EuPRAXIA-DN Camp I: Technologies

Contribution ID: 29

Type: Oral Presentation

Generating VHEE Beams from a Laser-Plasma Accelerator and Characterizing their Stability for Medical Applications

Tuesday, 8 April 2025 10:15 (15 minutes)

Laser-driven Plasma Accelerators (LPAs) have emerged as compact (sub-)picosecond sources of Very High Energy Electron (VHEE, energy \geq 50 MeV) beams. VHEE beams are of great interest to the medical physics community for their applications in radiotherapy in the Ultra-High Dose-Rate (UHDR) domain. Our experiments focus on optimizing VHEE beam stability and reproducibility from an LPA.

Using different gas mixtures with varying N₂ concentrations (1%, 2%, and 5% N₂ in He), experimental results show stable electron beams consistently peaking around 50 MeV, with high charge-per-shot (~450 pC/shot) and minimal charge fluctuations (<10%). Such beam stability and consistent peak energy directly contribute to improved dose accuracy and reliability, essential for clinical radiotherapy applications. Real-time diagnostics, including online spectrometry, beam profiling, and charge measurements, were developed and enabled precise control & monitoring, significantly advancing our capability to optimize beam parameters.

Plasma density profiles and laser focus measurements provided necessary inputs for complementary Particlein-Cell (PIC) simulations to investigate the underlying physical mechanisms. These advancements establish a solid foundation for active-feedback stabilization strategies and higher repetition-rate operations, essential steps toward practical medical applications. Moving forward, integrating these beam stability improvements into clinical setups and exploring robust feedback control methods remain exciting challenges.

Primary author: VARMA, Chaitanya (Laboratoire d'Optique Appliquée)

Presenter: VARMA, Chaitanya (Laboratoire d'Optique Appliquée)