

www.ino.it

Laser beams under tight focusing conditions and electron charge diagnostics in a laser-plasma environment

David Gregocki

david.gregocki@ino.cnr.it

Consiglio Nazionale delle Ricerche (CNR), Istituto Nazionale di Ottica, Pisa, Italy Dipartimento di Fisica, Università di Pisa, Pisa, Italy

Table of contents

1 - Laser beams under tight focusing conditions

- **1.1** Motivation
- **1.2** Theoretical layout
- 1.3 Results

2 - Electron charge diagnostics in a laser-plasma environment

2.1 Motivation2.2 General description2.3 Experimental setup2.4 Results

www.ino.it

2 - Laser beams under tight focusing conditions

1.1 Motivation:

- Off-Axis Parabolic (OAP) mirrors are an important element in many high-power laser facilities
- Able to focus laser pulses to relativistic intensities $\gtrsim 10^{18} \text{W/cm}^2$
 - Enabling new studies in laser-matter interactions
- However, unexpected field distortions can seriously impact the interaction and results
 - Hamper reaching maximum intensity in the focus
 - Limit the efficiency
 - Impact the particle pointing direction in laser particle acceleration
- These distortions are **more pronounced under** tight focusing conditions (**f/#<1**)
- Therefore, the exact knowledge of focused electromagnetic fields is essential

1.2 Theoretical layout:

• The OAP surface can be defined by the following equations

$$z = \frac{(x^2 + y^2)}{4f_p}, \qquad (x - d_{\text{OAD}})^2 + y^2 \le \left(\frac{D}{2}\right)^2,$$

where D is the OAP diameter. Based on the geometry

$$f = \sqrt{(f_p - ad_{\text{OAD}}^2)^2 + d_{\text{OAD}}^2},$$

$$\tan\left(\theta_{\rm OA}\right) = \frac{d_{\rm OAD}}{f_p - ad_{\rm OAD}^2} \quad \land \quad f = \frac{d_{\rm OAD}}{\sin(\theta_{\rm OA})}$$

1.2 Theoretical layout:

J. A. Stratton and L. J. Chu, Phys. Rev. 56, 99-107 (1939) L. Labate, High Power Laser Sci. Eng. 6, e32 (2018) L. Labate, Appl. Opt. 55, 6506-6515 (2016)

• Based on the Stratton-Chu theory, if the electric and magnetic fields are known on a closed surface A, then the

diffracted fields at a point x_p in the far-field are defined as

$$\mathbf{E}(\mathbf{x}_p) = \frac{1}{4\pi} \int_A [\mathbf{i}k(\hat{\mathbf{n}} \times \mathbf{B})G + (\hat{\mathbf{n}} \times \mathbf{E}) \times \nabla G + (\hat{\mathbf{n}} \cdot \mathbf{E})\nabla G] dA$$
$$\mathbf{B}(\mathbf{x}_p) = \frac{1}{4\pi} \int_A [\mathbf{i}k(\mathbf{E} \times \hat{\mathbf{n}})G + (\hat{\mathbf{n}} \times \mathbf{B}) \times \nabla G + (\hat{\mathbf{n}} \cdot \mathbf{B})\nabla G] dA,$$

where k is the angular wavenumber of the incident pulse, G is the Green function

$$G(\mathbf{x}) = G(\mathbf{x} - \mathbf{x}_p) = \frac{e^{ik|\mathbf{x} - \mathbf{x}_p|}}{|\mathbf{x} - \mathbf{x}_p|} \equiv \frac{e^{iku}}{u} \qquad \wedge \qquad \nabla G(\mathbf{x}) = ik\left(1 - \frac{1}{iku}\right)\frac{G(\mathbf{u})}{u}\mathbf{u}, \quad \text{where } \mathbf{u} = \mathbf{x} - \mathbf{x}_p \text{ and } u = |\mathbf{u}|$$

and the area element $\mathrm{d}A$ and the normal to the surface $\widehat{m{n}}$ are defined as

$$dA = \sqrt{1 + s(x, y)} dx dy, \quad \hat{\mathbf{n}} = \frac{1}{\sqrt{1 + s(x, y)}} \begin{pmatrix} -x/2f \\ -y/2f \\ 1 \end{pmatrix} \quad \text{where} \quad s(x, y) = (x^2 + y^2)/4f^2$$

www.ino.it

1.2 Theoretical layout:

Considering a 100% reflection, the fields appearing in the Stratton-Chu theory can be written as a function of the incident fields

$$\mathbf{E}(\mathbf{x}) = 2\hat{\mathbf{n}}(\hat{\mathbf{n}}\cdot\mathbf{E}_{\mathrm{Inc}}(\mathbf{x})), \quad \mathbf{B}(\mathbf{x}) = 2\mathbf{B}_{\mathrm{Inc}}(\mathbf{x}) - 2\hat{\mathbf{n}}(\hat{\mathbf{n}}\cdot\mathbf{B}_{\mathrm{Inc}}(\mathbf{x}))$$

thus for the electric field at x_p in the far-field applies

$$\mathbf{E}(\mathbf{x}_p) = rac{1}{2\pi} \int_{ ext{OAP}} ig[ik(\hat{\mathbf{n}} imes \mathbf{B}_{ ext{Inc}})G + (\hat{\mathbf{n}} \cdot \mathbf{E}_{ ext{Inc}})
abla G ig] dA$$

The incident electric field, can be expressed as

$$\mathbf{E}_{\text{Inc}}(\mathbf{x}) = A(x, y) \left(\cos(\delta)\widehat{\mathbf{e}}_{\mathbf{x}} + \sin(\delta)\widehat{\mathbf{e}}_{\mathbf{y}}\right) e^{ikp(\mathbf{x})}$$

where

$$A(x,y) = A_0 \exp\left\{-\frac{1}{2}\left[\left(\frac{x - d_{\text{OAD}}}{\sigma_x}\right)^2 + \left(\frac{y}{\sigma_y}\right)^2\right]^n\right\} \quad \text{and} \quad p(\mathbf{x}) = a\left(d_{\text{OAD}}^2 - (x^2 + y^2)\right)^2$$

1.2 Theoretical layout:

Eventually

$$egin{aligned} E_{j}^{ ext{Re}}(\mathbf{x_{p}},t) &= -rac{1}{\lambda}\int_{ ext{OAP}}A(x,y) imes \left[\Im\mathfrak{m}\left\{g^{(E_{j})}
ight\}\cos\left(kv-\omega t
ight)+\mathfrak{Re}\left\{g^{(E_{j})}
ight\}\sin\left(kv-\omega t
ight)
ight]\mathrm{d}x\mathrm{d}y \ E_{j}^{ ext{Im}}(\mathbf{x_{p}},t) &= -rac{1}{\lambda}\int_{ ext{OAP}}A(x,y) imes \left[\Im\mathfrak{m}\left\{g^{(E_{j})}
ight\}\sin\left(kv-\omega t
ight)-\mathfrak{Re}\left\{g^{(E_{j})}
ight\}\cos\left(kv-\omega t
ight)
ight]\mathrm{d}x\mathrm{d}y \end{aligned}$$

where

1.3 Results:

• Wavefront distortions can be studied from a weighted average of the angles θ weighted by the pulse intensity I

$$ar{ heta} = rac{\sum_i heta_i I_i}{\sum_j I_j} \qquad ext{where} \qquad heta = rccos\left(rac{|k_z|}{|\mathbf{k}|}
ight)$$

• To obtain a rule of thumb in predicting $\bar{ heta}$ for a given OAP configuration

$$\bar{\theta}(f/\#A,B) = A \cdot (f/\#)^B = \frac{\theta_{\text{OA}}}{20.7} f/\#^{-1.9}$$

$\overline{\theta}$ approximation							
$\theta_{\rm OA}$ [°]	A [±0.01°]	$B \pm 0.01$	$\chi^{2} \pm 0.09$				
6	0.27	-1.93	0.43				
12	0.55	-1.91	0.60				
24	1.10	-1.88	1.05				
30	1.38	-1.86	1.28				
45	2.12	-1.83	1.74				
60	2.92	-1.81	1.94				
78	4.06	-1.82	1.62				
90	5.00	-1.85	0.98				

1.3 Results:

So far, only a monochromatic laser pulse has been considered. However, electric fields of non-monochromatic
 20

$$\tilde{E}_j = \sum_{\lambda} \sqrt{\exp\left(-\frac{(\lambda - \lambda_0)^2}{2\sigma_{\lambda}^2}\right)} \left(E_j^{\text{Re}} + iE_j^{\text{Im}}\right)$$

where λ_0 is the central wavelength. Considering λ_0 =800 nm, $\lambda \in < 780,820 >, \sigma_{\lambda} = 15$ nm

• The dependence of $\overline{\theta}$ on θ_{OA} can be compared between mono- and non-monochromatic pulses. In addition, different time periods within the optical cycle of laser can be considered E^{\uparrow}

T_{Mid} T_{Max}

1.3 Results:

EuPRAXIA-DN Camp I: Technologies, 7-8 April 2025, CNR-INO

www.ino.it

01 – Summary I. part

- Off-axis parabolic mirrors are widely used in many high-power laser facilities due to their ability to focus laser pulses to relativistic intensities
- By employing the full Stratton-Chu vector diffraction theory, field distortion effects related to the use of an OAP mirror under tight focusing conditions
- The results point to the distortions in the initially planar laser wavefront. Such distortions are most dominant for increasing off-axis angles.
- Consequently, the relative laser peak intensity and relative energy losses were observed for f/1 and f/0.5 OAP mirrors

2.1 Motivation:

- Integrating current transformers (ICT) have been used as reliable charge diagnostics in the radio-frequency acceleration's community
- Quickly gained popularity also in laser-plasma acceleration (LPA) field thanks to **nondestructive**, energy independent (and compact) charge measurement
 - However, in some cases
 - ICT measurements **overestimated charge** by more than an order of magnitude¹.
 - ICT measurements **overestimated charge** by 3-4 times².
 - Charge measurement **consistent with calibration** Measurement at large distance (**4m**) from interaction region³.
 - Main unwanted contributor to charge overestimation was electro-magnetic pulse (EMP) signal
 - Can we correlate ICT charge and Lanex screen emission signal?
 - Is EMP influence observed also in our case?

¹Glinec et al., Rev. Sci. Instrum. 77, 103301 (2006) ²B. Hidding et al., Rev. Sci. Instrum. 78, 083301 (2007) ³K. Nakamura et al., PRST-AB 14, 062801 (2011)

www.ino.it

2.2 General description:

- Integrating **C**urrent **T**ransformer is a capacitively shorted transformer and a fast read out transformer in a common magnetic circuit
- ICT consists of a coil with magnetic core shaped into a loop through which electron bunches can pass
- Able to bypass low-frequency components while allowing high-frequency signals to pass through = rapid signal transfer
- Core material of high permeability = low hysteresis losses and quick responds

ICT

• It is a passive transformer, and the signal is processed/integrated by the ICT controller

www.ino.it

2.2 General description:

- Electron charge induces a voltage in the coil
- Integrating over this voltage produces an output voltage proportional to the electron beam charge
- Integration is ensured by the integrating operational amplifier (Op-Amps) found in the ICT controller

From Kirchhoff's current law:

 $i_1 = I_B + i_F$ where $I_B = 0$ for ideal Op-Amp

Using the capacitor current equation

$$i_F = C_F \frac{\mathrm{d}(V_2 - V_0)}{\mathrm{d}t}$$

and rewriting i_1

$$i_1 = \frac{V_{\rm in} - V_2}{R_1}$$

 $\frac{V_{\text{in}} - V_2}{R_1} = C_F \frac{d(V_2 - V_0)}{dt} \text{ where } V_2 = 0 \text{ for ideal case}$ $\frac{V_{\text{in}}}{R_1} = -C_F \frac{dV_0}{dt} / \int_0^t V_0 = -\frac{1}{R_1 C_F} \int_0^t V_{\text{in}} dt$ $\int_0^t \frac{V_{\text{in}}}{R_1} dt = -\int_0^t C_F \frac{dV_0}{dt} dt \text{ if } V_0 = 0 \text{ for } t = 0$

2 - Electron charge diagnostics in a laser-plasma environment

2.2 General description:

One window integrates the signal, and the second one integrates the background for noise reduction •

2.2 General description:

One window integrates the signal, and the second one integrates the background for noise reduction .

2.3 Experimental setup:

- LPA generated electrons passed through the Lanex screen after the vacuum-air transition
- Later, they passed through the ICT and RCF (EBT3)
- Afterwards, magnetic spectrometer was placed to measure the electron energy

EuPRAXIA-DN Camp I: Technologies, 7-8 April 2025, CNR-INO

2.3 Experimental setup:

- ICT mount/shielding was designed in Blender
- 3D printed with PLA filament
- The front part allows the collimator to be replaced
- CMC filter ferrite magnet was attached close to the ICT
- Double shielded and grounded BNC cable was used

www.ino.it

ίĹ

2.4 Results:

1. Step: Retrieve the charge from the ICT

		$Q_{\rm ICT}$ [±5 pC]		
Shot no.	RCF 1	RCF 2	RCF 3	RCF 4
1	78.6	56.3	87.3	117.8
2	67.9	90.8	82.5	99.9
3	101.3	55.4	40.4	93.2
4	62.2	42.6	83.3	98.3
5	30.1	82.4	76.2	120.3
6	59.0	113.7	111.8	103.4
7	73.6	76.7	83.0	56.8
8	53.6	83.7	80.5	135.2
9	91.0	91.3	84.9	103.6
10	56.3	59.2	113.4	111.8
Average:	67.4±19.2	$75.2{\pm}20.4$	84.3±19.0	104.0±19.7
Sum:	673.6 ± 15.8	752.1 ± 15.8	843.3 ± 15.8	1040.3 ± 15.8
Dose:	$0.158 {\pm} 0.007$	$0.186 {\pm} 0.009$	0.201 ± 0.010	0.249±0.011

2. Step: Calculate the charge from the dose on the RCF and compare it

• Dose-Fluence equation:

$$D = K \sum_{i} \left(\frac{S}{\rho}\right)_{i} \phi_{i}^{\text{RCF}} \quad \text{where} \quad \phi_{\text{Total}}^{\text{RCF}} = \sum_{i} \phi_{i}^{\text{RCF}}$$

where $K = 1.6 \cdot 10^{-10}$, $\left(\frac{s}{\rho}\right)_i$ is the collision stopping power, and index *i* is the *i*-th energy bin index

Fluence-Charge equation:

$$Q^{RCF} = \phi_{\text{Total}}^{\text{RCF}} \cdot \left(\frac{d}{2}\right)^2 \pi \cdot e$$

 However, the first equation represents undetermined system and additional assumptions needs to be made

2.4 Results:

- For the electron energy measured, $\left(\frac{s}{\rho}\right)_{i}$ changes only at the third decimal place
 - Thus, a weighted average can be assumed instead

• Given the electron energy, a fraction of electrons will be lost and won't deposit a dose to the RCF. Thus, additional simulations are necessary.

www.ino.it

2 - Electron charge diagnostics in a laser-plasma environment

2.4 Results:

- Monte-Carlo simulations to determine a fraction of lost electrons
 - Lost between the ICT and RCF

- Therefore, $\phi_{\text{Total}}^{\text{RCF}} = \sum_i \phi_i^{\text{RCF}} = \sum_i T_i \phi_i^{\text{ICT}}$. Since T_i can be assumed as constant $\forall i$, an average \overline{T} can be considered further
- The Dose-Fluence equation can be simplified

$$D = K \cdot \overline{\left(\frac{S}{\rho}\right)} \cdot \overline{T} \sum_{i} \phi_{i}^{\text{ICT}}$$

- Now, ϕ_{Total}^{ICT} can be expressed and put into the fluence-charge equation

$Q_{\rm RCF}$ [pC]					
	RCF 1	RCF 2	RCF 3	RCF 4	
Single Shot:	54.9±24.3	64.6±31.3	69.9±34.8	86.5±38.2	

relativistic energies

Summary II. part

- Ultrashort and ultraintense laser pulses can be used to accelerate electrons up to
- ICTs provide noninvasive, energy-independent charge monitoring
- In laser-plasma acceleration, electromagnetic signals can influence ICT measurements
- However, with proper ICT shielding and its placement, the overestimation from EMPs can be eliminated

01 - Intense Laser Irradiation Laboratory Overview

Scientific staff:

Leonida A. GIZZI* (Head of lab) Fernando **BRANDI** Gabriele CRISTOFORETTI Petra KOESTER Luca LABATE* Federica **BAFFIGI** Lorenzo FULGENTINI Alessandro FREGOSI term Daniele PALLA term Costanza PANAINO term Simona PICCININI term Martina SALVADORI term Emma **HUME** postdoc Federico AVELLA PhD student David GREGOCKI PhD student Simon VLACHOS PhD student Gianluca **CELLAMARE** (associated)

Antonio **GIULIETTI** associated *Also at Istituto Nazionale di Fisica Nucleare

www.ino.it

E^tPRAXI*F*

Acknowledgement:

This project has received funding from the European Union MSCA network "EuPRAXIA-DN" (grant agreement no. 101073480) and the UKRI guarantee funds. The authors ackowledge the following contributions: EU Horizon 2020 Research and Innovation

Program EuPRAXIA Preparatory Phase, under Grant Agreement No. 101079773 and IFAST, under Grant Agreement No. 101004730. This research has been co-funded by the European Union - NextGeneration EU ``Integrated infrastructure initiative in Photonic and Quantum Sciences'' - I-PHOQS (IR0000016, ID D2B8D520, CUP B53C22001750006) and ``EuPRAXIA Advanced Photon Sources'' - EuAPS (IR0000030, CUP I93C21000160006).

Thank you!

david.gregocki@ino.cnr.it

