

Finanziato dall'Unione europea NextGenerationEU

Quasi interactive analysis of big data with high throughput: where are we now?

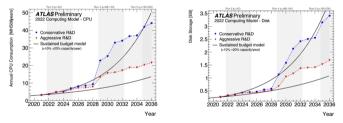
Tommaso Diotalevi & Francesco Giuseppe Gravili

University of Bologna & University of Salento

ICSC Spoke2 Annual Meeting - December 11th, 2024 Physics Dept. and INFN, Catania

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing





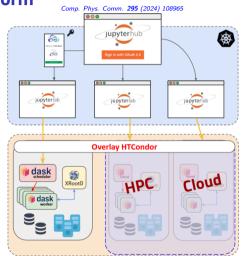
Motivation

High-Luminosity CERN LHC \implies increased amount of resources both for *ATLAS* and *CMS*

- CPU and storage optimization
- Usage of new data format and procedures
- Export innovative analysis paradigms, e.g. P. Mastrandrea's lightning talk
- Infrastructure available to non-HEP contexts

Flagship Activities

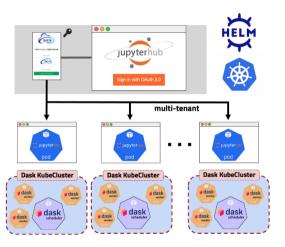
- UC2.2.2 document available as GoogleDoc (including KPI table)
- Official mailing list: cn1-spoke2-wp2-analysisfacility@lists.infn.it
- > Several analysis already implemented or in ongoing state (list not fully comprehensive):
 - ATLAS: SUSY search in events with two opposite-charge leptons, jets and missing transverse momentum, using LHC Run2 data. Anomaly Detection in fully hadronic events with message passing based Graph Neural Networks. CP eγ calibrations.
 - \blacktriangleright CMS: Muon detector performance analysis. Search for LFV decays $au o 3\mu$. Top quark + MET analysis
 - FCC-ee: Reconstruction and scalability tests at Z-pole
 - Others: Declarative paradigms for analysis description and implementation, Continuous Integration pipelines
- Ongoing assessment criteria definition to evaluate improvements. Benchmark tests in *T. Tedeschi's talk*
- Several contributions at major Italian and International Conferences: ACAT, CHEP, ICHEP, IFAE, SIF



Initial prototype: the CMS-INFN platform

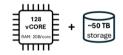
- Access to a single JupyterHub and authentication token-based (Indigo-IAM)
- Several JupyterLab notebooks for tasks
- Configurable Python3 kernel (containers), with working environment
- Based on standard industry and open-source technologies
- HTCondor-based overlay (also available in standalone conditions)
- DASK library to distribute the execution: scale from 1 to N cores
- Interfaced with WLCG (using XRootD, WebDAV, etc.)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Towards a DataLake infrastructure

- Deployment of the Kubernetes resources handled via *HELM Charts*
- Full IDE (storage, terminals, notebooks, editors) once the deployment of JupyterLab image is complete
- Execution distributed on highly customizable Dask KubeCluster(s), e.g. number of cores, chosen by users, to parallely distribute the task
- Offloading strategy: spawning on multiple remote sites accross Italy, allowing for heterogeneous resources



Resource Status

Resources approved by RAC and first batch recently provisioned!

- Current phase: deployment of the cloud infrastructure, available to all interested parties
 - → Entrypoint here
 - → 128 vCORE (with 2GB RAM per core)
 - → 50 TB for storage (volume dynamic allocation + user working areas)
 - $\rightarrow\,$ Ongoing migration of analyses porting, using a prototypal platform running on these resources!

- → Registration to the newborn *IAM-ICSC service*
- → Data management and other aspects under discussion; first *Mini-Workshop* in July

Next phases: up to 670 vCORE for the analyses scale tests, moving towards the finalization of the infrastructure (by the end of the project)

Documentation

- One of UC2.2.2 KPI!
- One common repository for tools and documentation
- Built with Jupyter Book
- Flexible and advanced Markdown
- Pure Python3 package, installation through pip
- Docker image for development
- Implemented automatic workflow to build webpage(s)
- Available to all Spoke2 users

	≡ o¥c0
Centro Matteriale et Recerco in 1996, Rig Data and Chastian Computing	High Rate Analysis User Guide
	This guide is meant to be the fundamental reference for all people willing to understand how to use the High Rate Analysis platform, based on INFN Cloud resources. It is built with <u>Jupyter Book [1]</u> .
ure Details Access	A Warning
	Work in progress documentation! In case of comments, questions or issues, please contact <u>Francesco</u> <u>G. Gravili</u> or refer to the GitHub repository linked on top of the page.
	Acknowledgements
	The content of this guide reflects the efforts of many people: many thanks to everyone who contributed to it!
	References
	 Executable Books Community. Jupyter Books. feb 2020. URL: <u>Q executablebooks/upyter-book.</u> doi:10.5281/zenodo.4539666.
	Next Infrastructure Details
	By ICSC - Spoke 2 © Copyright 2024.

Official Spoke2 GitHub Repository

Workshop on "Quasi interactive analysis with high throughput"

Where?

Bologna, Italy. 8-9-10 January 2025. Link to the agenda

- First part open to everyone, with lectures and hands-on covering aspects on distributed data analysis with ROOT and pure Python (with CERN experts).
- Second part <u>restricted</u> to experiment communities, covering specific analyses' overview as well as future perspectives given by the collaboration side-groups.

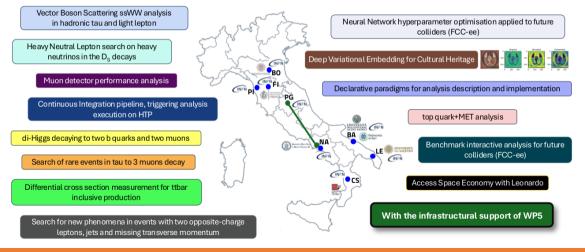
Registration is still open!

Conclusions

- Starting from activities within big collaborations at CERN, a new High Throughput Platform has been developed
 - Based on interactive workflows and declarative paradigms
 - Running on distributed and heterogeneous resources
- Several analysis from the HEP world are already testing such infrastructure, for performance measurements
- First batch of resources allocated by RAC: preliminary tests using ICSC resources are ongoing
- Once fully operational, the platform will be available to the entire ICSC Community, including external and industrial partners
- **NEXT APPOINTMENT**: *ICSC Workshop* on Analysis Facilities, 8-10 January in Bologna!

Backup

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



Flagship activities

