

Finanziato dall'Unione europea NextGenerationEU

SATELLITE DATA MANAGEMENT FOR ADVANCED ENVIRONMENTAL APPLICATIONS

Giuseppe Piparo¹, Gioacchino Alex Anastasi², Virginia Strati³, Enrico Chiarelli³, Fabio Mantovani³, Irem N. Elek³, Kassandra G. C. Raptis³, Matteo Albéri³, Alessia Tricomi^{1,2,4}

Istituto Nazionale di Fisica Nucleare (INFN), Catania section
 University of Catania, Department of Physics and Astronomy
 Department of Physics and Earth Science, University of Ferrara & INFN, Sezione di Ferrara
 Il Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania

giuseppe.piparo@ct.infn.it

2nd ICSC Spoke2 meeting, Catania, 10-12 December 2024

Centro Nazionale di Ricerca in HPC, Big Data e Quantum Computing

Missione 4 • Istruzione e Ricerca

Space economy within the WP6

Activities are divided into three distinct but interconnected working groups.

Deterministic Learning algorithms for object identification of **photovoltaic panels in aerial images**.

<u>Technologies 2023, 11, 174</u>

Disease detection in vineyards using high-resolution images collected by Unmanned Aerial Vehicles (UAVs). <u>V. Strati, EGU24-10773 (2024)</u> Analysis of satellite imagery using deep-learning <u>segmentation of</u> <u>wildfire-affected areas</u> and the detection of vineyard disease.

A custom library to download and manage satellite data

Within the project, a *python* library has been developed, currently including of 4 modules:

Download module	Download of satellite imagery using the <u>Sentinel-Hub API</u> . Currently implemented for Sentinel2-L2A products only.
DataManipulator module	Produce maps for single spectral band and vegetation indexes (currently 19 implemented) in TIFF format and as <i>numpy</i> arrays. Also combining downloaded data with labels .
Visualiser module	Printing the processed maps in standard formats (PDF, PNG, etc.)
DataHandling module	Pre-processing of data for training deep-learning applications. Currently includes : dataset normalization, discrete mirroring/rotations & image splitting for data augmentation, storage in csv or numpy-native formats.

To be made publicly available as open-source library by the end of the project. Available <u>here</u> upon request

Wildfires: an increasing and critical problem

- In recent years, forest fires have increased significantly due to higher temperatures and prolonged periods of drought.
- In 2023, more than 4.1 million hectares will be burnt in Europe, an increase of 40 % compared to the average of the last ten years.
- Fires are often caused by a combination of factors: extreme weather conditions, human activities and inadequate forest management.
- Aerial data and machine learning can be used to extract useful information for wildfire identification, monitoring, prediction and **mapping of burned area.**

A dataset for the segmentation of burned area in sentinel-2 imagery

- <u>Sentinel-2 satellites</u> offer high-resolution multispectral imaging capabilities. These satellites provide data across a wide range of wavelengths, from the visible spectrum to shortwave infrared.
- The focus of the dataset is on **the detection and mapping of burnt areas** using multispectral satellite images from Sentinel-2.

A dataset for the segmentation of burned area in sentinel-2 imagery

- <u>Sentinel-2 satellites</u> offer high-resolution multispectral imaging capabilities. These satellites provide data across a wide range of wavelengths, from the visible spectrum to shortwave infrared.
- The focus of the dataset is on **the detection and mapping of burnt areas** using multispectral satellite images from Sentinel-2.
- The dataset used in the analysis comprises **114 multispectral 3-steps temporal series of images** (all the 12 Sentinel-2 bands), each with a size of 2048x2048 pixels and a spatial resolution of 10 meters.
- These images focus on **historical fires across Europe**, primarily in the Mediterranean area, sourced from the <u>Copernicus Emergency Management Service (EMS)</u>.

Download and manipulate Sentinel-2 data

DOWNLOAD TEMPORAL SERIES

BEFORE FIRE (RGB ONLY)

EMSR370AOI01_2019-06-13_2019-07-02 - RGB bands

NEAR FIRE (RGB ONLY)

EMSR370AOI01_2019-07-03_2019-07-22 - RGB bands

AFTER FIRE (RGB ONLY)

EMSR370AOI01_2019-07-23_2019-08-11 - RGB bands

Download and manipulate Sentinel-2 data

LABELLING, CROPPING, AUGMENTING

BEFORE FIRE (RGB ONLY)

NEAR FIRE (RGB ONLY)

AFTER FIRE (RGB ONLY)

see talk of G. A. Anastasti on 12/12 for more details on analysis!

Flavescence dorée: a devastating vineyard disease

- Flavescence dorée is a vineyard disease caused by a phytoplasma that is devastating crops across Europe (reduction of yields by up to 50-60%).
- Main symptoms are downward rolling, interruption of the lignification, reduction in fruit production and leaf yellowing (white grapes) or reddening (red grapes).
- Once infected there are no possibilities to cure the plant: insecticide sprays and immediate uprooting are mandatory to avoid the spread of the disease.
- Early detection of the symptoms **via remote sensing** represents a significant improvement over traditional ground-based surveys (highly time-consuming and inefficient).
- This study aims to quantify the incidence of the disease using airborne images to identify the reddening of the leaves.

Early vineyard disease detection: The PERBACCO project

PERBACCO

Mappa di densità di casi sospetti di giallumi e mal dell'esca

Numero di casi sospetti per ettaro

0-1 1-5 5-10 10-50 > 50 0

ICSC and the Spoke2-We are we now?

Catania, Dec 10-12, 2024

Dataset for vineyard disease detection

Using the custom library, a dataset of Sentinel-2 images from 741 fields has been created :

- each image is a **multispectral 64x64 pixels map** with a resolution of 10 m;
- **disease severity stored as integer** from 0 (no cases) to 5 (>50 cases per hectare);
- **data augmentation** (random translations rotations mirroring) applied.

Currently studying machine learning applications for **classification under 2 labels** (*O* –> *no cases, 1 -> any disease severity*).

Attempts at **regression** (i.e. reconstruction of the severity level) will be performed after classification is successfully developed.

see talk of G. A. Anastasti on 12/12 for more details on analysis!

0-1 1-5 5-10 10-50 > 50

• Increase available satellite data sources, starting with those of the **Copernicus constellation**.

Sentinel-2 RGB Composite (B04: Red, B03: Green, B02: Blue)

• Increase available satellite data sources, starting with those of the **Copernicus constellation**.

SCL Classes

• Increase available satellite data sources, starting with those of the **Copernicus constellation**.

Sentinel-1 RGB Image [VV, 2 * VH, VV / VH / 100.0]

• Increase available satellite data sources, starting with those of the **Copernicus constellation**.

Sentinel-3 OLCI RGB Composite (B08: Red, B06: Green, B04: Blue)

• Increase available satellite data sources, starting with those of the **Copernicus constellation**.

- Increase available satellite data sources, starting with those of the **Copernicus constellation**.
- Improving the quality of the code to make it available to the community.

- Increase available satellite data sources, starting with those of the **Copernicus constellation**.
- Improving the quality of the code to make it available to the community.
- Facilitating accessibility to satellite data, perhaps by creating a **user interface.**

DI RIPRESA E RESILIENZA		1	Big Data and Quantum Computing	
Satelli	te Data Download			
			Toggle Directory Browser	
 Use existing configuration 				
Configuration Name:	_	New		
Enter Client ID and Secret]	
Client ID:				
Client Secret:				
Data Folder:/data				
GeoJSON File:	_	Browse		
Start Date (YYYY-MM-DD):	_			
End Date (TTTT-MM-DD):	-			
Mosaicking Order: mostRecent				
Sentinel-1 Sentinel-2		Sentinel-3	-OLCI	
Sentinel-3-SLSTR-Optical Sentinel-3-SLSTR-The	rmal	DEM		
Perform Data Fusion:				
Sentinel-1 Options:				
Data Collection: SENTINEL1_IW				
Polarizations: VV,VH				
Backscatter Coefficient: GAMMA0_ELLIPSOID				
Orthorectify:				
DEM Instance: COPERNICUS				
Sample Type: FLOAT32				
Sentinel-2 Options:				
Data Collection: SENTINEL2_L2A				
Units: REFLECTANCE				
Sample Type: FLOAT32				
Sentinel-3-OLCI Options:				
Sample Type: FLOAT32				
Sentinel-3-SLSTR-Optical Options:				
Sample Type (Optical): FLOAT32				
Sentinel-3-SLSTR-Thermal Options:				
Sample Type (Thermal): FLOAT32				
DEM Options:				
DEM Instance: COPERNICUS_30				
Sample Type: FLOAT32				
Download Data	1			
			2	

Italia**domani**

- Increase available satellite data sources, starting with those of the **Copernicus constellation**.
- Improving the quality of the code to make it available to the community.
- Facilitating accessibility to satellite data, perhaps by creating a user interface.
- Integrating the library with the CN computational resources, with a view to making it available to the EO community.
- Publishing the repository under the Spoke 2 GitHub.

E C ICSC-Spoke2-repo		Q + • O II @ 👘
🕞 Overview 📮 Repositories	Projects 😚 Packages	At Teams A People
Repositories	All	New repository
n All	Search repositories	Q
📮 Public		
Private	24 repositories	
ଚ Sources		

Finanziato dall'Unione europea NextGenerationEU

THANKS FOR THE ATTENTION!!!

Giuseppe Piparo¹, Gioacchino Alex Anastasi², Virginia Strati³, Enrico Chiarelli³, Fabio Mantovani³, Irem N. Elek³, Kassandra G. C. Raptis³, Matteo Albéri³, Alessia Tricomi^{1,2,4}

Istituto Nazionale di Fisica Nucleare (INFN), Catania section
 University of Catania, Department of Physics and Astronomy
 Department of Physics and Earth Science, University of Ferrara & INFN, Sezione di Ferrara
 Il Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania

giuseppe.piparo@ct.infn.it

2nd ICSC Spoke2 meeting, Catania, 10-12 December 2024

Centro Nazionale di Ricerca in HPC, Big Data e Quantum Computing

Missione 4 • Istruzione e Ricerca