

Finanziato dall'Unione europea NextGenerationEU

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Super-Resolution Surrogate Model for Accelerated Geant4 Simulations

Gallo G.^{*,1}, Cirrone G.A.P.^{2,4}, Fattori S.², Ientile V.³, Sciuto A.², Tricomi A.^{1,3,4}

(1) Department of Physics and Astronomy "E. Majorana", University of Catania, Catania, Italy
(2) National Institute for Nuclear Physics, Southern National Lab, Catania, Italy
(3) National Institute for Nuclear Physics, Catania Division, Catania, Italy
(4) Sicilian Center of Nuclear Physics and Physics of Matter (CSFNSM), Catania, Italy
(*) Speaker

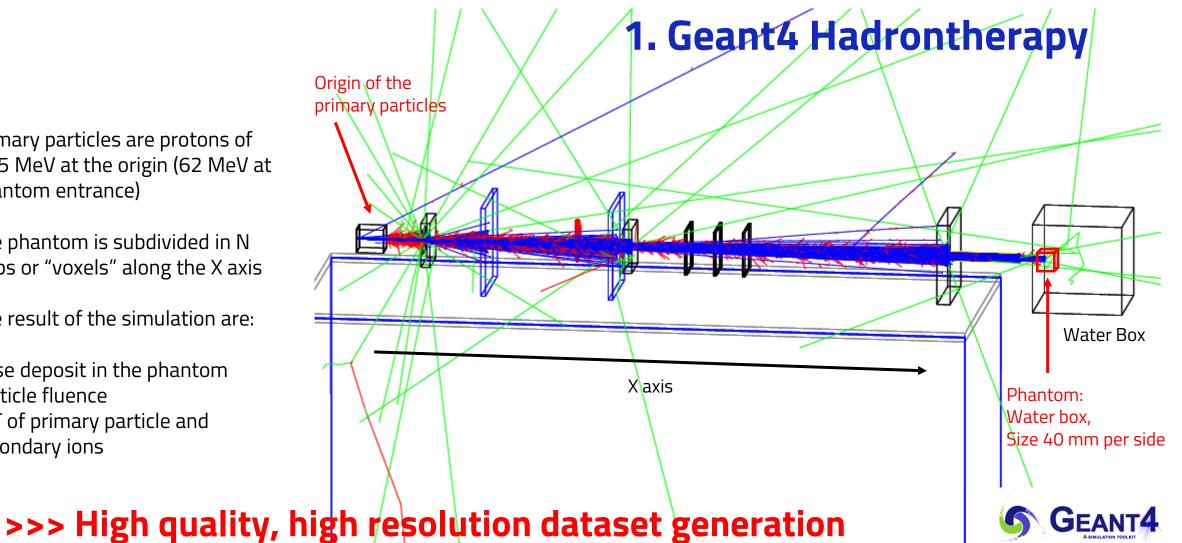
ICSC and Spoke2 – Where Are We Now?, Catania December 10-12, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SPOKE 2 - FUNDAMENTAL RESEARCH & SPACE ECONOMY

• WP 6 • UC 2.6.2 – ML_GEANT4_WP6

Enhancing Geant4 Monte Carlo Simulations through Machine Learning Integration



Primary particles are protons of 63.5 MeV at the origin (62 MeV at phantom entrance)

- The phantom is subdivided in N slabs or "voxels" along the X axis
- The result of the simulation are:
- Dose deposit in the phantom
- Particle fluence
- LET of primary particle and secondary ions

https://geant4.web.cern.ch/doc<u>s/advanced_examples_doc/example_hadrontherapy</u>

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

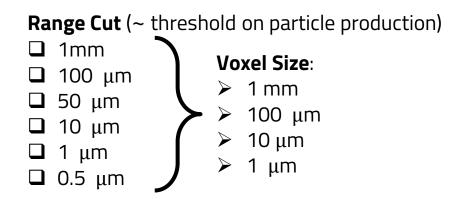
2. Super-Resolution in Machine Learning

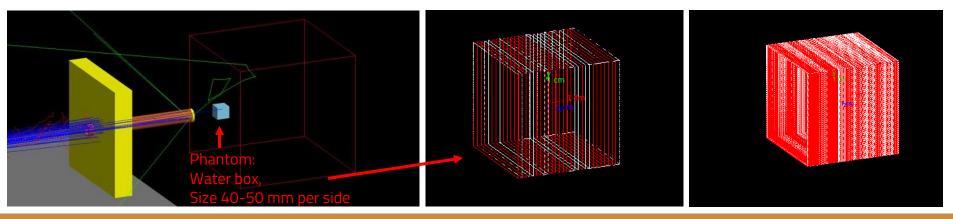
Goal:

- Predicting results that are **comparable** to high-resolution simulations
- **Challenge**: reduce computation cost by working with a lower voxel density

Approach:

- **Input**: low-resolution data (lower density voxel)
- **Output**: improved simulations at higher resolution, predicted by the model.



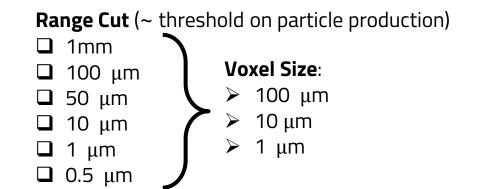


3. Datasets production for ML training

Generating **high-density** and low-density datasets for studying and validating linear energy transfer (LET) calculation.

- How deep can we go with voxel sizes in Geant4?
- Up to which voxel size does the Geant4 code generate a physically correct simulation?
- How many primary particles do we need to run to get a reliable data set without blowing up the computational cost?

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing


Cut (u)	Voxelsize (u)	Exec Time	CPU (%)	MEM (%)
1000	100	00h.00m.54s	78.96	0.11
100	100	00h.01m.08s	80.97	0.10
50	100	00h.01m.37s	84.47	0.12
10	100	00h.04m.25s	88.46	0.18
1	100	00h.33m.15s	92.03	0.20
0.5	100	00h.33m.20s	92.32	0.20
1000	10	00h.07m.27s	89.84	0.18
100	10	00h.08m.02s	89.81	0.19
50	10	00h.09m.08s	88.72	0.19
10	10	00h.18m.13s	90.50	0.20
1	10	00h.55m.52s	93.28	0.30
0.5	10	00h.56m.01s	92.78	0.30
1000	1	01h.17m.07s	90.07	0.20
100	1	01h.19m.27s	89.92	0.20
50	1	01h.24m.57s	91.63	0.22
10	1	01h.48m.07s	92.10	0.30
1	1	03h.14m.48s	93.31	0.50
0.5	1	03h.15m.00s	93.55	0.50

4. Execution time

- AMD EPYC 7552 96 Core
- 512 GB RAM

N=96 Threads

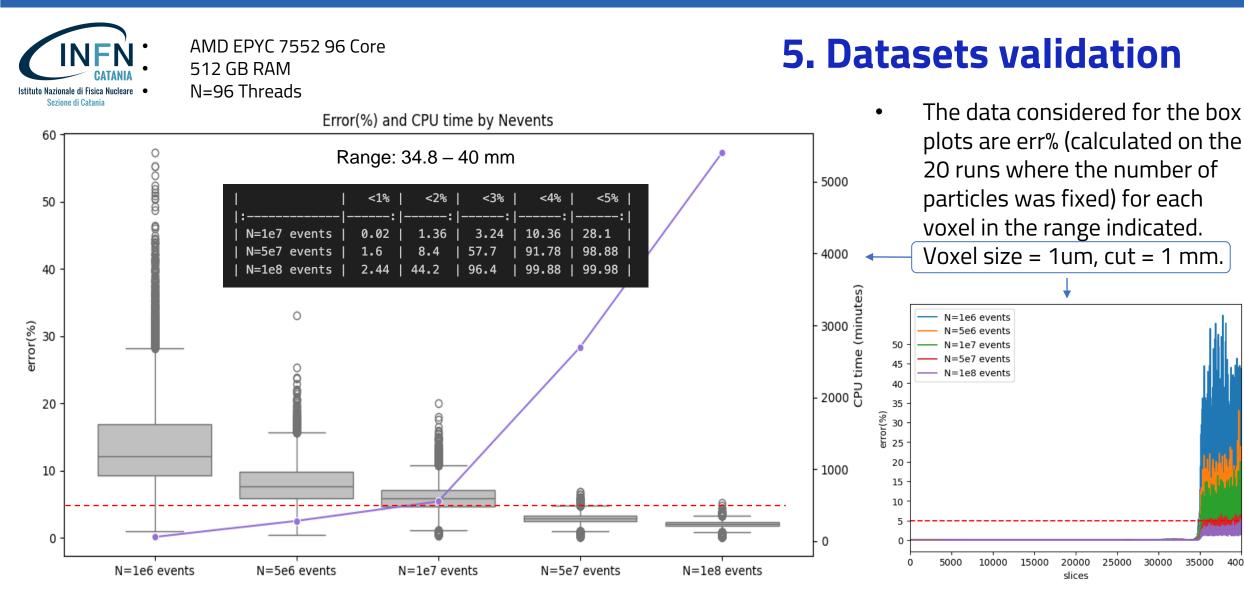
N particles = 1 x 10^6

N.eve	nts=100000	N.events=20	00000			N.event	s=900000		N.events	s=1e6	
r	un 1	run 1				run	1		run 1		
r	un 2	run 2				run	2		run 2		
r	un 3	run 3				run			run 3		
r	un 4	run 4				run	4		run 4		
r	un 5	run 5				run	_		run 5		
r	un 6	run 6				run	6		run 6		
r	un 7	run 7				run	7		run 7		
r	un 8	run 8				run	8		run 8		
r	un 9	run 9				run	9		run 9		
rı	ın 10	run 10				run '	10		run 10)	
r	un 11	run 11				run '	11		run 11		
l ri	ın 12	run 12				run '	12		run 12		
rı	ın 13	run 13				run 1	13		run 13		
l ri	ın 14	run 14				run '	14		run 14	,	
rı	ın 15	run 15				run '	15		run 15		
rı	ın 16	run 16				run '	16		run 16	j	
rı	ın 17	run 17				run '	17		run 17	·	
	ın 18	run 18				run '	18		run 18		
	ın 19	run 19				run '	19		run 19		
l ri	ın 20	run 20				run 2	20		run 20		
							-			-	
slice0	slice36000	slice0	slice36000		slice0		slice36000		slice0		slice36000
run1 Let value Let v	alue Let value	run1 Let value Le	et value Let value	rur	1 Let value	Let value	Let value	run1	Let value L		Let value
Lature Late		Lature La L						Inditi			
		Let value Le				Let value	Let value		Let value L		Let value
run 20 Let value Let v	alue Let value	run 20 Let value Le	et value Let value	run	20 Let value	Let value	Let value	run 20	Let value L	et value	Let value
* *	r ↓	*	* *		*	*	*		*	*	*
err(%) err(%) err(%)	err(%)	err(%) err(%)		err(%)	err(%)	err(%)		err(%) e	err(%)	err(%)
	e slice36000	slice0 s	slice slice3600	0	slice0	slice	slice36000		slice0 s	slice	slice36000

5. Datasets validation

How many particles for a reliable dataset?

Method definition: N events
vs err(%) per slice

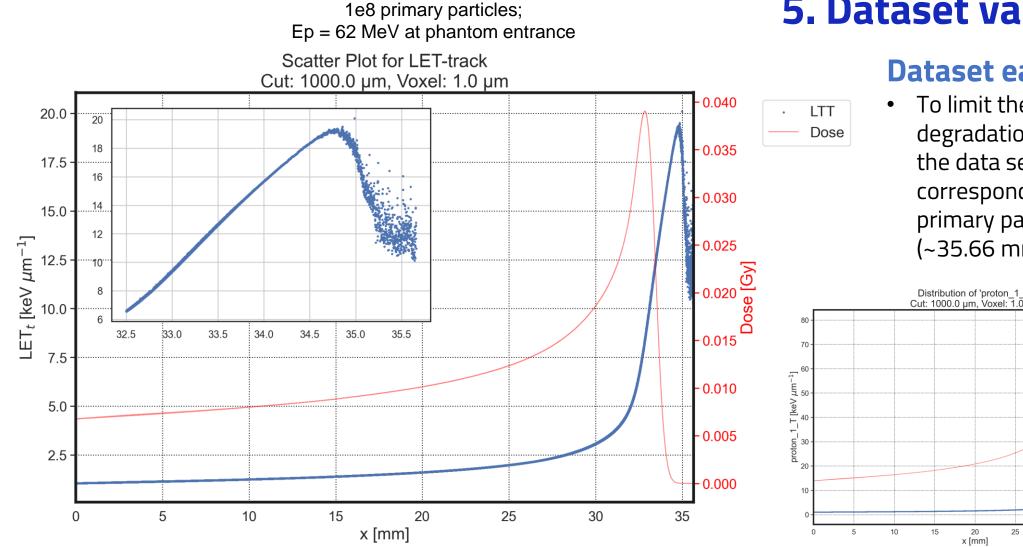

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

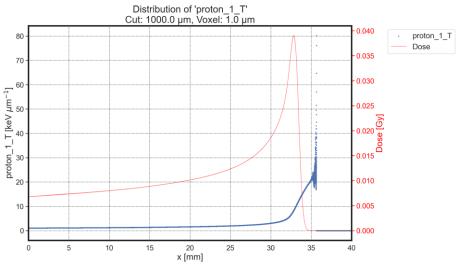
ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

25000 30000

35000

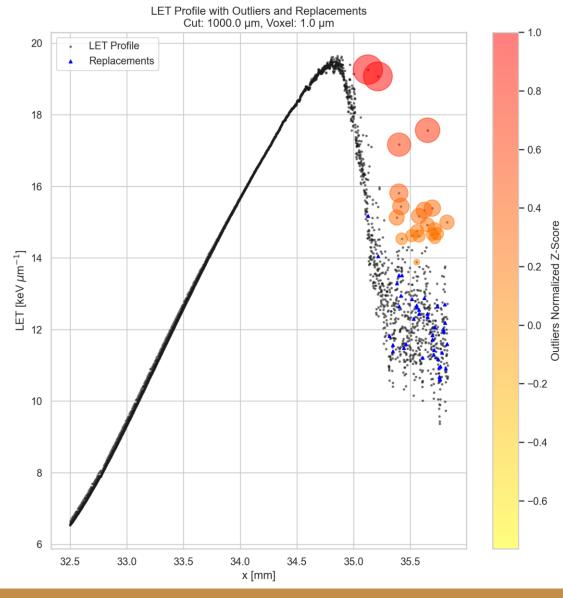

40000



5. Dataset validation

Dataset early stop:

To limit the quality degradation of the LET profile, the data set is truncated corresponding to where the primary particle beam stops (~35.66 mm in water).


ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Dataset

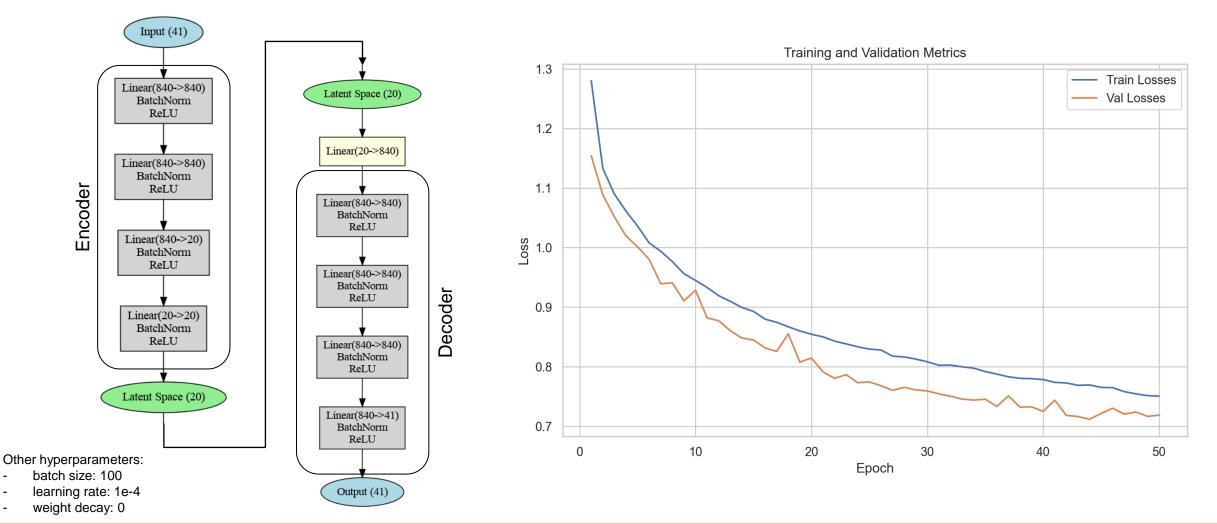
- runbeam 1 x 10⁸,
- cut 1000 um,
- voxel 1 um

Dataset cleanup:

Several combinations of first outlier detection and value replacement algorithms have been tested, including a denoising autoencoder. The best results were obtained with:

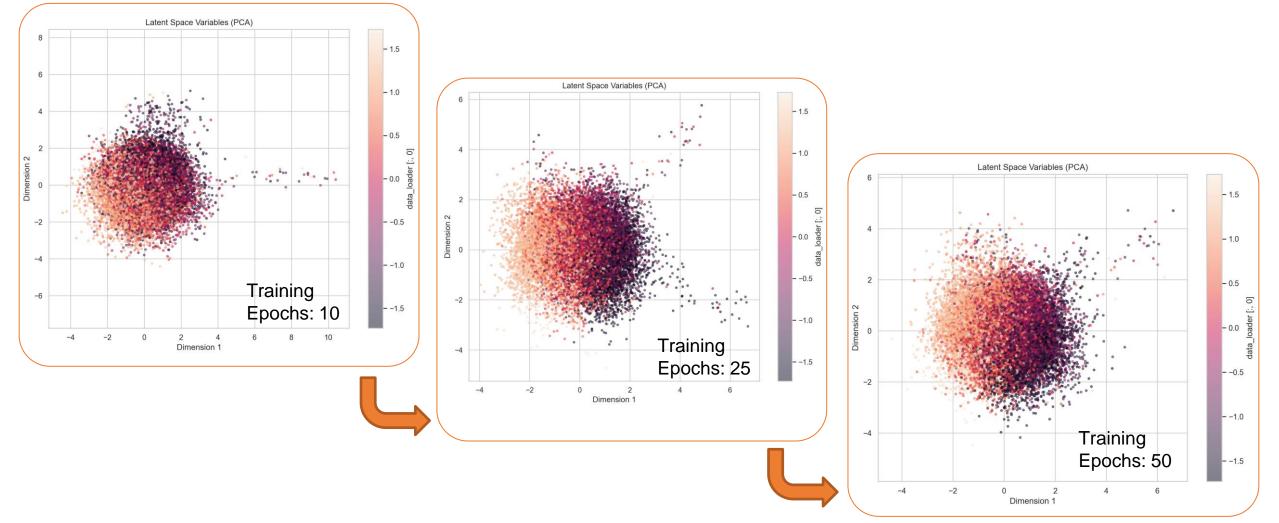
6. Data Exploration

- outliers_method = 'DBSCAN',
- replace_method = 'kneighbors_regressor'



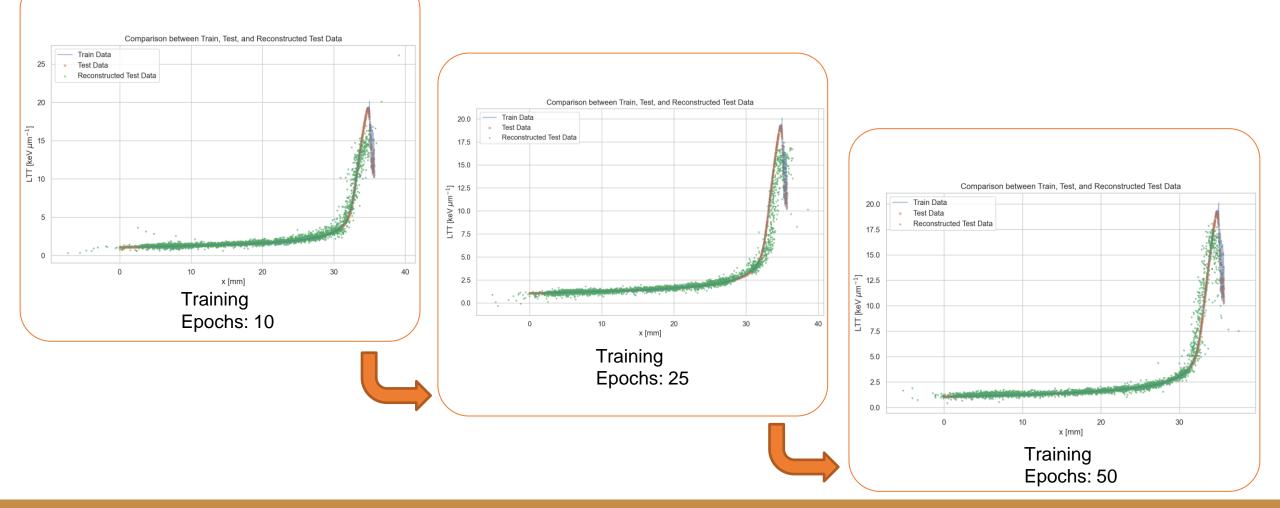
7. Super-Resolution model = Variational Autoencoder

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



7. Super-Resolution model: Latent Space Evolution

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



7. Super-Resolution model: Test vs Reconstructed Data

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

to generate predictions.

KPI ID Description Acceptance threshold KPI2.6.1.1 Publications 1 KPI2.6.1.2 Presentation at conferences 1 1 KPI2.6.1.3 Publicly available Code repository 1 KPI2.6.1.4 Use case Test Datasets defined KPI2.6.1.5 1 🗸 Geant4 Algorithms to be used as targets for a ML optimization KPI2.6.1.6 Efficiency Gain on the same hardware: The 20% in time reduction, with improved simulation, when run on the same acceptable physics performance hardware as the standard simulation, should achieve at least a 20% reduction in the time taken

8. Where are we now?

Achievements:

✓ Talk delivered at Congress of the Italian Physical Society (Bologna, September 9-13, 2024)

✓ 1st release of a public accessible code <u>repository</u>

Testing and validation on chosen dataset

LET calculation algorithm is the primary target for optimization by ML model for super-resolution task

KPI ID	Description	Acceptance threshold
KPI2.6.1.1	Publications	1
KPI2.6.1.2	Presentation at conferences	1 🗸
KPI2.6.1.3	Publicly available Code repository	1 🗹
KPI2.6.1.4	Use case Test Datasets defined	1 🗸
KPI2.6.1.5	Geant4 Algorithms to be used as targets for a ML optimization	1 🖌
KPI2.6.1.6	Efficiency Gain on the same hardware: The improved simulation, when run on the same hardware as the standard simulation, should achieve at least a 20% reduction in the time taken to generate predictions.	20% in time reduction, with acceptable physics performance

8. Where are we now?

Next Steps:

- Publish a paper in a peer-reviewed journal as soon as the ML model produces satisfactory results
- Create a pipeline to directly interface the ML model with the MC simulation and estimate the efficiency gain
- Test the ML model on the entire dataset, including the tail after the Bragg Peak
- Test of additional model strategies (stacked or chained AE, GAN...)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Università di Catania

www.supercomputing-icsc.it

Acknowledgements

"This work is supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU".

Istituto Nazionale di Fisica Nucleare Sezione di Catania

Thank you for the attention!

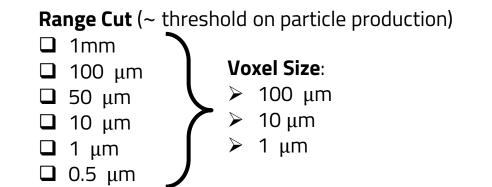
Resources Required

LEONARDO BOOSTER-GPU					
Minimum Number of GPU hours	3000				
Optimal Number of GPU hours	6000				
Maximum number of usable GPU	2 (via tensorflow/ pytorch)				
Total RAM	512 GB				

CLOUD					
Data storage	ata storage 5 TB				
vCPU Number		24			
	Time (Hours)	1600			
Optimal number of core		90			
	Total RAM	512 GB			

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Cut(um)	Voxelsize(um)	Exec Time	CPU(%)	MEM(%)
1000	100	00h.00m.11s	16.72	0.08
100	100	00h.00m.12s	18.39	0.08
50	100	00h.00m.15s	20.48	0.09
10	100	00h.00m.26s	26.96	0.09
1	100	00h.02m.33s	31.86	0.1
0.5	100	00h.02m.36s	31.83	0.1
1000	10	00h.00m.43s	28.99	0.1
100	10	00h.00m.45s	29.27	0.1
50	10	00h.00m.51s	29.42	0.1
10	10	00h.01m.28s	30.98	0.1
1	10	00h.04m.12s	32.23	0.1
0.5	10	00h.04m.10s	32.26	0.1
1000	1	00h.06m.14s	31.72	0.1
100	1	00h.06m.25s	31.7	0.1
50	1	00h.07m.10s	31.62	0.1
10	1	00h.08m.47s	31.85	0.1
1	1	00h.15m.04s	32.3	0.2
0.5	1	00h.15m.00s	32.25	0.2


N particles = 5 x 10⁵

4. Execution time

- AMD EPYC 7552 96 Core
- 512 GB RAM

N=32 Threads

