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• Off-Axis Parabolic (OAP) mirrors are an important element in many high-power laser facilities

• Able to focus laser pulses to relativistic intensities ≳ 1018W/cm2

• Enabling new studies in laser-matter interactions

• However, unexpected field distortions can seriously impact the interaction and results

• Hamper reaching maximum intensity in the focus

• Limit the efficiency  

• Impact the particle pointing direction in laser particle acceleration

• These distortions are more pronounced under tight focusing conditions (f/#<1)

• Therefore, the exact knowledge of focused electromagnetic fields is essential 
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1.1 Motivation:
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1.2 Theoretical layout:

• The OAP surface can be defined by the following equations 

where D is the OAP diameter. Based on the geometry
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1.2 Theoretical layout:

• Based on the Stratton-Chu theory, if the electric and magnetic fields are known on a closed surface A, then the 

diffracted fields at a point 𝒙𝑝 in the far-field are defined as

where 𝑘 is the angular wavenumber of the incident pulse, 𝐺 is the Green function 

where∧ and

J. A. Stratton and L. J. Chu, Phys. Rev. 56, 99-107 (1939)
L. Labate, High Power Laser Sci. Eng. 6, e32 (2018)
L. Labate, Appl. Opt. 55, 6506-6515 (2016)

and the area element d𝐴 and the normal to the surface ෝ𝒏 are defined as 

where
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1.2 Theoretical layout:

Considering a 100% reflection, the fields appearing in the Stratton-Chu theory can be written as a function of the 

incident fields 

thus for the electric field at 𝒙𝑝 in the far-field applies  

The incident electric field, can be expressed as

where

and
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1.2 Theoretical layout:

Eventually

where

and
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1.3 Results:

• Wavefront distortions can be studied from a weighted average of the angles 𝜃 weighted by the pulse intensity 𝐼

where

• To obtain a rule of thumb in predicting ҧ𝜃 for a given OAP configuration
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1.3 Results:

• So far, only a monochromatic laser pulse has been considered. However, electric fields of non-monochromatic 

laser can be described as 

where 𝜆0 is the central wavelength. Considering 𝜆0=800 nm, 

𝜆 ∈< 780,820 >, 𝜎𝜆 = 15 nm

• The dependence of ҧ𝜃 on 𝜃𝑂𝐴 can be compared between mono- and 

non-monochromatic pulses. In addition, different time periods within 

the optical cycle of laser can be considered   
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1.3 Results:
Non-monochromatic laserMonochromatic laser with different 𝜆0



• Off-axis parabolic mirrors are widely used in many high-power laser facilities 
due to their ability to focus laser pulses to relativistic intensities

• By employing the full Stratton-Chu vector diffraction theory, field distortion 
effects related to the use of an OAP mirror under tight focusing conditions

• The results point to the distortions in the initially planar laser wavefront. Such 
distortions are most dominant for increasing off-axis angles.

• Consequently, the relative laser peak intensity and relative energy losses were 
observed for f/1 and f/0.5 OAP mirrors
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2.1 Motivation:
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• Integrating current transformers (ICT) have been used as reliable charge diagnostics in the radio-frequency 
acceleration’s community

• Quickly gained popularity also in laser-plasma acceleration (LPA) field thanks to nondestructive, energy 
independent (and compact) charge measurement

• However, in some cases 

• ICT measurements overestimated charge by more than an order of magnitude1.

• ICT measurements overestimated charge by 3-4 times2.

• Charge measurement consistent with calibration – Measurement at large distance (4m) from 
interaction region3.

• Main unwanted contributor to charge overestimation was electro-magnetic pulse (EMP) signal

• Can we correlate ICT charge and Lanex screen emission signal?

• Is EMP influence observed also in our case?
1Glinec et al., Rev. Sci. Instrum. 77, 103301 (2006)
2B. Hidding et al., Rev. Sci. Instrum. 78, 083301 (2007)
3K. Nakamura et al., PRST-AB 14, 062801 (2011)
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2 - Electron charge diagnostics in a laser-plasma environment

• Integrating Current Transformer is a capacitively shorted transformer and a fast read out transformer in a 
common magnetic circuit

• ICT consists of a coil with magnetic core shaped into a 
loop through which electron bunches can pass

• Able to bypass low-frequency components while 
allowing high-frequency signals to pass through = rapid 
signal transfer

• Core material of high permeability = low hysteresis 
losses and quick responds

• It is a passive transformer, and the 
signal is processed/integrated by the 
ICT controller

ICT

ICT Controller
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2 - Electron charge diagnostics in a laser-plasma environment

• Electron charge induces a voltage in the coil

• Integrating over this voltage produces an output voltage proportional to 
the electron beam charge 

• Integration is ensured by the integrating operational amplifier (Op-
Amps) found in the ICT controller

Integrating Op-Amp 
(ideal case)

From Kirchhoff's current law:

𝑖1 = 𝐼𝐵 + 𝑖𝐹 where 𝐼𝐵 = 0 for ideal Op-Amp

Using the capacitor current equation 

𝑖𝐹 = 𝐶𝐹

d(𝑉2 − 𝑉0)

d𝑡
and rewriting 𝑖1

𝑖1 =
𝑉in − 𝑉2

𝑅1

𝑉in − 𝑉2

𝑅1
= 𝐶𝐹

d(𝑉2 − 𝑉0)

d𝑡
where 𝑉2 = 0 for ideal case    

𝑉in

𝑅1
= −𝐶𝐹

d𝑉0

d𝑡
න

0

𝑡

න
0

𝑡 𝑉in

𝑅1
d𝑡 = − න

0

𝑡

𝐶𝐹

d𝑉0

d𝑡
d𝑡 if 𝑉0 = 0 for 𝑡 = 0

𝑉0 = −
1

𝑅1𝐶𝐹
න

0

𝑡

𝑉ind𝑡
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2 - Electron charge diagnostics in a laser-plasma environment

• One window integrates the signal, and the second one integrates the background for noise reduction

ICT Controller

Ideal signal for integration (Example) Signal from LPA generated electrons
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2 - Electron charge diagnostics in a laser-plasma environment

• One window integrates the signal, and the second one integrates the background for noise reduction

ICT Controller

Ideal signal for integration (Example) Signal from LPA generated electrons
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• LPA generated electrons passed through the Lanex 
screen after the vacuum-air transition

• Later, they passed through the ICT and RCF (EBT3)

• Afterwards, magnetic spectrometer was placed to 
measure the electron energy

2 - Electron charge diagnostics in a laser-plasma environment
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Back

2 - Electron charge diagnostics in a laser-plasma environment

• ICT mount/shielding was designed in Blender

• 3D printed with PLA filament

• The front part allows the collimator to be replaced

• CMC filter – ferrite magnet was attached close to the ICT

• Double shielded and grounded BNC cable was used

Front

d=1.93 cm
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ICT Controller

2 - Electron charge diagnostics in a laser-plasma environment

1. Step: Retrieve the charge from the ICT 2. Step: Calculate the charge from the dose on the 
RCF and compare it
• Dose-Fluence equation:

𝐷 = 𝐾 ෍

𝑖

𝑆

𝜌
𝑖

𝑖
RCF

where 𝐾 = 1.6 ∙ 10−10,
𝑆

𝜌 𝑖
is the collision stopping power, 

and index 𝑖 is the 𝑖-th energy bin index
• Fluence-Charge equation:  

where Total
RCF = ෍

𝑖

𝑖
RCF

𝑄𝑅𝐶𝐹 = Total
RCF ∙

𝑑

2

2

𝜋 ∙ 𝑒

• However, the first equation represents undetermined 
system and additional assumptions needs to be made
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• For the electron energy measured, 
𝑆

𝜌 𝑖
changes only at the third decimal place

• Thus, a weighted average can be assumed instead 

2 - Electron charge diagnostics in a laser-plasma environment

• Given the electron energy, a fraction of electrons will be lost and won't deposit a 
dose to the RCF. Thus, additional simulations are necessary.

𝑆

𝜌
= ෍

𝑗

𝑤𝑗

𝑆

𝜌
𝑖

where

𝑤𝑗 =
𝑦𝑗

σ 𝑦

𝑦𝑗  is the magnitude of the 
𝑗-the energy bin
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• Monte-Carlo simulations to determine a fraction of lost electrons

• Lost between the ICT and RCF 

2 - Electron charge diagnostics in a laser-plasma environment

• Therefore, Total
RCF = σ𝑖 𝑖

RCF = σ𝑖 𝑇𝑖𝑖
ICT. Since 𝑇𝑖  can be assumed 

as constant ∀𝑖, an average ത𝑇 can be considered further 

• The Dose-Fluence equation can be simplified 

• Now, Total
ICT  can be expressed and put into the fluence-charge 

equation 

𝐷 = 𝐾 ∙
𝑆

𝜌
∙ ത𝑇 ෍

𝑖

𝑖
ICT
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Summary II. part

• Ultrashort and ultraintense laser pulses can be used to accelerate electrons up to 
            relativistic energies

• ICTs provide noninvasive, energy-independent charge monitoring

• In laser-plasma acceleration, electromagnetic signals can influence ICT measurements

• However, with proper ICT shielding and its placement, the overestimation from EMPs can 
be eliminated
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