resummed predictions
obtained from the PDF approach within the scale uncertainties. However, there is a notable
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Figure 7. Leading-order Feynman diagrams for µ�µ+
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case of the simple process of e�⌫̄e production. Specifically, in the following we focus only

on the µ�⌫̄µ fusion contribution, neglecting VBF. As shown in Section 3.1, the former is

by far the dominant contribution in the hard region of large electron pe
T . We study the

cross section in di�erent bins of pe
T . For the PDF approach at a 3 TeV MuC we can use the

result reported in Fig. 4, integrating over the electron rapidity ye between -2 and 2. The

corresponding cross section in pe
T bins, for both the 3 TeV and 10 TeV MuC are shown as a

blue line in Fig. 8, with the blue band representing the factorization scale uncertainty.

At leading order, single-electron production at muon colliders proceeds via µ�µ+
!

e�⌫̄eW+. The leading order Feynman diagrams are shown in Fig. 7. For the purpose of the

comparison with the PDF approach we are interested in the region where the final-state W

is collinear and is emitted by the initial µ+, diagram (a). This process however receives two

other contributions, that should be removed with appropriate cuts to isolate the collinear

W emission. The first arises from on-shell W�W+ pair-production, with W� decaying to

electron-neutrino (Fig. 7-(b)). This contribution is characterized by an invariant mass of

the electron-neutrino pair close to the W mass and central W s. The second is through

production of e�e+ or ⌫e⌫̄e via neutral current, with subsequent emission, like final state

radiation (FSR), of a W+ boson from either the e+ or the ⌫e (Fig. 7-(c,d)). These W+ are

typically emitted collinearly from the lepton and with small energies, due to the infrared

singularity of the splitting function.

To evaluate the cross section as a function of pe
T , we generate with MadGraph5 aMC [67]

µ�µ+
! e�⌫̄eW+ events at leading order with 3 and 10 TeV of total invariant mass. Since

our only goal is to compare the two theoretical approaches, in the following we pretend

that the four momenta of all final-state particles can be fully reconstructed, including the

neutrino. At generation level we impose the following cuts:

MuC3TeV (1) |ye| < 2 , pe
T > 500 GeV , p⌫

T > 500 GeV , M(e, ⌫e) > 200 GeV ,

MuC10TeV (1) |ye| < 2 , pe
T > 1 TeV , p⌫

T > 1 TeV , M(e, ⌫e) > 500 GeV .
(3.7)
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production of e�e+ or ⌫e⌫̄e via neutral current, with subsequent emission, like final-state
radiation (FSR), of a W+ boson from either the e+ or the ⌫e (Fig. 7-(c,d)). These W+ are
typically emitted collinearly from the lepton and with small energies, due to the infrared
singularity of the splitting function.

We study the cross section in different bins of pe
T . For the PDF approach at a 3 TeV

MuC we can use the result reported in Fig. 4, integrating over the electron rapidity ye

between �2 and 2. The corresponding cross section in pe
T bins, for both the 3 TeV and 10

TeV MuC are shown as a blue line in Fig. 8, with the blue band representing the factorization
scale uncertainty. To evaluate the fixed-order cross section we generate with MadGraph5_aMC
[49] µ�µ+

! e�⌫̄eW+ events at leading order with 3 and 10 TeV of total invariant mass.
Since our only goal is to compare the two theoretical approaches, in the following we pretend
that the four momenta of all final-state particles can be fully reconstructed, including the
neutrino. At generation level we impose the following cuts, that we label as (1):

(1)3TeV : |ye| < 2 , pe
T > 500 GeV , p⌫

T > 500 GeV , M(e, ⌫e) > 200 GeV ,

(1)10TeV : |ye| < 2 , pe
T > 1 TeV , p⌫

T > 1 TeV , M(e, ⌫e) > 500 GeV .
(3.7)

The former two cuts are the same as the ones used in Fig. 4 while the latter two, that are
automatically satisfied in the PDF approach (since in that case p⌫

T = pe
T and M(e, ⌫e) =

2pT cosh ((ye � y⌫)/2) > 2pT ), are used to remove the otherwise overwhelming contribution
from on-shell WW production and to ensure the hardness of the e�⌫̄e system. We note
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Figure 8. Comparison between PDF and fixed-order results for e�⌫̄e production at a 3 TeV (left)
and 10 TeV (right) MuC, with subsequent cuts imposed on the events generated with MadGraph5_aMC.
Dashed magenta and green lines correspond to the cuts shown in parentheses.

that at this point almost all events have M(e, ⌫e) & 1 (2) TeV for the 3 (10) TeV MuC and
��(e, ⌫e) ⇡ ⇡. The resulting cross section in bins of pe

T is shown as a red line in Fig. 8. One
can notice a large mismatch with the result obtained from the PDF approach, that does not
even improve with large pe

T . This is due to the W+ emitted as FSR from final-state leptons,
i.e. diagrams (c,d) in Fig. 7.

To remove this contribution and ensure that only the collinear W region is selected, we
present two alternatives. The first, that we denominate as (A), is to impose an isolation
criteria on both the electron and the neutrino, requiring

(A) : �R(i, j) > 2 or 1.5 , (3.8)

for all three final state particles i, j = e�, ⌫̄e, W+, and �R =
p

(�⌘)2 + (��)2. While
this is automatically satisfied for the electron-neutrino pair, given they have ��(e, ⌫e) ⇡ ⇡,
this cut ensures that the W+ is not collinear with the final-state leptons. The electron-pT

distribution for this case is shown with magenta lines (respectively solid and dashed for the
two values of the cut) in Fig. 8, and shows a good agreement with the PDF result.

The second alternative, denominated as (B), is to impose a mild cut on the W pseudo-
rapidity,

(B) : |⌘W | > 1.5 or 1.0 . (3.9)

Also this cut brings the fixed-order result in good agreement with the PDF one for both cut
values, as shown with the green lines in Fig. 8 (respectively solid and dashed for the two
cuts).

The pT distribution of the W boson, normalized to 1, for each stage of the cuts described
above is shown in Fig. 9 and shows how the collinear condition is well satisfied once the
cuts (A) or (B) are applied.

These results clearly demonstrate that the cuts used are effective in isolating the collinear
W emission and that the fixed-order calculations agree with the resummed predictions
obtained from the PDF approach within the scale uncertainties. However, there is a notable
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this is automatically satisfied for the electron-neutrino pair, given they have ��(e, ⌫e) ⇡ ⇡,
this cut ensures that the W+ is not collinear with the final-state leptons. The electron-pT

distribution for this case is shown with magenta lines (respectively solid and dashed for the
two values of the cut) in Fig. 8, and shows a good agreement with the PDF result.

The second alternative, denominated as (B), is to impose a mild cut on the W pseudo-
rapidity,

(B) : |⌘W | > 1.5 or 1.0 . (3.9)

Also this cut brings the fixed-order result in good agreement with the PDF one for both cut
values, as shown with the green lines in Fig. 8 (respectively solid and dashed for the two
cuts).

The pT distribution of the W boson, normalized to 1, for each stage of the cuts described
above is shown in Fig. 9 and shows how the collinear condition is well satisfied once the
cuts (A) or (B) are applied.

These results clearly demonstrate that the cuts used are effective in isolating the collinear
W emission and that the fixed-order calculations agree with the resummed predictions
obtained from the PDF approach within the scale uncertainties. However, there is a notable
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PDFs of the muon: QCD and QED only

- NLO initial condition, NLL evolution. 
- QCD  0 for , unlike 
the cases discussed before. 
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Figure 4: Dependence of the gluon, u-quark, and d-quark PDFs on the low-energy

parameters. See the text for details.

represent the envelopes, computed as was explained at the beginning of sect. 4. One

sees here the local (in z) version of what has been observed in table 3: the analytical

approach gives significantly smaller uncertainties than the truncated one. In both cases,

the uncertainties decrease with the scale. We shall soon see (sect. 4.2) the implications of

these facts on selected observables.

4.2 Results for dijet cross sections

In this section we report our predictions for dijet total rates. We work with LO short-

distance cross sections (i.e. atO(↵n
S↵

m) with n+m = 2); as such, jets coincide with partons

(i.e. there is no need for a jet-finding algorithm), and are defined by means of the simplest

acceptance cuts:

p(j)T > pcutT ,
���⌘(j)

��� < 3 . (4.1)

The collider energy is
p
s = 10 TeV, and we consider pcutT = 10 GeV and pcutT = 100 GeV;

the factorisation and renormalisation scales are set equal to p(j)T .

We point out that in the presence of EW interactions the definition of the partonic

content of a jet constitutes a non-trivial problem (see e.g. ref. [32] for an extended discussion

of this matter). By working at the LO most of the complications can be avoided, and we can

obtain sensible results by considering only light quarks and gluons when defining the jets.

Conversely, since we are working at an µ+µ� collider, the initial-state and intermediate

partons can be light quarks, gluons, leptons, and photons. In summary, the results of

this section have been obtained by employing the 2 ! 2 matrix elements relevant to the
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processes:

p1 + p2 �! p3 + p4 , (4.2)

with

p1 , p2 2
�
qi, q̄i, g, l

±
i , �

 
, p3 , p4 2

�
qi, q̄i, g

 
. (4.3)

In view of this, the intermediate s- or t-channel partons are light quarks, gluons, or photons.

�(pcutT = 10 GeV) [pb] an. tr.

O(↵2
S) 18.33+1.30%

�1.25% 15.00+10.23%
�10.99%

�-ind. 8.24+0.68%
�0.91% 7.56+3.71%

�3.75%

total 26.58+1.11%
�1.15% 22.57+8.04%

�8.56%

Table 4: Total dijet rates for pcutT = 10 GeV, in pb.

�(pcutT = 100 GeV) [fb] an. tr.

O(↵2
S) 41.38+0.03%

�0.03% 41.17+0.46%
�0.85%

�-ind. 90.03+0.01%
�0.02% 89.67+0.24%

�0.32%

total 136.91+0.00%
�0.00% 136.35+0.28%

�0.48%

Table 5: Total dijet rates for pcutT = 100 GeV, in fb.

The total dijet rates within the acceptance cuts of eq. (4.1) are given in the last line of

tables 4 (for pcutT = 10 GeV) and 5 (for pcutT = 100 GeV) – note the di↵erent units employed

in these two tables. In addition to these, we also report the results for the sum of the

O(↵2
S) contributions (first line), i.e. of the pure-QCD processes, and for the sum of the

photon-induced contributions (second line), i.e. those with ��, �q, and �g partonic initial

states. Thus, the di↵erences between the results in the third line and the sum of their

counterparts in the first and second lines is equal to the sum of the O(↵2) contributions of

the four-fermion processes.

These results complement, and confirm, those for standalone PDFs that we have dis-

cussed in sect. 4.1. In particular: a) the low-energy-parameter uncertainties of the ana-

lytical approach are always much smaller than those of the truncated one; b) these un-

certainties are significantly larger with pcutT = 10 GeV than with pcutT = 100 GeV; in the

latter case, those stemming from the analytical approach are essentially negligible6; c) at

pcutT = 10 GeV, the central values stemming from the analytical and truncated approaches

are fairly di↵erent from one another. Moreover, they are not within the low-energy pa-

rameter uncertainty ranges; this underscores again the fundamental di↵erence between the

6Note that there the uncertainty on the total is smaller than that on its major components, i.e. the O(↵2
S)

and photon-induced contributions. This is due to the fact that, with such small numbers, the usual envelope

computation with discrete sets of parameters would have to be promoted to a continuous parameter scan.
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NLO EW corrections do not involve Weak subtraction 
counter terms when are calculated with such PDFs and NLO 
accuracy for the QED component can be already achieved.  
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NLO EW corrections at high energies
NLO EW corrections for energies of the order of few TeVs are as large as (or even more 
than) NLO QCD corrections at the LHC. Origin: EW Sudakov logarithms.

EW corrections should be considered not only for precision physics, since they give 
 effects. This includes also BSM scenarios. 

 

𝒪(10 − 100%)

µ
+

µ
≠

æ X,
Ô

s = 3 TeV ‡
incl

LO
[fb] ‡

incl

NLO
[fb] ”EW [%]

W
+

W
≠ 4.6591(2) · 102 4.847(7) · 102 +4.0(2)

ZZ 2.5988(1) · 101 2.656(2) · 101 +2.19(6)
HZ 1.3719(1) · 100 1.3512(5) · 100

≠1.51(4)
HH 1.60216(7) · 10≠7 5.66(1) · 10≠7 ú

W
+

W
≠

Z 3.330(2) · 101 2.568(8) · 101
≠22.9(2)

W
+

W
≠

H 1.1253(5) · 100 0.895(2) · 100
≠20.5(2)

ZZZ 3.598(2) · 10≠1 2.68(1) · 10≠1
≠25.5(3)

HZZ 8.199(4) · 10≠2 6.60(3) · 10≠2
≠19.6(3)

HHZ 3.277(1) · 10≠2 2.451(5) · 10≠2
≠25.2(1)

HHH 2.9699(6) · 10≠8 0.86(7) · 10≠8 ú

W
+

W
≠

W
+

W
≠ 1.484(1) · 100 0.993(6) · 100

≠33.1(4)
W

+
W

≠
ZZ 1.209(1) · 100 0.699(7) · 100

≠42.2(6)
W

+
W

≠
HZ 8.754(8) · 10≠2 6.05(4) · 10≠2

≠30.9(5)
W

+
W

≠
HH 1.058(1) · 10≠2 0.655(5) · 10≠2

≠38.1(4)
ZZZZ 3.114(2) · 10≠3 1.799(7) · 10≠3

≠42.2(2)
HZZZ 2.693(2) · 10≠3 1.766(6) · 10≠3

≠34.4(2)
HHZZ 9.828(7) · 10≠4 6.24(2) · 10≠4

≠36.5(2)
HHHZ 1.568(1) · 10≠4 1.165(4) · 10≠4

≠25.7(2)

Table 1: Total inclusive cross sections at LO and NLO EW with corresponding relative
corrections ”EW, for two-, three- and four-boson production at

Ô
s = 3 TeV. For (*), with

dominant loop-induced contributions, we refer to the discussion in the text.

µ
+

µ
≠

æ X,
Ô

s = 10 TeV ‡
incl

LO
[fb] ‡

incl

NLO
[fb] ”EW [%]

W
+

W
≠ 5.8820(2) · 101 6.11(1) · 101 +3.9(2)

ZZ 3.2730(4) · 100 3.401(4) · 100 +3.9(1)
HZ 1.22929(8) · 10≠1 1.0557(8) · 10≠1

≠14.12(7)
HH 1.31569(5) · 10≠9 42.9(4) · 10≠9 ú

W
+

W
≠
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W
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≠
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≠34.9(4)

HHZ 6.083(2) · 10≠3 2.95(3) · 10≠3
≠51.6(5)

HHH 2.3202(4) · 10≠9
≠1.0(2) · 10≠9 ú

Table 2: Total inclusive cross sections at LO and NLO with corresponding relative cor-
rection ”EW for di- and tri-boson production at

Ô
s = 10 TeV. For (*), with dominant

loop-induced contributions, we refer to remarks in the text.
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What are EW Sudakov logarithms?
QCD: virtual and real terms are separately IR divergent (  poles). In physical cross 
sections the contributions are combined and poles cancel. 

QED: same story, but I can also regularise IR divergencies via a photon-mass . So  
poles  , where  is a generic scale. 

EW: with weak interactions  and W and Z radiation are typically not taken 
into account, which is anyway IR-safe. 

Therefore, at high energies EW loops induce corrections of order 

 

where k is the number of loops and . These logs are physical. Even including 
the real radiation of W and Z, there is not the full cancellation of this kind of logarithms. 

1/ϵ

λ 1/ϵ
→ log(Q2/λ2) Q

λ → mW, mZ

−αk logn(s/m2
W)

n ≤ 2k
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Future Colliders: are EW Sudakov logarithms a 
good and robust approximation for EW 

corrections at high energies?

Currently: exact NLO EW automated for SM 
but not for BSM.

Since EW corrections are expected to be  relevant 
also for BSM, can we safely use the high-energy 

Sudakov approximation? 
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MadGraph5_aMC@NLO: EW corrections for FC
NLO EW hadron colliders: Frederix, Frixione, Hirshi, DP, Shao, Zaro ‘18

NLO EW  colliders: Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao ’22 e+e−

One-loop EW Sudakov alone: DP, Zaro ‘21

one-loop EW virtual corrections 
 =

 [Sudakov Logs  +
 constant term  +

mass-suppressed terms ]

𝒪(α)

α 𝒪(−logk(s/m2
W), k = 1,2)

𝒪(1)
𝒪(m2

W /s)

Having separately exact NLO EW and EW Sudakov logarithms it is possible to 
study the goodness of the high-energy approximation(s). SM as a test case!
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Master formula (Denner&Pozzorini)

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent

class of logarithms, while the latter involves mass ratios and ratios of invariants. The

quantity �
C consists of the collinear logarithms, originating from virtual collinear gauge

bosons from external lines and field renormalisation constants. The logarithms resulting

from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
PR. In the case of longitudinally polarised bosons the equivalences

M
...W

±
L ...

0 = M
...�

±
...

0 ,

M
...ZL...

0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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Born amplitude:

One-loop EW 
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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The only one involving 
ratios of s with other 
invariants and also 
angular dependences.

I n a n o n - s h e l l s c h e m e , t h e 
dependence on the UV regularisation 
scale cancels. No  dependence is 
left.

μr

The logs inside the  have 
always the form:

δi

M = MW, MZ, mf , λ, …

masses. In other words, if k and l are two generic external particles with momenta pk and

pl respectively, then

rkl ⌘ (pk + pl)
2
' 2pkpl � M

2
W ' M

2
H ,m

2
t ,M

2
W ,M

2
Z . (2.2)

It is interesting to note that the condition (2.2) still allows for kinematic configurations

with rkl � rk0l0 � M
2
W
, where the quantities rkl and rk0l0 represent a generic pair of the

many possible invariants that one can build with two external momenta. However, since

the required formal accuracy consists of the DL and SL in (2.1), although logarithms of

the form
↵

4⇡
log2

rkl

rk0l0
and

↵

4⇡
log

rkl

rk0l0
, (2.3)

are present at O(↵) and can be non-negligible for configurations with rkl � rk0l0 � M
2
W
,

they are not taken into account. In other words, the algorithm assummes the regime (2.2),

but large logarithms may be anyway not captured unless the condition

rkl/rk0l0 ' 1 (2.4)

is satisfied for any possible pair of rkl and rk0l0 invariants.

In fact, condition (2.4) is quite unrealistic for actual calculations in collider physics,

since cross sections are dominated precisely by regions where one or more rkl invariants tend

to be much smaller than s ⌘ r12 � M
2
W
. Indeed, the rkl are related with the invariants

entering the propagators. Even if cuts are devised in order to maximise any possible value

of rkl for a given s, the fulfilment of condition (2.4) is strictly impossible. For instance,

if (2.2) is valid, one has that min(rkl/s) < 0.5 for a 2 ! 2 process. This bound is even

tighter and tighter for a generic 2 ! n process with n growing.1

It is worth to remind the reader an important limitation of the DP algorithm. For a

given process, at least one helicity configuration of the matrix element must not be mass

suppressed, i.e., it must not vanish in the limit M2
W
/s ! 0.2 Indeed, such an assumption is

one of the hypotheses under which the algorithm has been derived. On the other hand, most

of the processes do satisfy this hypothesis, having at least one helicity configuration that is

not mass suppressed3. Moreover, thanks to the condition (2.2), helicity configurations that

are notmass suppressed are by definition also dominant in the kinematic regime considered.

The condition (2.2) also implies that processes including unstable particles and their decays

cannot be treated in this approximation if physical observables are dominated by resonant

1Finding the configuration where all invariants are large in a 2 ! n process requires the determination

of the largest possible value for the minimum angle between any two of the n final-state momenta. This is

the typical example of a mathematical problem that it is easy to define and with a solution that is far from

trivial. See for example http://neilsloane.com/packings/index.html#I.
2An equivalent formulation of this condition is that the scaling of the matrix element M with the centre-

of-mass energy
p
s must coincide with what one expects from dimensional analysis: a non mass-suppressed

helicity configuration of a matrix elements with n external legs should scale as
p
s4�n. See footnote 3 for

a counterexample.
3 Exceptions are possible, an important one is Higgs production via vector-boson fusion. Dimensional

analysis for a 2 ! 3 matrix element requires [M] = GeV�1, and for this specific process the matrix element

scales with the energy as M / MW
s .
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How large are expected to be the EW Sudakov?

lκσ

l̄κσ

qλρ

q̄λρ

A,Z

lκσ

q̄λρ

A,Z

lκσ

q̄λρ

Figure 2: Lowest-order diagrams for l̄κσl
κ
σ → q̄λρq

λ
ρ and q̄λρ l

κ
σ → q̄λρ l

κ
σ

The collinear or soft SL contributions (4.6) give

δCl̄κσ lκσqλρ q̄λρ =
∑

f
µ
τ =lκσ ,q

λ
ρ

[

3Cew
fµ lC −

1

4s2w

(

(1 + δµR)
m2

fτ

M2
W

+ δµL
m2

f−τ

M2
W

)

lYuk

+ 2Q2
fτ
lem(m2

fτ
)
]

, (6.12)

and the Yukawa contribution depends on the chiralities µ and on the masses of the
fermions fµ

τ and their isospin partners fµ
−τ .

The PR logarithms for NC processes are obtained from the renormalization of the
electric charge and the weak mixing angle in the Born amplitude (6.4). Using (5.6) and
(5.7) this gives the relative correction

δPRl̄κσ l
κ
σq

λ
ρ q̄

λ
ρ
=
[

sw
cw

bewAZ∆lκσq
λ
ρ
− bewAA

]

lPR + 2δZem
e , (6.13)

where

∆φiφk
:=

− 1
4c2w

Yφi
Yφk

+ c2w
s4w
T 3
φi
T 3
φk

Rφiφk

(6.14)

gives a chirality-dependent contribution owing to mixing-angle renormalization of (6.5),
and bewAA represents the universal contribution of electric charge renormalization.

In order to give an impression of the size of the genuine electroweak part of the
corrections, we consider the relative corrections δ

κeκf ,ew

e+e−→f̄f
to NC processes e+e− → f̄ f

with chiralities κe, κf = R or L, and give the numerical coefficients of the electroweak
logarithms for the cases f = µ, t, b. For muon-pair production we have

δRR,ew
e+e−→µ+µ− = −2.58L(s)− 5.15

(

log
t

u

)

l(s) + 0.29 lZ + 7.73 lC + 8.80 lPR,

δRL,ew
e+e−→µ+µ− = −4.96L(s)− 2.58

(

log
t

u

)

l(s) + 0.37 lZ + 14.9 lC + 8.80 lPR,

δLL,ewe+e−→µ+µ− = −7.35L(s)−
(

5.76 log
t

u
+ 13.9 log

|t|
s

)

l(s) + 0.45 lZ

+ 22.1 lC − 9.03 lPR, (6.15)

and δLR,ew
e+e−→µ+µ− = δRL,ew

e+e−→µ+µ−. For top-quark-pair production we find

δRR,ew
e+e−→t̄t = −1.86L(s) + 3.43

(

log
t

u

)

l(s) + 0.21 lZ + 5.58 lC − 10.6 lYuk + 8.80 lPR,
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of a factor of 10 is actual ly 
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Taking into account only 
DL, and not SL, is not safe 
for partonic energies up to 
10 TeV.
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NLO EW: some open questions/issues

Resummation?
When is it necessary to resum EW (Sudakov) corrections?

BSM?
What features of NLO EW corrections are universal and can be extended to 
the BSM case?

Heavy Boson Radiation (HBR)?
What should one do with Z,W radiation? Experimental set-up may impact 
the calculation result. 

PDFs or VBF with matrix elements?
If PDFs involve weak effects, weak counter terms in NLO EW corrections 
should be included. Resum logs or keep power corrections? Both?

15



Figure 2. Parton luminosities dLij/d⌧ for (a) an e+e� collider at
p
s = 3 TeV, (b) a µ+µ� collider

at
p
s = 3 TeV, (c) an e+e� collider at

p
s = 10 TeV, and (d) a µ+µ� collider at

p
s = 10 TeV. The

factorization scale is chosen as Q =
p
ŝ/2 (solid curves) and

p
ŝ (dashed curves).

3 The standard processes and jet production

3.1 EW processes

In high-energy e+e� collisions, one would expect that the leading reactions are of the QED
and electroweak nature, including Bhabha scattering e+e� ! e+e�, Compton scattering
�e ! �e, and the s-channel annihilation processes for pair production e+e� ! µ+µ�, qq̄ and
W+W� once above the threshold. While the cross sections for the annihilation processes fall
with the c.m. energy as � ⇠ ↵2/s, the t-channel processes receive the collinear enhancement.
Nevertheless, with a detector angular acceptance ✓min, the cross sections for the 2 ! 2 t-
channel processes still fall as � ⇠ ↵2/(s ✓2

min
). Going beyond the fixed-order calculations, the

potentially large collinear logarithms (log ✓2) need to be resummed, leading to the appropriate
description of the parton distribution functions (PDFs), as presented in the previous section.
As such, there will be substantial contributions coming from partonic scattering processes
initiated by those in Eq. (2.23), far below the collider c.m. energy. Throughout this work,
the partonic cross sections are calculated at the leading order with the general purpose event
generatorMadGraph5 v2.6.7 [66]. The annihilation processes with the initial-state radiation
(ISR) are calculated with Whizard v2.8.5 [67].

We first present some leading order production cross sections of typical electroweak pro-
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Direct production at high energy
, where  is a generic final state involving .  

We select direct production, with no VBF contributions.
μ+μ− ⟶ F F W, Z, t, H

We require , so that neither VBF nor PDFs other 
than  are relevant.

m(F) > 0.8 S
μ

We apply further experimentally motivated cuts for each  
particle in : 

, ,  

X, Y
F

pT(X) > 100 GeV |η(X) | < 2.44 ΔR(X, Y) > 0.4

Han, Ma, Xie ’20, ‘21

And we recombine photons with charged (also massive) 
particles. 

The  PDF in the  is peaked at 
Bjorken-x=1, therefore:
Collider partonic 

μ μ

S ≃ s

Ma, DP, Zaro ‘ 24
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For smaller  , larger 
corrections.

pT

S u d a k o v ( i n t h e 
 scheme) 

capture NLO EW 
corrections up to 
the % level.

SDKweak

If double logs are 
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, t h e 
shapes observed 
here are all arising 
from single logs.
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With such a definition of �SDKweak
, at high energies and expanding in powers of M2

W
/s

one gets that

�NLOEW
� �SDKweak

/ ↵
�
M

2
W /s

�n
with n � 0 , (3.18)

and in general, if �s!rkl is an e�cient approximation, as observed in many cases, if a given

invariant rkl is such that |rkl| ⌧ s, expanding in powers of |rkl|/s one gets

�NLOEW
� �SDKweak

/ ↵ (|rkl|/s)
n with n � 0 . (3.19)

In other words, Eqs. (3.18) and (3.19) say that if EWSL are correctly calculated, at high

energies they should correctly capture the bulk of the NLO EW corrections and only percents

e↵ects could be missed. When we study this aspect in Sec. 4 we will also introduce the

quantities �SDK0
and �SDK0

, that are analogous to �SDKweak
and �SDKweak

, respectively, but

based on the SDK0 approach. Also, we will study the impact of �s!rkl , by setting it to zero,

as in the original formulation of the DP algorithm.

At 10 TeV, but also at lower energies, the EWSL due to �DL as well as to �SL can be

very large and up to the point, as we will see in Sec. 4, that in some kinematic regimes

�SDKweak
< �100%, which implies �NLOEW

< 0. In these cases, resummation is therefore not

a procedure for improving the precision and accuracy of the predictions but for obtaining

sensible results, i.e., positive cross sections. Resummation of EWSL has already been studied

in the literature [85–87, 101–103, 163–177] and recently a detailed study on its limitations and

subtleties, considering terms up to Next-to-Leading-Logarithmic (NLL) accuracy have been

discussed in detail in Ref. [108]. Here we do not aim to reach such a precision or investigate

the resummation procedure; we want to simply asses when resummation is either desirable or

mandatory in order to obtain meaningful predictions in the case NLO EW corrections lead

to a vanishing or negative cross section. To this purpose, we define the following quantity:

�EXPEW
⌘

⇣
�LO e

�SDKweak

⌘
+ (�NLOEW

� �SDKweak
) = �NLOEW

+O(↵2)⇥ �LO. (3.20)

The r.h.s. of Eq. (3.20) says that if �EXPEW
is expanded in powers of ↵ the NLO EW prediction

is captured exactly, while beyond O(↵) the resummed tower of EWSL of order ↵n logk(s/M2
W
)

with n > 1 and k = 2n, 2n � 1 is approximated via simple exponentiation. We stress again

that we do not claim we are doing NLL resummation of EWSL. We instead want to study

when and if it is necessary this procedure, by comparing �NLOEW
with the relative corrections

induced by �EXPEW
, namely

�EXPEW
⌘

�EXPEW
� �LO

�LO
= �NLOEW

+O(↵2) . (3.21)

In the exponentiation procedure, we do not include the contributions from HBR. As it

will be manifest in Sec. 4, the e↵ects due to the HBR (real) are in general much smaller than

the one induced by the virtual loops. Thus, the resummation of such contributions is clearly

not necessary as their virtual counterpart. However, we do see a case where both NLO EW

corrections and HBR are relevant, the multi EW jet (jEW) production, for which we calculate

additional quantities.
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At 10 TeV resummation 
i s u n a v o i d a b l e f o r 
sensible predictions, and 
i t i s n e c e s s a r y f o r 
precision at 3 TeV.

Exponentiation as an 
approximation of proper 
resummation.
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Unlike ZZ,  for  also at 
10 TeV resummation is 
necessary only for 
precision.

tt̄
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Exponentiation as an 
approximation of proper 
resummation.
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What about extra radiation of Z (and H)?

We know that unlike QCD in virtual+real there is not the exact cancellation of 
logarithms. 

But a cancellation is still present, how much large? 

Is it really Heavy-Boson-Radiation (HBR) leading to  corrections?𝒪(1)

EW is the new QCD, 
 but it is not exactly as the QCD!

21



Small effects from Z and H radiation, especially in the bulk: pT(t) ≃ S /2

tt̄

Notice that in order to allow more phase space we required just   . 
Still HBR << NLO EW in absolute value.

m(F) > 0.8 S

22

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

200 500 1000
-0.5

0.0

0.5

1.0

Figure 18. The top quark pT distribution in µ
+
µ
�
! tt̄. The left (right) plot shows results at

p
S = 3

TeV (
p
S = 10 TeV). The histograms show �LO (blue), �NLOEW

(orange), the HBR contribution due to
the Z (violet) and to the H boson (brown), with (solid) or without (dashed) their recombination with
top quarks. In the inset, besides the impact of NLO EW corrections (orange), it is shown the total
HBR contribution (red) and the sum of NLO EW and HBR (black dashed). The cut m(tt̄) > 0.8

p
S

in Eq. (3.1) is imposed.

Figure 19. Same as Fig. 18, but imposing the cut m(tt̄) > 0.5
p
S, unlike as done in general, Eq. (3.1),

for the other plots in this work.

solid (dashed) lines correspond to the case “Recombination” (“No recombination”) described

in Sec. 3.1. In the first inset we show, as usual, �NLOEW
as an orange line but also �HBR (see

Eq. (3.11)) as a red line and �NLOEW+HBR (see Eq. (3.13)) as a black dashed line. It is clear
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Small effects from Z and H radiation, especially in the bulk: pT(W) ≃ S /2

It is a general pattern: radiation of heavy bosons is less important than loops!

WW

23
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Figure 21. Same as Fig. 19, but for the pT (W+) distribution in µ
+
µ
�
! W

+
W

�. Also in this case
m(W+

W
�) > 0.5

p
S.

Figure 22. Same as Fig. 21 for the m(W+
W

�) distribution in µ
+
µ
�
! W

+
W

�.

it therefore would exhibit even smaller predictions for it.

The dynamics observed for the HBR in tt̄ production is not peculiar for this process and

we show as a further example the case of WW production. In Fig. 21 we show the pT (W+)

distribution and in Fig. 22 the m(W+
W

�) distribution, both of them obtained with the cut

(3.1) replaced by m(W+
W

�) > 0.5
p
S. The WW process is very di↵erent from the tt̄ one.

At LO a t-channel diagram is present and the pT (W+) distribution is much flatter than the
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NLO EW corrections are 
flat.

Sudakov logarithms work 
very well at low pt and 
very bad at high pt.
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Sudakov may completely fail: ZHH
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For High pt of the Z boson, 
the two Higgs can have 
very small  and so small 

, recoiling against 
the Z. 

I n t h a t c o n fi g u r a t i o n , 
formally mass suppressed 
te rms  can 

b e c o m e n u m e r i c a l l y 
s i zeab le , and the DP 
algorithm fails. 

ΔR
m(HH)

∼
v

m(H1H2)

Sudakov may completely fail: ZHH
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EW Sudakov and SMEFT
NLO EW for SMEFT is challenging, Sudakov approximation would simplify the 
calculation and allow for dominant effects.

26

derivation of the DP algorithm, and one of these is particularly critical for the SMEFT
program:

“For the helicity configuration considered, in the high-energy limit, the tree-level ampli-
tude M0 must not be mass-suppressed by powers of the form (M/

p
s)

k with k > 0. In other
words, by dimensional analysis, a 2 ! n process requires that [M] = E

2�n, where E has
units of energy, and therefore

M / s
(2�n)/2

, (2.9)

with no extra (M/
p

s)
k powers.”

In the SM, there are processes where all helicity configurations are mass-suppressed,
such as Higgs Vector-Boson Fusion production, but these are exceptions: it is usually
the case that at least one helicity configuration is not mass-suppressed. At most, what
can occur is that, in a specific corner of the phase space, a mass-suppressed contribution
becomes numerically dominant, spoiling the reliability of the approximation (see Section
4.1.3 of Ref. [36]). In the SMEFT, the situation is quite the opposite: mass-suppressed
contributions are ubiquitous.

To avoid mass suppression in an amplitude featuring a single insertion of a dimension-
six operator, the amplitude must scale with energy as:

M /
s
(4�n)/2

⇤2
, (2.10)

The energy dependence in Eq. (2.10) corresponds to cases where SMEFT predictions at
dimension-six exhibit the maximal possible growth with energy. This is the case, for in-
stance, for vertices involving four fermions, directly related to the four-fermion operators
considered in this work. However, it is quite common to observe dependencies of the form:

M /
v s

(3�n)/2

⇤2
/

M
p

s
⇥

s
(4�n)/2

⇤2
, (2.11)

or even:

M /
v

2
s
(2�n)/2

⇤2
/

M
2

s
⇥

s
(4�n)/2

⇤2
, (2.12)

which are suppressed by one or two powers of M/
p

s, respectively, compared to Eq. (2.10).
The Higgs vacuum expectation value (vev) dependence in Eqs. (2.11) and (2.12) arises from
effective operators containing the Higgs doublet � when the field is not dynamical.

A simple and general example related to Eq. (2.12) occurs when an operator induces
a vertex that can be rewritten as one already present in the SM, multiplied by a coupling
modifier, with all diagrams contributing to M featuring the same number of such vertex
insertions. An instance of this is the modification of the top-quark Yukawa coupling in
tt̄H production, which corresponds to the SMEFT equivalent of the ‘kappa’ framework
widely discussed in the literature. Indeed, an SMEFT-induced modification that does not
introduce any new Lorentz structure compared to the SM must be proportional to v

2
/⇤

2

due to dimensional analysis.
The case described in Eq. (2.11) is also common. One relevant example for some of the

processes considered in this work is the tt̄g vertex induced by the top-quark chromomagnetic
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The Denner-Pozzorini algorithm work only for non-mass 
suppressed amplitude at LO = no powers of MW / S ∼ v/ S

Often in the SMEFT a vev is appearing in the Feynman rules leading at dim=6 to 
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widely discussed in the literature. Indeed, an SMEFT-induced modification that does not
introduce any new Lorentz structure compared to the SM must be proportional to v

2
/⇤

2

due to dimensional analysis.
The case described in Eq. (2.11) is also common. One relevant example for some of the

processes considered in this work is the tt̄g vertex induced by the top-quark chromomagnetic

– 7 –

This is clearly a limitation and indicates that the exact NLO EW is necessary also for 
SMEFT. However this limitation applies to those processes which are not maximally 
growing with the energy and so have less sensitivity on possible BSM dynamics.
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EW Sudakov and SMEFT: tt̄

10 Tev -collμ

Only Four-Fermion operators are considered in the study.  

Both QCD (exact) and EW  
(Sudakov )corrections are 
different for SM, SM-SMEFT 
interference, and SMEFT^2 
contributions of dim-6.

QCD and EW cancel each 
other: both are important.

K-factors can be different in SM and BSM! 

Here, i = 1, 2 [HF: perhaps use i and j for generality?] [HF: the bilinears qq, uu and dd

are allowed in the first two generation under the flavour assumption, no?] represents the
flavour of the fermion fields.

[DP: If I understand correctly there could be also operators with only Q and not q.
They are not present at LO and we ignore them at NLO. Why not saying this? ]

Top quark pair production at a muon [HF: lepton?] collider In the context of
top quark pair production at a muon collider, we consider the following two-quark-two-
lepton operators: [KM: I removed the part about neglecting lepton PDFs, as it didn’t seem
relevant, but happy to add it back if others disagree.] [CS: Moved this to the section on
MC details.]

Ote = (t�
µ
t)(ei�µei), (3.9)

Obe = (b�
µ
b)(ei�µei), (3.10)

OQe = (Q�
µ
Q)(ei�µei), (3.11)

Otl = (t�
µ
t)(li�µli), (3.12)

Obl = (b�
µ
b)(li�µli), (3.13)

O
(3)
Ql

= (Q�
µ
⌧
I
Q)(li�µ⌧

I
li), (3.14)

O
(1)
Ql

= (Q�
µ
Q)(li�µli), (3.15)

with i = 1, 2 indicating the first or second fermion generation. In line with the conventions
of Refs. [13? ], two redefinitions of the Wilson coefficients are required. These redefinitions
are applied through the following rotation and will be used in extracting our SMEFT
predictions:

C
�

Ql
= C

(1)
Ql

� C
(3)
Ql

, (3.16)

C
3
Ql

= C
(3)
Ql

. (3.17)

Drell-Yan For electron-positron pair production at the LHC, under the flavor assumption
in (3.1), we consider the following two-quark-two-lepton operators:

Oue = (ui�
µ
ui)(e�µe), (3.18)

Ode = (di�
µ
di)(e�µe), (3.19)

Oqe = (qi�
µ
qi)(e�

µ
e), (3.20)

Ou` = (ui�
µ
ui)(l�µl), (3.21)

Od` = (di�
µ
di)(l�µl), (3.22)

O
(3)
ql

= (qi�
µ
⌧
I
qi)(l�µ⌧

I
l), (3.23)

O
(1)
ql

= (qi�
µ
qi)(l�µl), (3.24)

where e and l denote the right- and left- handed first generation fermion field and as in
previous cases, i = 1, 2 indicating the first or second fermion generation. Following the
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for the tails of differential distributions.

4.3 Top-quark pair production at a muon collider

To conclude our phenomenological studies, we now consider the relevance of EW corrections
in the SMEFT within a muon collider scenario. We consider a circular muon collider
operating at

p
s = 10 TeV, and focus on top-quark pair production,

µ
+
µ
�

! tt̄. (4.3)

Our analysis is similar to the one of the LHC presented in Section 4.1, apart from the
difference in the relevant four-fermion operators, that here are of the two-muon-two-quark
type, as given in Eq. (3.5) and considering the redefinition in Eq. (3.6). The SM-only
component of this analysis has been carried out also in Ref. [36], where many more details
have been discussed.

It is important to note that in a muon collider, and in lepton colliders in general, the
partonic energy available in the centre-of-mass frame is effectively constant (up to small
effects from lepton PDFs, see e.g. the discussion in Ref. [36]). Therefore, logarithms of the
form log

2
(s/M

2
) and log(s/M

2
) are constant throughout the phase space. Only logarithms

depending explicitly on angles, such as log(�t/M
2
) or log(�t/s) are capable of inducing

an angular dependence from the Sudakov approximations.
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Figure 9. Differential distribution and corresponding K-factors for top-quark pair production in
a 10 TeV muon collider, with the same notation and structure of Fig. 5, for the operator Ot`.

Figure 9, along with the additional Figures in Appendix C.3, showcase our results for
the differential cross-section d�/dp

t

T
, for the SM and at the linear and quadratic levels for

the relevant four-fermion Wilson coefficients, with C/⇤
2

= 0.001 TeV�2. The relatively
small value of the Wilson coefficients reflects the fact that the sensitivity of this process far
exceeds that of the LHC due to the larger partonic centre-of-mass energy.

Concerning QCD corrections, we find that they are generally positive and sizeable,
with the exception of the rightmost bin, where they become negative. This behaviour is
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CONCLUSION  
- The high-energy Muon Collider can be seen as a VV collider. 

- PDFs of the muon are available both including Weak effects at LL or without them at 
NLL. Dedicated studies with comparisons with ME are necessary. 

- EW corrections are mandatory for phenomenology at a muon collider colliders, especially 
for high energies. Not only for the SM also for BSM! 

- Sudakov logs are the dominant contribution of EW corrections at high energy and they are 
a good approximation of them, but only under certain conditions. 

- Heavy-Boson Radiation has an impact, but not always so large and typically smaller 
than the virtual contributions. 

- Resummation may be mandatory for sensible results in many configurations and in 
general for precision. 

- Effects observed in the SM may be different with BSM (see SMEFT example). Still, EW 
corrections are important and dedicated studies are necessary,

28
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Calculation set up for showcasing some results
, where  is a generic final state involving  

. Thus direct production, no VBF considered.
μ+μ− ⟶ X X
W, Z, t, H, ℓ

ISR Treatment: we use the LL PDF for the muon only

where we have exploited the factorisation-scheme independence of eq. (A.3) to choose K = 0

there. Equation (A.12) is then solved for K (we denote the solution by KLO), leading to:

KLO = �[1]

LO
� �(K=0)[1] . (A.13)

When this function is used in eq. (A.7) (i.e. by setting K = KLO there), d[1] plays the

role of the compensating contribution to the partonic cross sections (eq. (A.6)) which has

been introduced in the discussion at the beginning of this appendix. We point out that

the choice of the MS factorisation scheme in the second term on the r.h.s. of eq. (A.13) is

dictated by simplicity. Still, another scheme could be chosen, but this would entail using

it in the first term on the r.h.s. of eq. (A.6), since the property of scheme independence of

the final result must be preserved.

Lest eq. (A.13) generate some misunderstanding, we stress that with LO PDFs the

definition of a factorisation scheme does not make sense. However, the framework provided

by the scheme-change functions K in the context of the FKS subtraction is very convenient

for computing the compensating contribution that allows one to obtain NLO-accurate

particle cross sections.

In order to be explicit, we now compute the KLO functions for di↵erent LO PDFs. We

write the generic functional form of the latter as follows:

�LO(z) =
exp (3�S/4 � �E�E)

� (1 + �E)
�E(1 � z)�E�1

�
1

2
�H(1 + z) + O(↵2) . (A.14)

We point out that both the O(↵2) and O(↵3) terms on the r.h.s. of eq. (A.14) are explicitly

known [19–21, 23], but are not necessary to obtain the results that follow. Any choice of

the parameters �E , �S , and �H in eq. (A.14) is customarily (and unfortunately) called a

“scheme”; here, we shall consider the following ones:

• Beta scheme:

�E = �S = �H = e2e� . (A.15)

• Eta scheme:

�E = �S = e2e� , �H = e2e⌘ . (A.16)

• Mixed scheme:

�E = e2e� , �S = �H = e2e⌘ . (A.17)

• Collinear scheme:

�E = �S = �H = e2e⌘0 . (A.18)

• Running scheme:

�E = �S = �H = 2e2et . (A.19)

We have used the quantities:

⌘ =
↵

⇡
log

µ2

m2
, � =

↵

⇡

✓
log

µ2

m2
� 1

◆
, (A.20)

⌘0 =
↵

⇡
log

µ2

µ2
0

, t =
1

2⇡b0
log

↵(µ)

↵(µ0)
=

↵

2⇡
log

µ2

µ2
0

+ O(↵2) . (A.21)
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where we have exploited the factorisation-scheme independence of eq. (A.3) to choose K = 0

there. Equation (A.12) is then solved for K (we denote the solution by KLO), leading to:

KLO = �[1]

LO
� �(K=0)[1] . (A.13)

When this function is used in eq. (A.7) (i.e. by setting K = KLO there), d[1] plays the
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We point out that both the O(↵2) and O(↵3) terms on the r.h.s. of eq. (A.14) are explicitly

known [19–21, 23], but are not necessary to obtain the results that follow. Any choice of

the parameters �E , �S , and �H in eq. (A.14) is customarily (and unfortunately) called a

“scheme”; here, we shall consider the following ones:

• Beta scheme:

�E = �S = �H = e2e� . (A.15)

• Eta scheme:

�E = �S = e2e� , �H = e2e⌘ . (A.16)

• Mixed scheme:

�E = e2e� , �S = �H = e2e⌘ . (A.17)

• Collinear scheme:

�E = �S = �H = e2e⌘0 . (A.18)

• Running scheme:

�E = �S = �H = 2e2et . (A.19)
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⇡
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m2
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✓
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↵

⇡
log

µ2

µ2
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↵
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where we have exploited the factorisation-scheme independence of eq. (A.3) to choose K = 0

there. Equation (A.12) is then solved for K (we denote the solution by KLO), leading to:
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When this function is used in eq. (A.7) (i.e. by setting K = KLO there), d[1] plays the
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Lest eq. (A.13) generate some misunderstanding, we stress that with LO PDFs the

definition of a factorisation scheme does not make sense. However, the framework provided

by the scheme-change functions K in the context of the FKS subtraction is very convenient

for computing the compensating contribution that allows one to obtain NLO-accurate

particle cross sections.

In order to be explicit, we now compute the KLO functions for di↵erent LO PDFs. We

write the generic functional form of the latter as follows:
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� (1 + �E)
�E(1 � z)�E�1

�
1

2
�H(1 + z) + O(↵2) . (A.14)

We point out that both the O(↵2) and O(↵3) terms on the r.h.s. of eq. (A.14) are explicitly

known [19–21, 23], but are not necessary to obtain the results that follow. Any choice of

the parameters �E , �S , and �H in eq. (A.14) is customarily (and unfortunately) called a

“scheme”; here, we shall consider the following ones:

• Beta scheme:

�E = �S = �H = e2e� . (A.15)

• Eta scheme:

�E = �S = e2e� , �H = e2e⌘ . (A.16)

• Mixed scheme:

�E = e2e� , �S = �H = e2e⌘ . (A.17)

• Collinear scheme:

�E = �S = �H = e2e⌘0 . (A.18)

• Running scheme:

�E = �S = �H = 2e2et . (A.19)
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log
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For precision physics the scheme adopted and the NLL accuracy 
(Frixione, Stagnitto ’23) are mandatory.
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Figure 3: As in fig. 2, for tt̄ production in the full SM (left panel) and in QED (right

panel).

There are a couple of immediate conclusions that can be drawn from the inspection of

the figures. Firstly, the relative impact of the NLL contributions can be much larger than

the typical precision targets at future e+e� colliders, and depends on both the process

and the kinematical region one considers (since the histograms are not flat); and, secondly,

the dependence on the renormalisation scheme is significant (conversely, we shall show in

sect. 6.3 that the one stemming from the factorisation scheme is much smaller, which is the

reason why we could concentrate here on �-scheme results). As far as the former aspect

is concerned, it is representative of a process- and observable-dependent pattern27 that

renders it impossible to account for NLL PDF e↵ects in some “universal” manner (e.g., with

the multiplication of LL-accurate results by an overall factor). Thus, the key conclusion

is the following: while the assessment of the relevance of NLL PDF e↵ects depends on

the specific applications one pursues (in particular, the observable one considers and the

accuracy with which this is expected to be determined experimentally), one should expect

them to be phenomenologically important in high-energy e+e� collisions, and thus regard

NLL-accurate PDFs as the default choice for precision studies in that context.

6.3 Factorisation- and renormalisation-scheme dependences

In this section we consider the dependence of the observable of eq. (6.4) upon the choice

of the factorisation and the renormalisation schemes. We first point out that these two

dependencies may be seen as being of a di↵erent nature, in spite of the fact that they both

induce di↵erences that are beyond the accuracy one is working at (thus, in our case, the

di↵erences are of NNLO). In particular, it is often the case that a definite renormalisation

scheme is chosen because it is thought to be particularly apt at correctly capturing dom-

inant e↵ects of perturbative orders higher than those included in the computation one is

performing (e.g., the Gµ scheme for processes that involve W ’s and Z’s, and no photons).

This viewpoint is of course legitimate, but its validity diminishes with the ability to carry

27For each process, we have computed several di↵erential and cumulative observables, and studied them

in the same manner as what is done here for that of eq. (6.4).
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 production at 100 TeV FCC-hhe+e−

Orange: NLO EW, (dotted: NLO EW no  PDF) 
Green = , Red =  
Dashed: standard approach for amplitudes. 
Solid: our formulation (more angular information) 
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Reference Prediction: 
Red-solid line

We use the PDF set NNPDF3.1 [132, 133] in particular the NNPDF31_nlo_as_0118_luxqed

distributions, which include NLO QED evolution and especially a photon density following

the LUXqed parameterisation [134, 135]. The renormalisation (µR) and factorisation (µF )

scales are both set equal to the partonic center-of-mass energy
p
s. This set-up is common

with all the other processes discussed in this section.

In the Drell-Yan simulation the following cuts are imposed on the dressed leptons:

pT (`
±) > 200 GeV , |⌘(`±)| < 2.5 , m(`+, `�) > 400 GeV , �R(`+, `�) > 0.5 .

(7.2)

On the one hand, these cuts are imposed in order to resemble realistic experimental cuts for

high-energy objects. On the other hand, they avoid additional logarithmic enhancements

from collinear splittings appearing in the real radiation processes or even at the Born.

In Fig. 5 we show di↵erential distributions for the transverse momentum of the electron,

pT (`�), for the transverse momentum of the leading (trailing) lepton, pT (`1) (pT (`2)), and

for the dilepton invariant mass m(`+, `�).

The layout of each plot in Fig. 5, and in general of each plot in this section21, is

the following. In the main panel we show the di↵erential distribution at LO (solid blue

line) and NLO EW (solid orange line) accuracy, where the exact O(↵) corrections are

taken into account. If the NLO EW prediction turns negative, meaning that NLO EW

corrections are negative and larger than the LO in absolute value, the curve corresponds

to its absolute value and is drawn as dashed. In the first inset we show the relative

impact of EW corrections, �X ⌘ X/LO� 1, in di↵erent approximations. The solid orange

line corresponds to the one in the main panel with the same style, i.e. the exact O(↵)

corrections (NLO EW), and the dotted orange line corresponds to the same case where the

photon PDF has been set equal to zero (NLO EW, no �). The other curves correspond

to results in LA, with di↵erent assumptions. First, the solid curves include the SSCs!rkl

contribution (SDKX , s ! rkl), while the dashed ones do not (SDKX). Second, the green

lines are obtained by simply omitting the QED and IR-sensitive terms, which are dubbed

as “em” in the DP algorithm. This is analogous to the approach of e.g. Refs. [79, 91]

and dubbed here as SDK0. The red lines are instead obtained by completely removing

the QED contribution, namely, following the procedure described in Sec. 4.1, the SDKweak

approach. Both the SDK0 and SDKweak predictions, similarly to the NLO EW ones in

this section, include also the LO contribution. Needless to say, the closest a line is to

the solid orange one, the better is the approximation of the exact NLO EW corrections.

Therefore, in order to better judge this characteristic, in the second inset we zoom on the

lines by simply plotting for each line in the first inset the di↵erence with the solid orange

one. Clearly, the reference prediction in LA is the solid red line, which both includes the

SSCs!rkl contribution and is obtained via the SDKweak approach.

dressed lepton pair can originate from a configuration where the bare leptons have m(`+bare, `
�
bare) ' MZ and

one of them is recombined with a hard photon, leading to m(`+, `�) � MZ and therefore passing the cuts.

This configuration is not associated to any enhancement and therefore very rare, but in the on-shell scheme

it leads to the evaluation of a resonant Z propagator with zero width and therefore it is inconsistent.
21An important di↵erence is present for Figs. 7 and 8 and explained later in the text.
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ZZZ production at 100 TeV FCC-hh

Orange: NLO EW, (dotted: NLO EW no  PDF) 
Green = , Red =  
Dashed: standard approach for amplitudes. 
Solid: our formulation (more angular information) 

γ
SDK0 SDKweak

Reference Prediction: 
Red-solid line

 and  not so relevant for neutral 
final state).

Only the solid lines, having more angular 
information, correctly capture NLO EW.

One cannot forget terms as 

SDKweak SDK0

log2[m2(Z2, Z3)/s]

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the
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Derivation of LSC and SSC

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)

5

  

2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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The relation  is used in all logs, unless they multiply .rkl = rk′ l′ 
= s l(s)
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2
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2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms
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Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑
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∑
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∑

Va=A,Z,W±
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(2π)4
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l
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l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !
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real part of the loop-tree interference is considered. However, this is no longer the case
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Our approach:    
irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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          in the expressionsrkl = rk′ l′ 
= s

The conceptual derivation 
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dependencies are taken 
into account.

s = rkl

Previously omitted
imaginary term

  
New angular 

dependences via ratios 
among invariants

LSC SSC

DP, Zaro ‘21

33



more on Z and H radiation
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EW jets

It is a general pattern: radiation of heavy bosons is less important than loops!
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3.2.3 Quantities relevant to EW jets

The definition of EW jets has been provided in Sec. 3.1, and in Sec. 4.3.2 we will use it

for studying inclusive EW-dijet production, µ
+
µ
�

! 2jEW(+X). For such a process we

introduce additional quantities. First of all,

�X(2jEW) ⌘ �X(2V ) for X = LO, NLO EW, SDKweak , (3.22)

which means that the LO prediction, �LO(2jEW), is given by the prediction for the production

of 2V = W
+
W

�
, ZZ at LO and applying the clustering for obtaining the EW jets. Similar

considerations apply for X = NLO EW, SDKweak. It is also clear that

�HBR(2jEW) ⌘ �LO(3V ) , (3.23)

�NLOEW+HBR(2jEW) ⌘ �NLOEW
(2V ) + �LO(3V ) , (3.24)

and in addition we also define:

�nNLOEW+HBRNLO
(2jEW) ⌘ �LO(2V )

 
1 + �NLOEW

+
�
2
SDKweak

2

!

+ �NLOEW
(3V ) + �LO(4V ) . (3.25)

The prediction �NLOEW+HBR takes into account all the corrections of O(↵): the NLO EW

corrections to 2V and HBR, meaning 3V production at LO. The prediction �nNLOEW+HBRNLO

instead takes into account all the corrections of O(↵), as �NLOEW+HBR, and those of O(↵2),

where the two-loop corrections to 2V are approximated via their Sudakov component in the

SDKweak scheme;14 it corresponds to �NLOEW+HBR plus NLO EW corrections to HBR, double

HBR, and the approximation of the two-loop corrections that we have just mentioned.

For all these quantities we understand, consistently with the notation already used before:

�X ⌘
�X � �LO

�LO
. (3.26)

One should notice the exception of the case of HBR, Eq. (3.11).

3.3 List of aspects investigated in this work

In this section, we list the di↵erent aspects that we want to investigate, which are all related

to EW corrections to direct-production process at high-energy muon colliders.

1. First of all we want to give an overview of how large EW corrections can be, especially

when di↵erential distributions are considered. Our work considers only SM processes

and therefore total rates can be very small for some of them. However, the features of

EW corrections that we will discuss in Sec. 4 are not specific to the SM itself but can

be extended, in principle, to any BSM theory involving EW-charged particles. Thus,

we will focus on relative corrections rather than the rates. The SM can be considered

as a test case for a more general EW-interacting theory.

14The first line of Eq. (3.25) corresponds to �EXPEW
truncated at O(↵2) w.r.t. LO prediction.
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3.2.3 Quantities relevant to EW jets
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W

�
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�NLOEW+HBR(2jEW) ⌘ �NLOEW
(2V ) + �LO(3V ) , (3.24)
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�nNLOEW+HBRNLO
(2jEW) ⌘ �LO(2V )
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�
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SDKweak
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Figure 23. The pT (jEW,1) distribution in µ
+
µ
�

! 2jEW. The left (right) plot shows results at
p
S = 3 TeV (

p
S = 10 TeV). The histograms show LO (dashed) and NLO (solid predictions) for

W
+
W

� (green), ZZ (blue), 2V = W
+
W

� + ZZ (orange), 3V (red), and 4V (violet, only at the
LO). In the second inset, the quantities �nNLOEW+HBRNLO

and �NLOEW+HBR are shown respectively as
black-solid and black-dashed lines. These quantities are defined by Eq. (3.26) in terms of respectively
Eq. (3.25) and Eq. (3.24). The solid grey line shows the quantity �

2
SDKweak

/2, which enters only in
�nNLOEW+HBRNLO

.

In the plot in Fig. 23 we show the transverse momentum distribution of the hardest jEW,

pT (jEW,1), while in Fig. 24 the same distribution for the second-hardest jEW, pT (jEW,2). The

plots have a di↵erent colour code with respect to those shown in the previous sections and we

describe them in the following. In the main panel we show the contribution from the WW

final state (green) and ZZ (blue) which once summed leads to the 2V prediction (orange).

The total 3V contribution is in red and the 4V one in violet. All LO contributions are shown

as dashed lines while those at NLOEW accuracy as solid lines.

In the first inset we plot the quantities

�X(2V ) ⌘
�X(2V )� �LO(2V )

�LO(2V )
. (4.2)

�X(3V ) ⌘
�X(3V )

�LO(2V )
(4.3)

�X(4V ) ⌘
�X(4V )

�LO(2V )
(4.4)

where �LO(2V ) corresponds to the LO predictions for 2jEW production. Similarly, �NLOEW
(2V )

– 43 –
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Cross-sections: our approach.
FOR WHAT EW SUDAKOV ARE USEFUL?
For providing a very good approximation of NLO EW in the high-energy limit.  

HOW SHOULD ONE PERFORM THE CALCULATION IN THE HIGH-ENERGY LIMIT?
Photons have to be always clustered with massless charged particle for IR-safety reasons. But from 
an experimental point of view, at high energy also clustering tops and W bosons with photons is 
very reasonable, either if you imagine to tag heavy object directly or via their massless decay products.

The QED Logs, involving  and  (or ), cancel against their real-emission 
counterparts and PDF counterterms. The only one surviving are those from tops in vacuum 
polarisation for external (not tagged) photons, both in the initial and final state:

s λ2 Q2

SDKweak
Almost all the contributions of QED are removed 

(e.g. , ), 
but NOT in the parameter renormalisation .

CEW(k) → CEW(k) − Q2
k Q2

k = 0
δPR

DP, Zaro ‘21
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Organisation of the logs in the algorithm

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The full EW is present between  and , while only QED is present between  and .s M2
W M2

W λ2

So the QED contribution is split between the intervals . But the division at 
 is simply determined by convenience, in parallel with the weak case. In this case  is 

just a technical parameter and not a physical quantity. 

(s, M2
W) + (M2

W, λ2)
M2

W M2
W
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Cross-sections: standard approach in the literature

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The logarithms between  and the infrared scale are simply removed. Equivalently in the 
case of DR, logarithms involving  and the IR regulator . 

Easy, but not very well motivated.

We will denote in the following this approach as .

M2
W

M2
W Q2

SDK0

SDK0

38


