Jet substructure at lepton colicers

23th of January 2025

Andrea Ghira, based on results in collaboration with P. Dhani, O. Fedkevych, S. Marzani and G. Soyez

FCC-ee and Lepton Colliders, Laboratori Nazionali di Frascati,

Lepton Colliders and Jet Substructure Studies

- **Key Features of Lepton Colliders**
- QCD Dynamics Confined to Final State:
 - No Pile-Up or Underlying Event (UE) Ο effects,
 - Free from PDFs complexities, Ο
 - Precisely Controlled Initial State:

- Collision energy directly measurable, \bigcirc
- All energy is used efficiently (up to Ο QED ISR),

Current Focus in Jet Studies

- Active developments on jets and jet algorithms focus more on:
- Hadron Collisions (e.g., LHC), 0
 - Heavy Ion Collisions, 0
- Yet, Monte Carlo event generators are primarily tuned with:
- LEP data. 0

Hadrons vs Leptons

Why Lepton Colliders for Jet Substructure?

- Cleanest Environment for studying:
 - Final state jet substructure, Ο
 - Testing perturbative QCD. Ο
- Impact of JSS studies:
 - Jet flavour identification, Ο
 - Electroweak boson tagging (e.g. W^{\pm}, Z), Ο
 - Top quark tagging. Ο

-
- 1. Silicon vertex detector
- 2. Drift chamber
- 3. Time projection chamber
- . Electromagnetic calorimeter
- Superconducting magnet coil
- 6. Hadron
- calorimeter
- 7. Muon chambers
- Luminosity monitors
- A. Test of light and heavy flavor fragmentation
 - B. Determination of $\alpha_{\rm S}$ at per mille accuracy

Electron-positron collisions

- We consider $q\bar{q}$ production in e^+e^- collisions
- At lowest order in perturbation theory, the energy is divided between the two produced quarks

 Gluon soft and collinear radiation does not alter this picture

Jets at e^+e^- can be clustered into two hemispheres

Jet formation at parton level

At high energies, soft ($z \rightarrow 0$) and collinear ($\theta^2 \rightarrow 0$) emissions are favored in QCD

This relation reflects the fact that at high energy, massless QCD is a scale invariant QFT

$$d\sigma \simeq \frac{\alpha_S C_F \, dz \, d\theta^2}{2\pi \ z \ \theta^2}$$

z = gluon energy fraction

 θ^2 = gluon splitting angle

Jet substructure in a nutshell

- Importance of knowing the hard process that originates the jets
- Distinguish different kind of jets (light flavor vs heavy flavor jet)

- Prong finders: find hard cores within jets
- Radiation constraints: examine gluon radiation pattern
- Groomers: removes large angle soft radiation

The Soft Drop algorithm

The jet constituents are re-clustered to form an angular ordered tree. The declustering is then applied.

A. Larkoski et al

$$\frac{\min(E_i, E_j)}{E_i + E_j} > z_{\text{cut}} \left(2(1 - \cos \theta_{ij}) \right)^{\frac{\beta}{2}}$$

 θ_{ii} : angle between branches i, j

Jet substructure at LEP

Recent comparison with ALEPH data for z_g, R_g and for the jet mass distributions

See <u>Yang-Ting Chien et al.</u>

Cumulative distributions

natural to compute the resummation of the cumulative distribution

- \bullet
- v must be IRC safe
- $\Sigma(v)$ is computed to all orders exploiting QCD factorization theorems

Given a substructure observable v, from a theoretical point of view, it is

Probability of measuring a value of the observable less than v

$$\Sigma(v) = \int_0^v dv' \frac{d\sigma}{dv}$$

v is a function of momenta that vanish when no emissions occur (Born level)

Soft-Collinear factorization

We begin studying the case of the single emission off a quark. The matrix element factorizes in the soft and collinear limit:

Corresponds to the LO radiator R(v)

be written

$$\mathcal{V} = z^a \theta^a$$

- ${\mathscr V}$ represents the soft and collinear limit of the observable and in general can
 - a+b

All order calculation

 $\Sigma(v)$ is computed order by order in perturbation theory:

$$\Sigma(v) = \sum_{k} \left(\frac{\alpha_{S}}{\pi}\right)^{k} c_{k}(v)$$

However, if we are interested in the regime where $v \ll 1$, the convergence of the perturbative series is spoiled:

Lund Plane geography

The all order calculation of the cumulative distribution can be performed exploiting Lund diagrams

Lund diagrams: representation of the phase space available by emissions

Heavy flavor jets

- $m_Q > \Lambda_{QCD}$, Q = c, b, t
- Linked to Higgs physics and to EW symmetry breaking

- Heavy flavor processes offer a more robust test of pQCD
- Long-enough lifetime of *B* hadrons and *D* mesons: easily detected in collider experiments identifying their displaced vertices
- Top quark decays before hadronizing

Dead cone effect

When jets are initiated by a heavy flavor, the quark mass shields the collinear singularity

$$d\sigma \simeq rac{lpha_S C_F}{2\pi} rac{dz}{z} rac{d heta^2}{ heta^2} \qquad m = \text{ heavy quark m}} E = \text{heavy quark end}$$

Dead cone effect

the radiation emitted off a heavy flavor is suppressed inside a cone of opening angle $\theta_D \sim m/E$ (ALICE)

nass

All order calculation with heavy flavours

- How do we model calculations we heavy flavours?
- Many scales involved:
- 1. Mass of the heavy quark *m*, larger than $\Lambda_{OCD} \sim 1 \text{ GeV}$
- 2. Hard scale of the process \sqrt{s} (center of mass energy)
- 3. Substructure variable v we want to probe

We need to understand the hierarchy between the various scales and to perform multiple resummations (log $\frac{m^2}{s}$, log v)

Lund Plane with heavy flavors

In the case of emissions off heavy flavour Lund plane diagrams receives substantial corrections:

(A.G, S. Marzani, G. Ridolfi)

- 1. Collinear factorization is replaced by quasi-collinear factorization ($k_t \sim m \ll \sqrt{s}$)
- 2. The mass of the heavy flavour imposes a boundary on the emission rapidity.
- 3. Horizontal line at constant k_t divides the five flavour region from the four flavour one.

Jet angularities and ECFs

We want to study observable sensitive to dead-cone effect We study jet angularities λ^{α} and energy correlation functions e_{2}^{α} In a massless theory, considering only one emission:

 $\lambda^{\alpha} \simeq e_{\gamma}^{\alpha}$

massive quarks studied in (C. Lee, P. Shrivastava, V. Vaidya) with SCET

Which one is more sensitive to the dead-cone effect?

$$\frac{\alpha}{2} \simeq z \theta^{\alpha}$$

Many possible choices in the case of massive particles within the jet. ECFs with

Possible definitions in e^+e^- collisions

$$e_2^{\alpha} = \sum_{\mathcal{H}} \sum_{i,j \in \mathcal{H}, i < j} z_i z_j \left[2(1 - \cos \theta_{ij}) \right]^{\frac{\alpha}{2}} \Theta \left((\vec{p}_i \cdot \vec{n})(\vec{p}_j \cdot \vec{n}) \right) \simeq \sum_{\mathcal{H}} \sum_{i,j \in \mathcal{H}, i < j} z_i z_j \ \theta_{ij}^{\alpha}$$

$$\dot{e}_{2}^{\alpha} = \sum_{\mathcal{H}} \sum_{i,j \in \mathcal{H}, i < j} z_{i} z_{j} \left[\frac{2p_{i} \cdot p_{j}}{E_{i}E_{j}} \right]^{\frac{\alpha}{2}} \Theta\left((\vec{p}_{i} \cdot \vec{n})(\vec{p}_{j} \cdot \vec{n}) \right) \simeq \sum_{\mathcal{H}} \sum_{i,j \in \mathcal{H}, i < j} z_{i} z_{j} \left(\theta_{ij}^{2} + \frac{m_{i}^{2}}{E_{i}^{2}} + \frac{m_{j}^{2}}{E_{j}^{2}} \right)^{\frac{\alpha}{2}}$$

- We focus for simplicity on ECFs (many more possible definitions for λ^{α})
- The two observables do not coincide in the quasi collinear limit

 \vec{n} : reference vector that defines the hemisphere \mathcal{H}

any more possible definitions for λ^{α})

Monte Carlo analysis

- The dot observables exhibits a larger peak than e_2^{α} : more mass sensitive.
- The mass contribution in the e_2^{α} distribution comes only from the matrix elements ("dynamical")

Monte Carlo analysis

the tail of the distribution. We cannot have an arbitrarily soft emission: $\min(z_i, z_j) > z_{\text{cut}}$

In the groomed case, the solid red curve starts to exhibit a small peak in

All order calculation

NLL.

However, the differential distribution is discontinuous.

- To smooth the transition we decide to incorporate fixed order calculation
- These are NNLL contributions, which depend on the specific definition of the observable

From analytical point of view, all the cumulative distribution resum in the same way at

Comparison with MC: ungroomed case

P. Dhani, O. Fedkevych, A. Ghira soon to appear

- \bullet
- ${\color{black}\bullet}$ calculations $v \simeq 2m_b/\sqrt{s}$
- Large discrepancy with between analytics and MC in the ungroomed case

Plot of there ratio of the cumulative Σ^b / Σ^q (massive/massless) for $e^+e^- \rightarrow 2$ jets It appears that the dead cone effect manifests earlier than predicted by theoretical

Comparison with MC: groomed case

- Plot of there ratio of the cumulative Σ^b / Σ^q (massive/massless) for $e^+e^- \rightarrow 2$ jets
- Very good agreement between MC and analytics
- MC predictions are close to each other

 Σ^q (massive/massless) for $e^+e^- \rightarrow 2$ jets analytics

Hadron correction groomed case

- Comparison between parton level and hadron level simulations
- Soft Drop reduces the impact of hadronization corrections
- Both the observables are very robust under NP corrections (e_2^{α} in particular)

Conclusions & outlook

- observable and at amplitude level.
- suppression of the radiation: $\lambda^{\alpha=1}, e_2^{\alpha=1}$ best way to probe the dead-cone
- Study of top quark dead cone effect at ILC $\sqrt{s} = 2$ TeV (Maltoni et al.)

Thanks for your attention!!!

• Study of JSS observable for HF jets at e^+e^- : the angularities and ECFs defined with the scalar products are more sensitive to mass effects. Mass dependence both in the definition of the

• The distribution associated to plain observable depends on the mass only through the square matrix element, thus all the mass effects that we see are related to a dynamical