

Project status and outlook Cristiano Bozza @UNISA

Goal of GAIAS2: Demonstrate and develop the use of generative techniques (GAN) for the production of simulations of cascades from cosmic rays in the atmosphere

Activities:

- A) Definition of the benchmark simulations for cosmic ray interactions
- B) Comparison among benchmark simulations with CORSIKA 7 and CORSIKA 8
- **C)** Definition of the extensive air shower model for the neural network
- **D)** Test of extensive air shower generation by GAN and comparison with benchmark simulations

We will be using $5 \times A40$ of the computing cluster at the Department of Physics of UNISA

Request: 1 node from LEONARDO Booster with 4 × A100 (50%)

Scientific goals are unchanged

Project status (Q1)

Time Total time elapsed: **25**%

Activities

A): 75% B), C) ready to start D) Starting in February 2025

Accounted costs

Up to 30/11/2024: 37,7 k€ = **24.1**%

Indicators and Deliverables

I1: Creation of the technical/scientific specifications (qualitative parameter) for the simulation of secondary particle showers from high-energy cosmic interactions
 – Report (hypertext)

I2: Creation of benchmarks for at least 2 different software (quantitative parameter) and for
10 different types of cosmic rays (protons of various energies)
– Report (hypertext)

I3: Creation of specifications for GANs (qualitative parameter)– Report (hypertext)

I4: Acceleration of computations with GANs by at least 50% compared to traditional simulation with CORSIKA 7/8 (quantitative parameter).
– Paper submission

Official site

- https://gaias2-icsc.github.io/home (will be moved to the ICSC GitHub)
- All code and results are published
- Deliverables for 11, 12, 13 will be published on the site

MIT Licence

Connections

GAIAS2 reuses CORSIKA containers developed for the ConCORDIA inititative in ESCAPE (H2020)

Outlook

Already from preliminary production, we contend to the generation of events with GAN

We expectd dramatic improvements for high-energy events, in particular with respect to simulations based on the EPOS interaction model

Risks and criticalities

As of today we do not see any

