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From the LHC to a future collider

• MonteCarlo generators are fundamental 
workhorses for collider physics

• Assess the reach of new machines

• Extract results and compare theory vs data


• Lepton colliders demand <0.1% precision 

• Prominent role of EW corrections

• NLO mandatory, often not enough


• In general, two kind of tools:

• Process specific, with the highest achievable 

accuracy

• General-purpose (mostly relying on 

automatic techniques), with a satisfactory 
accuracy 
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What I’ll present focuses on the latter, 

but may be relevant also for the former
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Lepton collisions

(In a collinear-factiorisation inspired picture)

Beam-level (physical) cross section

tions allow experimental studies with the desired accuracy to support measurements of the W mass
from a threshold scan with a precision of 1-2 MeV or below.

In summary, the main ongoing work inside WHIZARD is the completion of fully automatized
NLO SM corrections (QCD/EW/mixed) for any kind of collider, for arbirtrary differential distribu-
tions at fixed order, and also matched to QCD/QED/EW parton showers.
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6 Lepton collisions in MadGraph5_aMC@NLO

Giovanni Stagnitto, Marco Zaro

In this Section we will report on the functionalities of MADGRAPH5_AMC@NLO related to the
simulation of lepton colliders. We remind the reader that MADGRAPH5_AMC@NLO [118, 119]
is a computer program for the automatic computation of LO- and NLO-accurate cross sections
(the latter both in the QCD and in the EW coupling) for scattering processes. While MAD-
GRAPH5_AMC@NLO is widely used in the context of LHC simulations, it can also be employed for
lepton collisions. Indeed, many results for leptonic collisions where already provided in Ref. [118],
including NLO-QCD corrections but limited to the case of a strictly fixed centre-of-mass energy.
The extension to the case with Initial-State Radiation (ISR) at leading logarithmic accuracy (LL)
and possibly beamstrahlung is more recent, and has documented in Ref. [120]. Developments are in
progress for the inclusion of NLO EW corrections to the short distance cross section and a next-to-
leading logarithmic (NLL) accurate treatment of ISR, allowing for the computation of NLL+NLO
observables. Here we will briefly review the changes in the code which are necessary in order to
deal with leptonic collisions, following the discussion in Ref. [120], and expanding it to the case
of NLL ISR and NLO EW corrections. An in-depth phenomenological study of NLL+NLO effects
on physical observables will be the subject of a forthcoming paper [121].

Following the notation of Refs. [38, 120], if we start from two colliding beams of electrons
and positrons with momenta Pe± , and we define the corresponding cross-section for the reaction

e+(Pe+)e�(Pe�)! X (6.1)

as dSe+e� , the following steps happen:

1. A pair (k, l) of particles emerge from beam dynamics, which carry a fraction y± of longit-
udinal momentum of the two incoming beams. The beam-level cross section factorises as a
convolution of particle-level cross section dskl and the beamstrahlung function Bkl

dSe+e� (Pe+ ,Pe�) = Â
kl

Z
dy+dy� Bkl(y+,y�)dskl(y+Pe+ ,y�Pe�) . (6.2)

– 18 –

2. Particles k, l undergo a hard collision, where ISR effects are included by writing dskl as
yet another convolution of a parton-level cross section dŝi j and QED parton distribution
functions (PDFs) Gi/k

dskl(pk, pl) = Â
i j

Z
dz+dz+ Gi/k(z+,µ,m)G j/l(z�,µ,m)dŝi j(z+pk,z�pl,µ) , (6.3)

where z± are the longitudinal momentum fractions carried by the partons w.r.t. their mother
particle, µ is the factorisation scale and m the lepton mass, which is neglected in the parton-
level cross section. In the following, we will mostly focus on the PDFs relevant to an incom-
ing unpolarised electron particle, Gi/e�; the PDFs of an incoming positron are trivially related
by charge conjugation. We will refer to Ge±/e± as electron PDF, and to Gg/e± as photon PDF.

Eq. (6.3) recalls the standard QCD factorisation formula at hadron colliders. However, at vari-
ance with hadronic PDFs, QED PDFs are entirely calculable with perturbative techniques. Their
role is to resum to all order the large contributions stemming from photon collinear emissions in the
initial state, which appear as logarithms of some hard physical scale E over the mass of the electron
m, logk(E2/m2). The collinear terms present in the PDFs are universal, and their resummation by
means of QED DGLAP evolution equations [39–42] (see Ref. [122] for explicit expressions of the
two-loop QED splitting kernels) is a process-independent procedure. Let us stress that within the
PDF formalism, we are taking into account only the logarithms related to (hard or soft) collinear
radiation off initial-state particles. In principle, by means of fragmentation functions (FFs), which
are the time-like analogue of PDFs, it would be possible to also account for collinear radiation
off final-state particles (as it is usually done in QCD when heavy quarks are present in the final
state [123]). Soft logarithms and interference terms can instead be resummed by means of other
resummation techniques [45, 64, 124–126], which are usually tailored to specific class of processes
though.

In practice, both beamstrahlung and ISR effects are included in MADGRAPH5_AMC@NLO
by means of the definition of suitable partonic densities. The relevant formulas are reported in
Sec. 3-5 of Ref. [120] and will not be repeated here. As for ISR, the current public release of
MADGRAPH5_AMC@NLO includes, for lepton collisions, the long-known LL analytical expres-
sions [43, 127, 128], which resum the tower of (a log(E2/m2))k terms. Such LL analytical ex-
pressions are built out of an additive matching between a recursive solution up to some order in
a, typically O(a3), and an all-order a solution valid in the region z ! 1 (where the bulk of the
cross section is), as usually done in the literature, see e.g. [129]. Note that, in the case of NLO EW
(QED) corrections to the short-distance cross section with LL PDFs, a scheme of change term is
needed in the short-distance cross section in order to avoid overcounting. The peculiar structure of
the PDFs, which feature an integrable divergence for z ! 1, requires a suitable re-parameterization
of the phase-space, as described in Ref. [120].

Recently in Ref. [37], QED PDFs have been extended to NLL accuracy i.e. resumming also
the a(a log(E2/m2))k terms; they have been obtained by solving the NLO evolution equations with
NLO initial conditions (derived in Ref. [38]) by means of both analytical and numerical methods.
By working at the NLL accuracy, the mixing between the electron/positron (and possibly other fer-
mion families) and the photon PDFs is taken into account. Note that NLL PDFs not only provide

– 19 –
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• Beam-beam interactions (aka beamstrahlung) are 
machine-dependent collective effects. Can be fitted with ad-hoc 
tools (e.g. GuineaPig, Circe, …). Less important for circular 
colliders than for linear ones


• ISR is universal (like hadronic PDFs), and can be computed 
perturbatively (unlike hadronic PDFs)


• The partonic cross section is the usual one. Because of the 
form of PDFs, needs new phase-space and momentum mappings 
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Lepton collisions
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Beamstrahlung

• Description of beam-beam interactions outside the scope of 
MC generators. Specific tools exist


• E.g.: simulated beamstrahlung with GuineaPig, and fit the spectra 
(energy spread functions) with Circe 
Circe: Ohl, hep-ph/9607454; GuineaPig: Schulte, 1998

• Specific to collider parameters

• Effects are usually tabulated as grids, pre-convoluted with PDFs

• Need special care when matching with parton-shower:

• The PS enters between ISR and beamstrahlung

5
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ISR

6

6

Yennie-Frautschi-Suura (YFS): 
priority to soft logarithms

Collinear factorisation: 
priority to collinear logarithms

GRIBOV V. N. and LIPATOV L. N. 
Sow. J . Nucl. Phys., 15 (1972) 438

(η = 2α
π

log Q2

m2 )
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GRIBOV V. N. and LIPATOV L. N. 
Sow. J . Nucl. Phys., 15 (1972) 438

(η = 2α
π

log Q2

m2 ) ~0.05 for Q=100 GeV

<latexit sha1_base64="Zg4uWHJOLRmdAN1CG9NS7a/qkJ4=">AAACCnicbVC5TsNAEF2HK4TLQEmzECGFIsEOCCgjaCiDRA4pDtF6M05WWR/srhGR5ZqGX6GhACFavoCOv2FzFBB40khP781oZp4bcSaVZX0Zmbn5hcWl7HJuZXVtfcPc3KrLMBYUajTkoWi6RAJnAdQUUxyakQDiuxwa7uBi5DfuQEgWBtdqGEHbJ72AeYwSpaWOuetI5sMtdjxBaGKnScEu3h/cJHbRAUUOy2naMfNWyRoD/yX2lOTRFNWO+el0Qxr7ECjKiZQt24pUOyFCMcohzTmxhIjQAelBS9OA+CDbyfiVFO9rpYu9UOgKFB6rPycS4ks59F3d6RPVl7PeSPzPa8XKO2snLIhiBQGdLPJijlWIR7ngLhNAFR9qQqhg+lZM+0SHonR6OR2CPfvyX1Ivl+yT0tHVcb5yPo0ji3bQHiogG52iCrpEVVRDFD2gJ/SCXo1H49l4M94nrRljOrONfsH4+AaDUZmD</latexit>

' 1

(1� x)1�⌘/2

• Hadronic PDFs vanish at large x 
(divergence at small-x avoided by cuts)


• Leptonic PDFs diverge (but are 
integrable) at large x


• While leptonic PDFs have been 
substantially improved since 1972, the 
asymptotic behaviour is unchanged


• A different phase space mapping is 
required wrt pp collisions

at LL:
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ISR for e+e-: 
State of the art

• Recently, the ISR structure function was obtained at NLL 
accuracy1. This required the NLO initial conditions2

• A new factorisation scheme (alternative to MSbar) has been 
proposed (Δ-scheme)3, which improves the behaviour of the 
evolved PDF at large x


• PDFs available with α in three ren. scheme: Gμ, α(mZ), MSbar 
(with proper treatment of all thresholds)4. All available within 
eMELA5


• Photon and e+-in-e- densities available as well

7

1 Bertone, Cacciari, Frixione, Stagnitto, 1911.12040
2 Frixione 1909.03886
3 Frixione 2105.06688
4 Bertone, Cacciari, Frixione, Stagnitto, MZ, Zhao 2207.03265 

5 https://github.com/gstagnit/eMELA

https://arxiv.org/abs/1911.12040
https://arxiv.org/abs/1909.03886
https://arxiv.org/abs/2105.06688
https://arxiv.org/abs/2207.03265
https://github.com/gstagnit/eMELA
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ISR at NLL

Bertone, Cacciari, Frixione, Stagnitto, MZ, Zhao 2207.03265 


• NLL-MSbar seems very different from LL, while NLL-Δ is closer


• Differences between NLL-MSbar and NLL-Δ are 10-50% at large x


• Physical cross sections (NLO-accurate) will display much smaller 
discrepancies

8
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Figure 4: Ratios of NLL MS PDFs (solid curves) and LL PDFs (dashed curves) over
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out computations of increasingly-high perturbative accuracy; in such a situation, it is more

sensible to regard the di↵erences in predictions stemming from di↵erent renormalisation

schemes as a theoretical systematics. Conversely, one observes that a factorisation scheme

is not defined in relation to some physical property, as is the case for (most of) the renor-

malisation scheme(s): it is a purely theoretical artifact, in that it defines the finite part of

the residue in the subtraction of a collinear singularity. As such, the di↵erences between

the predictions obtained with di↵erent factorisation schemes are almost by definition a the-

oretical systematics, although some schemes can be better than others in terms of giving

predictions more in line with higher order calculations28. And yet, when increasing the

perturbative accuracy of the computation such a systematics may become the dominant

source of uncertainty, and one may want to find theoretical motivations for a definite choice

of the factorisation scheme. While we do not adopt this attitude here (also in view of the

fact that we work at the NLO), we point out that the MS and � schemes are dramatically

di↵erent in the z ' 1 (i.e. the soft) region, and this has some practical consequences.

In order to further the previous point, we must bear in mind that while physical

predictions are factorisation-scheme dependent only beyond the perturbative accuracy one

is working at, this is not true for either the PDFs or the short-distance cross sections. In

the case of the PDFs this is apparent from fig. 4. There, we show the ratios of the NLL

PDFs computed in the MS factorisation scheme over those computed in the � scheme –

for both, the MS renormalisation scheme is adopted to be definite (the results in other

renormalisation schemes are totally analogous). The results for the electron (red solid

curves overlaid with boxes) and photon (blue solid curves overlaid with triangles) PDFs

are presented, in the small- and intermediate z region (left panel), as well as for z ' 1

28In the language of the FKS subtraction that is used here, where factorisation schemes are defined by

the choices of the Kij(z) functions, it is particularly easy to see how the cancellation of the e↵ects they

induce occurs in perturbation theory – see e.g. eq. (B.2) and the comments that follow it.
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ISR for μ+μ-

• In principle, a muon is just a heavier electron, 
so most of what has been said so far should 
apply


• However, muon colliders can reach far higher 
energy, lower values of x are probed

• The photon, and even quarks and gluons are 

important in this region


• Muon density including all massless/light 
particles available in eMELA at LL 
(QED+QCD), WIP at NLL (+small x)  
Frixione, Stagnitto, 2309.07516, +Bonvini WIP 


• In principle, one can also treat W/Z as massless 
parsons in those regions where mW≪ŝ 
Han, Ma, Xe, 2007.14300,  
Garosi, Marzocca, Trifinopoulos, 2303.16964 (LePDF) 
See Davide Pagani’s talk

9

both the analytical and the truncated approach they are negligible for the muon, photon,

and lepton contributions. They remain relatively small in the case of the quarks and the

gluon; however, what one can see there is that the uncertainties of the truncated approach

are about a factor of ten larger than those stemming from the analytical approach, which

is an example of the general features discussed at the beginning of sect. 4.
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Figure 2: PDFs at µ = 30 GeV. The contents of the two panels are identical, the only

di↵erence between the two being the variable on the x axis. Apart from the case of µ+, the

antifermion PDFs coincide with those of the corresponding fermions, and are not shown.

Also not shown is the strange PDF, since it coincides with that of the down. Finally, on

these scales the µ+ and e� results cannot be distinguished from one another.

In fig. 2 we show the PDFs of all partons at µ = 30 GeV (as a representative scale

relevant to the production of a small-mass system) as a function of either log10 z (left panel)

or z (right panel). The PDFs are obtained with the analytical low-energy approach, and

correspond to the default low-energy parameters. The relative impact of these PDFs is

presented in fig. 3, where we plot the ratios of the individual PDFs over the sum of all

of them. The plots show clearly the dominance of the muon PDF as z ! 1. Conversely,

as one moves towards z = 0, all of the other partons become increasingly important (bar

for the non-muon leptons) – still, the muon PDF remains larger than the photon PDF for

z & 0.5, larger than the gluon PDF for z & 0.017, and larger than the PDF of the largest

among the quarks (the up quark) for z & 0.004. At small z the largest PDF is that of the

photon; however, the gluon has the steepest slope of all partons, and in particular its PDF

increases faster than the photon one for z ! 0. The cumulative impact of the quark PDFs

is also non negligible in that region. These facts, coupled with the trivial observation that

short-distance cross sections mediated by strong interactions are much larger that those

stemming from electroweak interactions, imply that a muon collider constitutes a very

– 15 –
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Figure 4. (Top panel): Sample of PDFs evaluated at a scale Q = 3 TeV for a muon. For this plot
we sum over polarisations and q represents the sum of all quark PDFs except for the top. (Bottom
panel): PDFs for the scalar degrees of freedom in the SM. Solid (dashed) lines are evaluated at a
scale of Q = 3 (30) TeV.

the dominant contribution from the ultra-collinear splitting off a muon. On the other hand,
the ultra-collinear contribution to the W

+
L PDF comes mostly from the muon neutrino,

which has a PDF suppressed with respect to the muon one. Therefore, other contributions
from standard splitting functions (e.g. from P

h
hV and P

V
hh) are sizeable and induce a scale

dependence. In case of the Higgs boson there is no ultra-collinear contribution from massless
fermions, so one does not expect ultra-collinear terms to dominate and indeed its PDF
shows a large scale dependence.

The fraction of the momentum carried by each of the partonic components is given by

– 13 –
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General-purpose MCs 

for lepton colliders
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Sherpa3 at lepton colliders 
Bothmann et al, 2410.22148; Krauss et al, 2203.10948

• Treatment of polarised beams


• Photon resummation available both with PDFs (LL) and with YSF


• EW corrections for lepton collider in the future


• Photoproduction with the EPA Hoche et al, 2310.18674

• QED effects in parton shower, including γ→ff ̄Flower et al, 2210.07007
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Results with Sherpa

Krauss et al, 2203.10948
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Figure 10: Total cross section for e+e� ! HX at the Born level (dashed) and with ISR (solid) corrections
included.

explicitly created and the treatment of their phase space is exact.

The YFS approach was originally implemented in process-specific Monte Carlo tools [223–226] that
were predominantly used for the LEP physics programme and were crucial for its electroweak precision
measurements [227]. Despite these tools still being available and being further developed, having a process-
independent Monte Carlo event generator based on the YFS formalism is highly desirable. Hence, while
such a YFS-based implementation for QED FSR for arbitrary final states was available for some time, see
Sec. 2.6.1, this framework has been extended to include QED ISR for initial-state leptons in a process-
independent fashion in [38]. Therein, corrections related to hard collinear photon emissions are available
in a leading-logarithmic formulation up to O(↵3L3). An automated calculation of the complete fixed-order
corrections at full NLO EW accuracy is envisioned for future SHERPA versions. As an example application,
we present a number of Higgs production cross sections in Fig. 10 as a function of the collider centre-of-mass
energy.

2.7 Multi-parton interactions

Multi-parton interactions (MPIs) have long been established as an important physics model for collider
event simulation which ensures that particle production, and its scaling behaviour with the hadronic centre-
of-mass energy, are correctly described [228]. The SHERPA model for this e↵ect builds on the original
Sjöstrand–van Zijl approach [228]. While newer versions of PYTHIA integrate the secondary scatterings
into the initial-state parton evolution [229, 230], and add final-state parton showering as well as hadronic
rescattering e↵ects [231], SHERPA treats the scatterings as independent, apart from momentum-conserving
and colour reconnection e↵ects. The perturbatively computable (regularised) parton-level cross section is
normalised to the non-di↵ractive hadron-level cross section and exponentiated in an expression similar to a
Sudakov factor. This expression is used to generate a sequence of secondary interactions, which individually
undergo parton-shower evolution in the initial and final states. The production of the secondary interactions
is integrated into the multijet merging algorithm used to describe the hard scattering [232].

As a new feature in version 3, SHERPA is now capable of modelling multiple scattering e↵ects in processes
with resolved photons. It is also now possible to veto additional scatters between beam particles, which
is useful in measurements of large rapidity gaps and di↵ractive jet production [163], for example. In this
way, survival probabilities can be computed as the probability for no further scatters to occur, akin to their
estimation in [233–235].

2.8 Hadronisation

The transition from the region where QCD partons are asymptotically free to the regime where they are
bound into hadrons is the traditional domain of Monte Carlo event generators. This region cannot be
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ISR+FSR up to O
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. In the first subplot we show the deviation from the KKMC

generator at the same accuracy. In the second subplot, we compare the O
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against the pure resummed prediction. For the resummation only result all higher–-

order �̃ have been set to zero and only �̃0
0 =

��M0
0

��2 has been kept.
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Extracting all real-emission soft photon divergences through eikonal factors, the squared matrix element for
any n� real emissions, summed over all possible virtual photon corrections, can be written as

✓
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n�X
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S̃(ki) + �̃n� (k1, . . . , kn� ) . (2.9)

Within this expression, all �̃i are free from all infrared divergences due to either real or virtual photon
emissions.

The first term in Eq. (2.9), �̃0, contains all virtual photon corrections to the Born matrix element and
approximates the emission of n� real photons through the eikonals S̃ (k). The second term corrects the eikonal
approximation for one photon at a time to the exact single photon emission matrix element, including all
virtual corrections to it. Similarly, the next term corrects the coherent emission of two real photons to the
exact expression including all virtual corrections, and so on.

In order to recombine all terms into an expression for the inclusive cross section and facilitate the
cancellation of all infrared singularities it is useful to define an unresolved region ⌦ in which the kinematic
impact of any real photon emission is unimportant. Integrating over this unresolved real emission phase
space gives the integrated on-shell eikonal B̃,

2↵B̃(⌦) =

Z
d3k

k0
S̃ (k)

⇥
1 � ⇥(k, ⌦)

⇤
, (2.10)

which contains all infrared poles due to real soft photon emission.1 Substituting this expression back into
Eq. (2.1), the contributions originating from B̃ for all n� photons again exponentiate. This gives

d� =
1X

n�=0
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n�X
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S̃ (kj) S̃ (kk)
+ · · ·

1

CA , (2.11)

with the YFS form-factor
Y (⌦) = 2↵

h
B + B̃(⌦)

i
. (2.12)

Therein, all infrared singularities originating from real and virtual soft photon emission, contained in B̃ and
B respectively, cancel, leaving a finite remainder. An explicit expression for the form-factor can be found in
App. A.

Finally, let us comment on a technical complication in Eq. (2.11), related to the question on how to
evaluate matrix elements for the emission of a fixed number of photons when the event itself contains many
more soft photons. For example, the �̃1 terms are defined in the (N + 1)-particle phase space while the
full event populates an (N + n�)-particle phase space. This necessitates the projection of the momenta
of the latter onto a phase space with lower dimension [46] and reflects the fact that the subtraction, and,
consequently, the calculation of the �̃

i
, proceeds at the end-point where the momenta of the emitted photons

vanish. In our example of the evaluation of the matrix correction for one real photon, �̃1, the phase space
projection must satisfy four-momentum conservation:

2X

i=1

pi =
N+2X

j=3

qj +

n�X

k=1

kk �!
2X

i=1

Rpi =
N+2X

j=3

Rqj + k1 . (2.13)

In this reduction step, there is some freedom in how the projection R is chosen, exploiting the Lorenz
invariance of the matrix elements and the phase space. Di↵erent choices will lead to di↵erent resulting,
additional Jacobeans, and it is advantageous to employ such mappings q ! Rq, where the Jacobean us
unitary. We detail how we generate the photon momentum in App. B.

1⇥(k, ⌦) = 1 if the photon k does not reside in ⌦ and zero otherwise.

6
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Results with Sherpa
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addition we observe that hadronization e↵ects reduce the cross section in the unresolved domanin, while the
combination of hadronization and multiple parton scattering increases it in the doubly-resolved regime. The
visible e↵ect in the latter suggests that a careful retuning of the MPIs may further improve agreement with
data.
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Figure 3: Distributions x±
� , collectively denoted as x� in di↵erent bins of average transverse jet energy: ĒT 2

[5GeV, 7GeV] (left), ĒT 2 [7GeV, 11GeV] (middle), ĒT 2 [11GeV, 25GeV] (right). Results of
the SHERPA simulation with MC@NLO accuracy are compared with results at LO and with data
from OPAL at an e

�
e
+ c.m.-energy of 198 GeV [5].

We report that distributions in x
obs
� for three di↵erent ĒT experience a significant improvement in shape

when going from Leading to Next-to-Leading Order, cf. Fig. 3. However, in the transition region between
doubly resolved to unresolved events, we notice a clear di↵erence in shape: While for x

obs
� < 0.6 � 0.7

the prediction is relatively flat below the data, the underprediction at around x
obs
� ⇡ 0.8 persists at NLO.

Apart from possibly insu�cient photon PDFs – a point we will elucidate below – there are a number of
possible explanations: First of all, as before, a retuning of MPIs may come to the rescue and fill up the gap.
Secondly, this drop around x� ⇡ 0.7 could be attributed to the missing QED splitting kernel in the evolution
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Figure 4: Distributions of |�⌘| (left), |⌘cntr| (middle), and |⌘fwd| (right), comparing MC@NLO and LO.
Results of the SHERPA simulation are compared with results from OPAL at an e

�
e
+ c.m.-energy

of 198 GeV [5].

of the parton shower. Including this term would impact the backwards evolution of the photonic initial state
radiation leading to a photon being reconstructed as the initial state also in the case of a resolved process.
This again would lead to fewer radiation being generated, therefore shifting the distribution of the resolved
process towards larger x� values. The inclusion of this term in the evolution of the initial state showering
is left for future work. Finally, we should stress that our singly resolved events are described by the 2 ! 2
scattering of on-shell photons with partons from the resolved photons, an approximation which is probably
not entirely correct as virtual photons would lead to a DIS-like scattering of the resolved photon, thereby
inducing a somewhat di↵erent kinematics and scale choices.

Fig. 4 shows distributions of jet pseudo-rapidities and their di↵erences. Again, the overall shape of the
prediction is improved and the lowered NLO cross-section is countered by the inclusion of Multiple-Parton
Interactions (MPIs).
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Photoproduction at LEP:


Hoche et al, 2310.18674
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Figure 9: The dressed dilepton invariant mass m`` as described by the YFS soft-photon resummation only
(red) or additionally resolving the photons further into pairs of charged particles for four different
dressing cone sizes, �⇥dress = 0.005 (top left), 0.02 (top right), 0.1 (bottom left), and 0.2 (bot-
tom right), in the mixed ordering scheme. We differentiate various different dressing strategies,
recombining photons only (blue), photons and electrons (green), photons, electrons and charged
hadrons (orange), and all charged particles (violet) within the dressing cone with the primary
charged lepton. Two ratios are presented, either taking the soft-photon resummation without
photon splittings (upper ratio), or the soft-photon resummation including photon splittings and
dressing the primary leptons with photons as well as secondary electrons (lower ratio), as the
reference.

Using the decay Z ! e+e�, we found that that the limit on the virtuality of the photon bremsstrahlung off
a primary lepton is strongly correlated with the angular distance to this primary lepton, and thus also to the

16

γ→ff splittings:


Flower et al, 2210.07007
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Whizard at lepton colliders

• NLO QCD/EW accuracy for arbitrary processes


• NLO QCD matched à la Powheg


• Beamstrahlung included via Circe


• ISR at LL, wip for NLL (independent from eMELA)


• Full support of polarised beams


• WIP for EW PDFs
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Results with Whizard
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Figure 8: Total cross section of on-shell and off-shell tt̄H production subject to
p
s and µR.

Extra panels as in fig. 7.

e
+
e
�
! W

+
W

�
bb̄H the corrections reach +100% and remain large but finite below threshold,

while for the on-shell process they diverge close to threshold. Around the maximum of the
cross sections, NLO corrections vanish for both, the on-shell and the off-shell process. Above
this maximum, the NLO corrections turn negative, yielding corrections at

p
s = 3000GeV of

up to �15% for the on-shell process e
+
e
�

! tt̄H and up to �20% for the off-shell process
e
+
e
�
! W

+
W

�
bb̄H. Again one should also consider how the off-shell cross sections behave

relative to their on-shell counterparts. While at LO the e
+
e
�

! W
+
W

�
bb̄H cross section

decreases considerably slower with energy compared to the on-shell process e
+
e
�
! tt̄H, at

NLO the corrections to the off-shell process are more sizeable and negative with respect to the
on-shell case, yielding comparable inclusive cross sections for the on-shell and off-shell process.
Still, at 3000GeV the off-shell inclusive cross section is about 20% smaller then the on-shell
one.

In the right panel of fig. 8, we display renormalization scale variations at
p
s = 800GeV

for Higgs associated top-pair production. For this center-of-mass energy scale variation uncer-
tainties in e

+
e
�
! tt̄H are negligible (induced by vanishing NLO QCD corrections), while in

e
+
e
�
! W

+
W

�
bb̄H with the standard choice �t = �t(µR = mt) they amount to several per

cent in the considered variation band. Similar to the tt̄ case, we also show scale variations tak-
ing consistently into account the scale dependence in the top-quark width. Here, the behavior
of the off-shell process is very similar to the on-shell one.

Finally, in tables 2 and 3 we list inclusive cross sections for tt̄ and tt̄H (both on- and off-shell)
processes, respectively, for several representative center-of-mass energies. Listed uncertainties
are due to scale variations, where we employ the fixed top-width, �t = �t(µR = mt). In section
7 we will continue our discussion of NLO corrections for top-pair and Higgs associated top-pair
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Nejad et al, 1609.03390

ee→ttH offshell at NLO QCD
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Figure 6: Higgs transverse momentum distributions, d‡/dpT,H(µ+
µ

≠
æ HZ), at

Ô
s = 3,

10 and 14 TeV, respectively.

roughly 1.5-1.6 and then decreases steeply for
Ô

s/4 . pT,H . Ô
s/2. In this part of the

pT,H range, the curves ‘NLO-no-cuts’ and ‘NLO-cuts’ almost coincide, and the decrease of
the ratio is steeper the larger the collider energy is, i. e. the di�erential K factor drops to
≥ 0.6 for

Ô
s = 3 TeV, ≥ 0.4 for

Ô
s = 10 TeV and ≥ 0.2 for

Ô
s = 14 TeV, respectively.

Again, the origin of this large negative corrections can be traced back to EW Sudakov
logarithmic factors in the form of log2

#
p

2

HZ
/M

2

W

$
, which grow with the invariant mass of

Born HZ Higgsstrahlung system. Obviously, this behavior gets enhanced the larger the
center-of-mass energy of the process is.

The cut on the photon energy influences the di�erential distributions in regions which
are kinematically not accessible at Born level and hence receive so-called huge (di�erential)
K factors. This happens in the region where the Higgs boson has rather small transverse
momentum, pT,H . 1

2
p

max.

T,H
, as it recoils at Born level against the Z. This region is

then filled by hard photon radiation at NLO; the veto of Eq. (4.1) on such hard radiation

– 16 –

μμ→ZH at NLO EW

Bredt et al, 2208.09438
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MG5_aMC at letpon colliders

• NLO EW and QCD corrections for (almost) all processes


• Beam polarisation for LO simulations


• Via eMELA, ISR (+beamstrahlung) in different ren/fact schemes 


• The code automatically takes care to add to the short-distance 
xsection those terms necessary for consistency 

• Factorisation-scheme kernels included in the cross-section for Δ scheme 

and LL PDFs


• Virtuals are corrected in order to account for different ren. scheme in 
model and PDFs (α(mZ)→MSbar)


• For details and how-to, see  
https://answers.launchpad.net/mg5amcnlo/+faq/3324

17

https://answers.launchpad.net/mg5amcnlo/+faq/3324


Marco Zaro, 23-01-2025

Some results:

Bertone, Cacciari, Frixione, Stagnitto, MZ, Zhao 2207.03265 
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Figure 5: Ratios of cross sections computed with NLL PDFs for all possible combinations

of renormalisation and factorisation schemes, over those computed with NLL-� PDFs in the

MS renormalisation scheme. Left panel: qq̄ production; right panel: W+W� production.
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Figure 6: As in fig. 5, for tt̄ production in the full SM (left panel) and in QED (right

panel).

(right panel). The ratios are extremely large (O(1) deviations w.r.t. one) in the large-z

region, which is particularly significant for the electron, since that region gives by far the

dominant contribution to physical observables. For comparison, analogous ratios where the

numerators are the LL-accurate PDFs (dashed lines overlaid with boxes and triangles for

the electron and the photon, respectively) show deviations from one only of approximately

O(3%) in the case of the electron (except for very small z values). In other words, NLL

PDFs defined in the � scheme are quite similar to the LL ones, while very large di↵erences

are seen in the case of the MS scheme.

Given the significant di↵erences between the PDFs defined in the MS and � schemes,

it is remarkable how well the predictions that stem from them agree with each other at

the level of observables. This is shown in figs. 5–8, which we now comment in some detail.

In fig. 5 (relevant to qq̄ and W+W� production) and fig. 6 (relevant to tt̄ production in

– 35 –
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Figure 3: As in fig. 2, for tt̄ production in the full SM (left panel) and in QED (right

panel).

There are a couple of immediate conclusions that can be drawn from the inspection of

the figures. Firstly, the relative impact of the NLL contributions can be much larger than

the typical precision targets at future e+e� colliders, and depends on both the process

and the kinematical region one considers (since the histograms are not flat); and, secondly,

the dependence on the renormalisation scheme is significant (conversely, we shall show in

sect. 6.3 that the one stemming from the factorisation scheme is much smaller, which is the

reason why we could concentrate here on �-scheme results). As far as the former aspect

is concerned, it is representative of a process- and observable-dependent pattern27 that

renders it impossible to account for NLL PDF e↵ects in some “universal” manner (e.g., with

the multiplication of LL-accurate results by an overall factor). Thus, the key conclusion

is the following: while the assessment of the relevance of NLL PDF e↵ects depends on

the specific applications one pursues (in particular, the observable one considers and the

accuracy with which this is expected to be determined experimentally), one should expect

them to be phenomenologically important in high-energy e+e� collisions, and thus regard

NLL-accurate PDFs as the default choice for precision studies in that context.

6.3 Factorisation- and renormalisation-scheme dependences

In this section we consider the dependence of the observable of eq. (6.4) upon the choice

of the factorisation and the renormalisation schemes. We first point out that these two

dependencies may be seen as being of a di↵erent nature, in spite of the fact that they both

induce di↵erences that are beyond the accuracy one is working at (thus, in our case, the

di↵erences are of NNLO). In particular, it is often the case that a definite renormalisation

scheme is chosen because it is thought to be particularly apt at correctly capturing dom-

inant e↵ects of perturbative orders higher than those included in the computation one is

performing (e.g., the Gµ scheme for processes that involve W ’s and Z’s, and no photons).

This viewpoint is of course legitimate, but its validity diminishes with the ability to carry

27For each process, we have computed several di↵erential and cumulative observables, and studied them

in the same manner as what is done here for that of eq. (6.4).
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• e+e- →tt ̄@500 GeV; Observable: 

• NLL-MSbar vs NLL-Δ is (at most) at the few-per-mil level

LL vs NLL NLL different fact. schemes

manageable level, we present results for the cumulative cross section:

�(⌧min) =

Z
d� ⇥

 
⌧min 

M2
pp̄

s

!
, p = q , t , W+ , (6.4)

where M2
pp̄ is the invariant mass squared of the pp̄ pair, and s the collider c.m. energy

squared. We employ MG5 aMC to compute this observable at fixed order, either leading

or next-to-leading; in other words, soft logarithms that appear at ⌧min ! 1 are not re-

summed. We stress that MG5 aMC is capable of computing simultaneously any number of

observables, subject to arbitrary final-state cuts. Our primary interest is the assessment of

the impact of NLL contributions to the PDFs, and of the factorisation- and renormalisation-

scheme dependencies, which we shall discuss in sects. 6.2 and 6.3, respectively. In order

to do so in a manner conceptually analogous to what is typically done in the literature, in

those sections we shall limit ourselves to including only the e+e�-initiated partonic channel

results. The contributions of other partonic channels that enter eqs. (6.2) and (6.3), and

in particular the �� one, will be discussed in sect. 6.4 (see also sect. 6.1). We typically

consider all of the six possible combinations of factorisation (�, MS) and renormalisation

(MS, ↵(mZ), Gµ) schemes, except for qq̄ and tt̄ production in QED, in which cases no

results are given for the Gµ renormalisation scheme.

We set the hard scale as follows:

µ =
p

s , (6.5)

and employ

mW = 80.379 GeV , (6.6)

mZ = 91.1876 GeV , (6.7)

mt = 173.3 GeV . (6.8)

We present predictions obtained with a
p

s = 500 GeV c.m. energy, but we stress that we

have considered (if above the respective pair-production thresholds) several other cases in

the range 50 GeV 
p

s < 500 GeV, finding quantitatively similar results. In the legends

of the plots, we shall typically employ the following naming conventions:

xsec , PDF [fact sch , ren sch] , (6.9)

where “xsec” denotes the perturbative accuracy of the short-distance cross sections, “PDF”

the logarithmic accuracy of the PDFs, and “fact sch” and “ren sch” the factorisation and

renormalisation schemes, respectively, used in the latter. Thus:

xsec 2 {LO , NLO} , (6.10)

PDF 2 {LL , NLL} , (6.11)

fact sch 2 {� , MS} , (6.12)

ren sch 2 {MS , ↵(mZ) , Gµ} . (6.13)
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Plot and numbers by Michele Selvaggi

NLO QCD

NLO EW
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Complex-mass scheme:

e+e- →Hl+l- 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• Qualitatively similar results to 
Denner, Dittmaier, Roth, Weber, hep-ph/0302198

• Results obtained in 15mins (on a 
cluster) @ 0.1%

  Inclusive timing profile :

    Overall slowest channel          0:06:15 

    Average channel running time     0:03:42

    Aggregated total running time    8:05:57

https://arxiv.org/abs/hep-ph/0302198
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EW corrections at muon colliders

Pagani, Ma, MZ, 2409.09129, see also Davide’s talk
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Figure 23. The pT (jEW,1) distribution in µ
+
µ
�

! 2jEW. The left (right) plot shows results at
p
S = 3 TeV (

p
S = 10 TeV). The histograms show LO (dashed) and NLO (solid predictions) for

W
+
W

� (green), ZZ (blue), 2V = W
+
W

� + ZZ (orange), 3V (red), and 4V (violet, only at the
LO). In the second inset, the quantities �nNLOEW+HBRNLO

and �NLOEW+HBR are shown respectively as
black-solid and black-dashed lines. These quantities are defined by Eq. (3.26) in terms of respectively
Eq. (3.25) and Eq. (3.24). The solid grey line shows the quantity �

2
SDKweak

/2, which enters only in
�nNLOEW+HBRNLO

.

In the plot in Fig. 23 we show the transverse momentum distribution of the hardest jEW,

pT (jEW,1), while in Fig. 24 the same distribution for the second-hardest jEW, pT (jEW,2). The

plots have a di↵erent colour code with respect to those shown in the previous sections and we

describe them in the following. In the main panel we show the contribution from the WW

final state (green) and ZZ (blue) which once summed leads to the 2V prediction (orange).

The total 3V contribution is in red and the 4V one in violet. All LO contributions are shown

as dashed lines while those at NLOEW accuracy as solid lines.

In the first inset we plot the quantities

�X(2V ) ⌘
�X(2V )� �LO(2V )

�LO(2V )
. (4.2)

�X(3V ) ⌘
�X(3V )

�LO(2V )
(4.3)

�X(4V ) ⌘
�X(4V )

�LO(2V )
(4.4)

where �LO(2V ) corresponds to the LO predictions for 2jEW production. Similarly, �NLOEW
(2V )

– 43 –

Investigate several aspect of EW corrections, real radiation, etc…
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The food drives your appetite
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1994 2010 2025 …

LHC approved 
Tevatron running

Automatic tree-lev. ME 
computation 


(no integration/event gen)

Automatic tree-lev ME 
computation 


with event gen

LHC started

NLO revolution

Today:

NLO QCD+EW


NNLO QCD for 2→3, 

NNLO subtraction

NNNLO for 2→1


NLL parton showers

…


Future (lepton) collider 
approved
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Outlook

• Not covered in this talk, but still relevant: KKMC-ee for ff ̄
production, process specific tools, e.g. BabaYaga


• The LHC has thought us many lessons:


• General-purpose MC tools are fundamental workhorses for 
all physics analyses


• The possibility of using different tools is key for validation and 
proper estimate of uncertainties 


• Progress in MCs is driven by the destination: we are in a much 
better shape than 30 years ago, when LHC started

23
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Thank you!
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Matching with PS: ISR at NLL?

25
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QED Parton Shower

cos θl ∝ −
N

∑
i,j=1

ηiηj
1 − βiβj cos θij

(1 − βi cos θil)(1 − βj cos θjl)

It allows for exclusive photon emission in the context of collinear factorisation.

Photon energies dictated by distribution in , whereas angles are generated 
independently according to the YFS formula, valid in the soft limit:

z

see for instance review in 0912.0749

with  a charge factor and  the speed of the emitting particle. ηi βi

Algorithm adopted in BabaYaga [ , , ] 
hep-ph/0003268, hep-ph/0103117, hep-ph/0312014, hep-ph/0801.3360, hep-ph/0607181 
Balossini, Bignamini, Carloni Calame, Lunardini, Montagna, Nicrosini, Piccinini 
BabaYaga also includes a matching to NLO QED in the short distance cross section

e+e− → e+e− e+e− → μ+μ− e+e− → γγ

slide by G. Stagnitto
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Matching with PS: ISR at NLL?

28

With a NLL iterative solution, we recover the known (non-singlet) NLL PDFs

WIP towards exclusive kinematics of final-state photons and singlet components

C. M. Carloni Calame, M. Chiesa, S. Frixione, G. Montagna, F. Piccinini, GS

Towards a “NLL” QED Parton Shower
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QED Parton Shower

P+(z) = θ(x+ − z)P(z) − δ(1 − z)∫
x+

0
dx P(x)

Π(s1, s2) = exp (− α
2π ∫

s1

s2

ds′ 

s′ ∫
x+

0
dz P(z))

D(x, s) =
∞

∑
n=0

n

∏
i=1 {∫

si−1

m2e

dsi

si
Π(si−1, si)

α
2π ∫

x+

x/(z1⋯zi−1)

dzi

zi
P(zi)} Π(sn, m2

e )D ( x
z1⋯zn

, m2
e )

Introduction of a cutoff , with , to regularise splitting kernels:x+ = 1 − ϵ ϵ ≪ 1

By introducing a Sukadov form factor:

one can recast the evolution equation in an iterative integral form:

see for instance review in 0912.0749

which can be solved by means of a MC algorithm

28

With a NLL iterative solution, we recover the known (non-singlet) NLL PDFs

WIP towards exclusive kinematics of final-state photons and singlet components

C. M. Carloni Calame, M. Chiesa, S. Frixione, G. Montagna, F. Piccinini, GS

Towards a “NLL” QED Parton Shower
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