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Quantum Chromodynamics

is the theory of strong interactions
• part of the Standard Model of particle

physics
• explains how protons and neutrons are

made from their constituents
how they get their mass

• and how protons and neutrons are bound
in atomic nuclei

femtoscale: typical length scale ≈ 1 fm = 10−15 m (hydrogen atom is 10−10 m)
⇒ typical energy scale ≈ 200 MeV (or 20 million times the energy to ionize an atom)

QCD is a quantum field theory
• non-abelian gauge theory of quarks and gluons [Fritzsch, Gell-Mann 1973]

• renormalizable, asymptotically free [Gross, Wilczek 1973, Politzer 1973]

⇒ at low energies non-perturbative approach is needed
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lattice QCD

𝑎

quark
gluon

a discretization of QCD on a four-dimentional lattice
[Wilson 1974]

• Euclidean space-time is discretized
• 𝑎 is the lattice spacing

usually, 𝑎 ≈ 0.02 fm–0.2 fm
• gluons live on links between sites
• quarks live on sites

⇒ enables numerical solution of QCD on supercomputers
• ab initio — only experimental input to set the scale
• continuum limit is recovered for 𝑎 → 0

(implies 𝐿 → ∞)
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lattice QCD fundamentals
the QCD path integral regularized on the lattice can be rigorously defined

⟨𝑃 (𝑥)𝑃 (0)⟩ = ∫ d𝑈𝜇(𝑥) |𝐷[𝑈]−1(𝑥, 0)|
2exp{−𝑆𝑔[𝑈]} det 𝐷[𝑈]2

• 32 integrals per lattice site ⇒ millions of integrals!!
• has the form of a high-dimensional probability distribution

curse of dimensionality ⇒ Monte Carlo integration with importance sampling
typical Monte Carlo workflow

1. generation: sample {𝑈} according to 𝑝[𝑈] ∝ det{𝐷[𝑈]} ∝ exp{−|𝐷[𝑈]−1𝜙|
2} > 0

2. measurement: compute 𝑂̂ = (1/𝑛) ∑𝑖 𝑂[𝑈𝑖] with 𝑂[𝑈] = |𝐷[𝑈]−1(𝑥, 0)|
2

the Dirac operator 𝐷[𝑈] is a sparse matrix of size [3 × 4 × 𝐿4]2 ⇒ [107–109]2

𝐷[𝑈] ⋅ 𝜓 = 𝜂

solving the Dirac equation is the most computationally expensive part, both in the generation and measurement
• benchmark for Lattice QCD algorithms and software
• we use iterative methods for sparse linear systems: Krylov-subspace solvers, e.g. CG, BiCGSTAB, …
• but the best algorithms are inspired by the physics behind 𝐷[𝑈], e.g. deflated GCR, multigrid solvers, …
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the software that we use
mutual feedback loop: physics ⇔ algorithms ⇔ software

⇒ no commercial software packages, we write our own code

openQCD [Lüscher, Schaefer 2013, https://luscher.web.cern.ch/luscher/openQCD]

• written in C89, open source, GPL license
• lattice is decomposed in 4d grid of local lattices,

one process per CPU core, halo communication using MPI
• since version 2.4 (1st May 2022), also OpenMP parallelization
• handwritten AVX+FMA3 inline-assembly optimizations
• implements HMC and SMD algorithms,

deflated SAP-accelerated GCR solver, …

Grid: Data parallel C++ mathematical object library
[Boyle et al. 2015, https://github.com/paboyle/Grid]

• portable (runs on GPUs), open source, GPL license
• automatic SIMD vectorization
• hybrid OpenMP and MPI parallelization Overdecomposed physical node

SIMD vector
Virtual nodes
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lattice QCD at the HPC frontier
TOP500 - November 2024

Rank System Cores

Rmax

(PFlop/s)

Rpeak

(PFlop/s)

Power

(kW)

1 El Capitan - HPE Cray EX255a, AMD 4th

Gen EPYC 24C 1.8GHz, AMD Instinct

MI300A, Slingshot-11, TOSS, HPE

DOE/NNSA/LLNL

United States

11,039,616 1,742.00 2,746.38 29,581

2 Frontier - HPE Cray EX235a, AMD

Optimized 3rd Generation EPYC 64C 2GHz,

AMD Instinct MI250X, Slingshot-11, HPE

Cray OS, HPE

DOE/SC/Oak Ridge National Laboratory

United States

9,066,176 1,353.00 2,055.72 24,607

3 Aurora - HPE Cray EX - Intel Exascale

Compute Blade, Xeon CPU Max 9470 52C

2.4GHz, Intel Data Center GPU Max,

Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

9,264,128 1,012.00 1,980.01 38,698

4 Eagle - Microsoft NDv5, Xeon Platinum

8480C 48C 2GHz, NVIDIA H100, NVIDIA

Infiniband NDR, Microsoft Azure

Microsoft Azure

United States

2,073,600 561.20 846.84

5 HPC6 - HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD

Instinct MI250X, Slingshot-11, RHEL 8.9,

HPE

Eni S.p.A.

Italy

3,143,520 477.90 606.97 8,461

6 Supercomputer Fugaku - Supercomputer

Fugaku, A64FX 48C 2.2GHz, Tofu

interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

7,630,848 442.01 537.21 29,899

7 Alps - HPE Cray EX254n, NVIDIA Grace

72C 3.1GHz, NVIDIA GH200 Superchip,

Slingshot-11, HPE Cray OS, HPE

Swiss National Supercomputing Centre

(CSCS)

Switzerland

2,121,600 434.90 574.84 7,124

8 LUMI - HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD

Instinct MI250X, Slingshot-11, HPE

EuroHPC/CSC

Finland

2,752,704 379.70 531.51 7,107

9 Leonardo - BullSequana XH2000, Xeon

Platinum 8358 32C 2.6GHz, NVIDIA A100

SXM4 64 GB, Quad-rail NVIDIA HDR100

Infiniband, EVIDEN

EuroHPC/CINECA

Italy

1,824,768 241.20 306.31 7,494

10 Tuolumne - HPE Cray EX255a, AMD 4th

Gen EPYC 24C 1.8GHz, AMD Instinct

MI300A, Slingshot-11, TOSS, HPE

DOE/NNSA/LLNL

United States

1,161,216 208.10 288.88 3,387

11 MareNostrum 5 ACC - BullSequana

XH3000, Xeon Platinum 8460Y+ 32C

2.3GHz, NVIDIA H100 64GB, Infiniband

NDR, EVIDEN

EuroHPC/BSC

Spain

663,040 175.30 249.44 4,159
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[Akira Ukawa 2014]

HPC resources used within Lattice QCD group @ U. Milano-Bicocca
• EuroHPC Extreme Scale Access on LUMI

⇒ No. 8 in Top 500 - Nov. 2024
• INFN-Cineca agreement and ICSC RAC on Leonardo

⇒ No. 9 in Top 500 - Nov. 2024
• EuroHPC Extreme Scale Access on MareNostrum 5

⇒ No. 11 in Top 500 - Nov. 2024
• many smaller others used for r&d
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weak scaling example I
of openQCD’s Dw and Dw_dble
on MareNostrum5 GPP (each node: 2× Intel Xeon Platinum 8480+ 56C@2 GHz + 100 Gbit/s network)
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weak scaling, local problem size 24 × 36 × 36 × 36, 54 OpenMP threads

Dwhat()
Dw()
Dwhat_dble()
Dw_dble()

• 4d communication not needed below 16 nodes • near-perfect efficiency ≥ 16 nodes
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weak scaling example II
of Grid’s DomainWallFermion::Dhop
on MareNostrum5 GPP
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weak scaling, local problem size 16 × 16 × 16 × 16, 56 OpenMP threads

Dhop EO fp32
Dhop fp32
Dhop EO
Dhop

• 4d communication not needed below 16 nodes • near-perfect efficiency ≥ 16 nodes
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strong scaling example
of Grid’s DomainWallFermion::Dhop
on MareNostrum5 GPP
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strong scaling, global problem size 64 × 64 × 64 × 64, 56 OpenMP threads

Dhop EO fp32
Dhop fp32
Dhop EO
Dhop

• near-perfect speedup from parallelizing the same problem over 500 nodes / 50 thousand cores
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performance and bottlenecks

a Dirac operator application has low computational intensity
• favour architectures with higher memory bandwidth per core
• using multiple RHS improves things

ensemble generation with Markov-chain Monte Carlo is intrinsically serial
⇒ strong scaling to many nodes (thousands of cores) is crucial

• network communication must be fast and low latency, e.g. InfiniBand
• each rank has 8 neighbours in a 4𝑑 torus, network topology also plays a role

measurement runs may be trivially parallelizable
• less scaling, but still tens of nodes/hundreds of cores
• some workflows require a lot of RAM
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conclusions and outlook

QCD can be solved on the lattice through highly-parallelized HPC simulations
• crucial role of the algorithmic developments inspired by physics

⇒ enables huge lattices, e.g. master-field approach
• future architectures will have more (lower-precision) flops per memory and network bandwidth

⇒ multiple RHS, matrix operations required to saturate the machine
• hierarchy and locality must be considered ⇒ domain decomposition, multi-level integration stategies

HPC enables progress towards answering open questions in particle physics
• sub-percent determination of the hadronic contribution to the muon anomalous magnetic moment (𝑔 − 2)
• study of the nuclear matter under extreme conditions, e.g. 𝑇s up to 𝑂(100 GeV)
• determination of the strength of the strong interactions ⇒ coupling 𝛼𝑠
• … and much more

thanks for your attention!
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backup slides



lattice QCD workflow

Physical 
results

Lattice 
measurement

Gauge field 
generation

Software 
development

Formal 
development

Algorithmic 
development
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three levels of HPC usage
small

[knuth @ dip. Fisica, U. Bicocca]

dedicated small clusters,

• algorithms r&d
• new software testing

medium

[MOGON II @ JGU Mainz, July ’17]

shared access to
university / tier-1 clusters,

• scaling testing
• r&d at scale
• project production

large

[Leonardo @ Cineca]

tier-0 supercomputer access
through large-scale applications,

• large project production
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three levels of HPC usage
small

[knuth @ dip. Fisica, U. Bicocca]

dedicated small clusters,

e.g. knuth:
36 dual 16-core Epyc 7302

medium

[MOGON II @ JGU Mainz, July ’17]

shared access to
university / tier-1 clusters,

e.g. MOGON II @ JGU Mainz:
822 dual 10-core Xeon E5-2630v4
1136 dual 16-core Xeon Gold 6130
top500 66th on 11/2017

large

[Leonardo @ Cineca]

tier-0 supercomputer access
through large-scale applications,

e.g. through EuroHPC:
• 120 Mcore-h on LUMI-C @ CSC
• 50 Mcore-h on Leonardo @

Cineca
+ similar for GPU clusters
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typical Monte Carlo work flow

1. gauge field configurations generation
using Markov-chain Monte Carlo methods, e.g. Metropolis-Hastings algorithm

• local update methods are fast without quarks, but 𝑝[𝑈] ∝ det{𝐷[𝑈]} is non-local
• state-of-the-art hybrid Monte Carlo (HMC): Molecular Dynamics update proposal + Metropolis accept-reject step

⇒ intrinsically serial task ⇒ strong scaling is crucial!

2. lattice measurements
key building block: correlation functions

• some trivial parallelization is possible, but large problems still require large partitions
e.g. correlator measurements on 1924 lattice on 256 nodes of dual EPYC 7763 @ LUMI-C

• observable measurements is usually (but not always!) less expensive
⇒ configurations are saved and libraries are shared in large collaborations

• signal-to-noise of correlators is often poor
⇒ standard Monte Carlo scales only ∝ 1/√𝑛

in both cases, the Dirac operator 𝐷[𝑈] plays a crucial role

Marco Cè (U. Milano-Bicocca) lighting talk:Lattice QCD in the exascale computing era 11/12/2024 iii



lattice QCD on GPUs

lattice theory at the early GPU frontier: pioneering work in 2007
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www.elsevier.com/locate/cpc

Lattice QCD as a video game
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Abstract

The speed, bandwidth and cost characteristics of today’s PC graphics cards make them an attractive target as general purpose computational
platforms. High performance can be achieved also for lattice simulations but the actual implementation can be cumbersome. This paper outlines
the architecture and programming model of modern graphics cards for the lattice practitioner with the goal of exploiting these chips for Monte
Carlo simulations. Sample code is also given.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The goal of every lattice field theorist is to use a calculational platform that maximizes the performance/price ratio. In this paper
a competitive but so far unused and unappreciated (at least in the lattice community) architecture will be introduced.

So far the only available option was the usage of CPU-based platforms may it be individual PCs, PC clusters, dedicated super-
computers such as QCDOC or APE or commercial supercomputers such as BlueGene/L. The actual calculational task in all of these
solutions is done by CPU’s which significantly vary in terms of features but are similar in the sense that they all share a very general
purpose architecture. In recent years a rapidly developing specialized architecture emerged from the graphics industry, Graphical
Processing Units or GPU’s which took over some of the calculational tasks of the CPU. These chips are designed to fulfill the
needs of a graphics oriented audience (gamers, designers, etc.) and hence were specialized to the kind of task this set of users most
frequently need i.e. graphical processing. However the complexity of this task grew to a level that general programmability of the
chips was also required. The end product of this evolution is a high performance chip optimized for SIMD floating point operations
on large vectors that can be utilized for general purpose calculations such as lattice field theory.

Figs. 1 and 2 show sustained performances for both Wilson and staggered matrix multiplication on various lattice sizes and a
comparison is given with SSE optimized CPU codes on an Intel P4. Considering the fact that the price of the current top GPU
models are around $500 it becomes clear that they are very cost effective. For reference we give some numbers from Fig. 1 for the
NVIDIA 8800 GTX card: 33 Gflops sustained performance on a 163 × 60 lattice using the Wilson kernel. Another good reason for
investigating graphics hardware is the fact that the performance growth rate is still a steep exponential for GPU’s [1].

The relatively low price tag of GPU’s is of course the result of the large market value of their target audience (gamers, designers,
etc.) which was also the reason why ordinary PCs proved to be very cost effective in the past [2,3].

The question of scalability is of course an important one for any high performance calculational platform and for GPU’s this
aspect has not yet been explored in detail for lattice applications. The various possibilities for using multiple GPU’s in a parallel

* Corresponding author at: Department of Physics, University of Wuppertal, Germany.
E-mail address: fodor@bodri.elte.hu (Z. Fodor).

0010-4655/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2007.06.005
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QUDA with a Q

[https://lattice.github.io/quda/]

a library for QCD on GPUs [Clark et al. 2010]

• open source, BSD license
• based on CUDA, developed in collaboration with Nvidia
• heavily optimized to hide communication behind computation
• Nvidia-specific

not anymore: HIP (merged), SYCL (in review) and OpenMP (in development) support [Clark Lattice 2023]

but
• algorithm development on GPUs is hard!
• not all workflows are easily portable

also: Grid now supports GPUs
• SIMD lanes on CPUs map to GPU threads
• CUDA, HIP, SYCL, OpenMP offloading
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storage

state-of-the-art gauge field ensemble: a few hundred 192 × 963 gauge field configurations
• each configuration is 18 float64 × 4 × 𝐿𝑡 × 𝐿3

𝑠 = 91 GiB
• MC produces ≲ 10 every day
• (part of) checkpoints, but also input of measurement calculations
• configurations are expensive and saved for reuse

⇒ sizeable storage needs included in HPC resources applications
• measurement runs are more scalable, but configurations need to be moved
• Dirac equation solves for measurements are also expensive: alternative workflows save the solutions to disk
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2001: the Berlin wall

cost of simulating QCD with Wilson fermions
estimated at the Lattice 2001 conference in Berlin [Ukawa, Nucl. Phys. B Proc. Suppl. 2002]

cost ≈ 2.8[
#conf.
1000 ][

𝑀𝜋/𝑀𝜌

0.6 ]
−6

[
𝐿

3 fm]
5

[
𝑎−1

2 GeV]
7
Tflops ⋅ year

with year 2000 algorithms, 100 conf. of 192 × 963, 𝑎 = 0.064 fm would cost 280 Pflops ⋅ year
⇒ ≈ 640 billion core hours!!

today, this calculation can be done in about 20 million core hours, 32 thousand times faster!!
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tearing down the wall

• Sexton–Weingarten multiple time-step integration [1992]

• Hasenbusch factorization [2001]

and mass preconditioning [Urbach et al. 2006]

• domain decomposition [Lüscher 2004]

and low-modes deflation [Lüscher 2007]

• the rational HMC algorithm [Clark, Kennedy 2007]

• multigrid solvers [Brannick et al. 2008]

• open boundary conditions against topology freezing [Lüscher, Schaefer 2011]
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tearing down the wall14 Computation of quark propagators

0 50 100 150 200 250
(amval)−1

0

100

200

300

400

t [sec]

mval = msea

EO+BiCGstab

SAP+GCR

DFL+SAP+GCR

Fig. 1.9 Computer time needed for the solution of the O(a)-improved Wilson–Dirac equation

in two-flavour QCD on a 64×323 lattice with spacing a = 0.08 fm. In these tests, the sea-quark

mass msea was 26 MeV, the valence-quark mass mval ranged from about 15 to 90 MeV and

the relative residue of the solution was required to be 10−10. All timings were taken on a PC

cluster with 64 (single-core) processors.

acts on fields on the block lattice with Ns complex components. An exact solution of
the little system is therefore not practical on large lattices.

In the case of the Wilson–Dirac operator and its relatives, the little Dirac opera-
tor has only nearest-neighbour couplings among the blocks. The solution of the little
system may then be obtained iteratively using the even-odd preconditioned GCR al-
gorithm, for example. The effort required for the solution of the little system is nev-
ertheless not completely negligible and it is advisable to consider solving the deflated
right-preconditioned system

PLDRφ = η⊥, ψ⊥ = PRRφ, (1.55)

instead of the deflated equation directly, the operator R being a suitable preconditioner
for D. A preconditioner that has been used in this context is the Schwarz alternating
procedure (Lüscher, 2004). The important point to note is that the preconditioner
tends to reduce the high-mode components of the residue of the current approximate
solution, while the low-mode component of the residue is projected away by the pro-
jector PL. Deflation and right-preconditioning thus tend to complement one another.

The performance figures plotted in Fig. 1.9 show that local deflation works very
well in lattice QCD. In this study, the block size was taken to be 44 and Ns was set to
20. With respect to the even-odd preconditioned BiCGstab algorithm (points labeled
EO+BiCGstab in the figure), the deflated Schwarz-preconditioned GCR algorithm
(DFL+SAP+GCR) achieves an acceleration by more than an order of magnitude at
the smallest quark masses considered.
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Fig. 2.3 Number of floating-point operations required for the generation of 100 statistically

independent gauge-field configurations in O(a)-improved two-flavour QCD on a 64 × 323

lattice with spacing a = 0.08 fm. The top curve (Ukawa, 2002) represents the status reported

at the memorable Berlin lattice conference in 2001, the middle one was obtained a few years

later, using the so-called domain-decomposed HMC algorithm (Lüscher, 2005; Del Debbio

et al., 2007), and the lowest curve shows the performance of a recently developed deflated

version of the latter (Lüscher, 2007b).

Starting from this formula, it is then not difficult to show that the algorithm correctly
simulates the distribution (2.75).

2.5.2 Performance of the HMC algorithm

The force F that drives the molecular-dynamics evolution in step (b) of the algorithm
has two parts, F0 and F1, the first deriving from the gauge action and the other from
the pseudo-fermion action in the Hamilton function (2.78). In the case of the Wilson
theory, for example, the forces are

F a
0 (x, µ) = −Re tr{T aU(x, µ)M(x, µ)}, (2.80)

F a
1 (x, µ) = −2Re

(
γ5D

−1γ5ψ, δa
x,µDψ

)
, ψ = D−1φ, (2.81)

where M(x, µ) is the staple sum (2.47) previously encountered in the pure gauge theory
and

(δa
x,µDψ)(y) =

δx+µ̂,y
1
2 (1 + γµ)U(x, µ)−1T aψ(x) − δx,y

1
2 (1 − γµ)T aU(x, µ)ψ(x + µ̂). (2.82)

Note that the computation of the pseudo-fermion force F1 requires the Dirac equation
to be solved two times. The by far largest fraction of the computer time is then usually

[Lüscher, Les Houches 2009]
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