First observation of strange baryon enhancement with effective energy in pp collisions at the LHC

https://arxiv.org/pdf/2409.12702

Francesca Ercolessi

Università di Bologna, INFN - Sezione di Bologna

Assemblea di Sezione - Bologna 16/12/2024

High energy hadronic collisions

QCD phase transition from hadronic matter to a deconfined state of quarks and gluons: **Quark Gluon Plasma** (QGP)

Studied in the laboratory with collisions of heavy ions

Light flavor quarks (u,d,s) are thermally produced in the $QGP \rightarrow key$ probes to study the properties of the medium

High energy hadronic collisions

QCD phase transition from hadronic matter to a deconfined state of quarks and gluons: **Quark Gluon Plasma** (QGP)

Studied in the laboratory with collisions of heavy ions

Light flavor quarks (u,d,s) are thermally produced in the $QGP \rightarrow key$ probes to study the properties of the medium

Identified particle production is **compared** with **small collision systems**, i.e. pp, where no QGP is expected (Hadron Gas)

Is there a way to **coherently describe** particle production across collision systems?

Strangeness enhancement: then

Strangeness enhancement is historically one of the first proposed signatures of QGP formation in heavy-ion collisions [1]

Increase of (multi-)strange hadron production in **heavy-ion** with respect to **minimum-bias pp** collisions

Saturation for central AA \rightarrow grand-canonical SHM predictions [2]

Expected strangeness suppression in small systems \rightarrow finite system with hadronic degrees of freedom

GSI-Heidelberg: T_{ch} = 164 MeV [Andronic et al, PLB 673 (2009) 142] ------ THERMUS: T_{ch} = 170 MeV [Cleymans et al, PRC 74 (2006) 034903]

[1] P. Koch, B. Müller, and J. Rafelski. Physics Reports, 142(4):167–262, 1986 [2] ALICE, PLB 728 (2014) 216-227 4

Strangeness enhancement: now

S

 Ω

Continuous evolution of strange hadron yield ratios to pions with the charged-particle multiplicity observed at the LHC, smoothly connecting different systems and energies

Strangeness production **increases with** particle **multiplicity**, saturating for central Pb–Pb

Strange content hierarchy: $|S_{\Omega^{\pm}}| > |S_{\Xi^{\pm}}| > |S_{\Lambda}| \approx |S_{K_{S}^{0}}|$

[1] Nature Phys. 13, 535-539 (2017) [2] PRC 99, 02490 (2019) Francesca Ercolessi [3] EPJC 80, 167 (2020) [4] EPJC 80, 693 (2020) [5] PLB 807, 135501 (2020) [6] PLB 728, 25-38 (2014) [7] PLB 758, 389-401 (2016) [8] EPJC 76, 245 (2016)

S

[9] PRC 101, 044907 (2020)

s

d

 K_{c}^{0}

≈

Strangeness enhancement: now

Continuous evolution of strange hadron yield ratios to pions with the charged-particle multiplicity observed at the LHC, smoothly connecting different systems and energies

Strangeness production increases with particle multiplicity, saturating for central Pb-Pb

Strange content hierarchy: $|S_{\Omega^{\pm}}| > |S_{\Xi^{\pm}}| > |S_{\Lambda}| \approx |S_{K_{c}^{0}}|$

S

 K_{c}^{0} Ω Is the charged-particle multiplicity the

driving factor in this effect?

ALI - PREL - 574173

Francesca Ercolessi

[1] Nature Phys. 13, 535-539 (2017) [2] PRC 99, 02490 (2019)

[3] EPJC 80, 167 (2020) [4] EPJC 80, 693 (2020)

[5] PLB 807, 135501 (2020) [6] PLB 728, 25-38 (2014)

[7] PLB 758, 389-401 (2016) [8] EPJC 76. 245 (2016)

[9] PRC 101, 044907 (2020)

S

Assemblea di Sezione 16/12/2024

≈

The concept of effective energy

$$E_{\text{effective}} \equiv \sqrt{(\boldsymbol{q}_{\text{tot}}^{\text{had}})^2} = \sqrt{(\boldsymbol{q}_{\text{tot}}^{\text{inc}} - \boldsymbol{q}_{\text{tot}}^{\text{lead}})^2}$$

M. Basile et al., Phys. Lett. B 95 (1980) 311 A. Akindinov et al., EPJ C 50 (2007) 341–352 A new point of view: consider other observables correlated with the charged particle multiplicity

Effective energy: energy available for particle production in the initial stages of the collision

In **pp** reduced due to leading baryon emission at very forward rapidity (**leading effect**)

First studies at the CERN ISR in the 80's lead by the Bologna group of Professor Zichichi

Two-dimensional analysis as a function of:

• Charged-multiplicity at midrapidity proxy for local effects, e.g. jet production

• Leading energy

proxy for global effects, e.g. the initial effective energy in the collision

 $E_{\text{eff}} = \sqrt{s} - E_{\text{leading}}$

Independent proxies given the large η separation

Key point:

What is the interplay of multiplicity and leading energy on strange hadron production?

*considering LHC beam optics ZP acceptance for protons is $7.0 < |\eta| < 8.7$

Two-dimensional analysis as a function of:

• Charged-multiplicity at midrapidity proxy for local effects, e.g. jet production

• Leading energy

proxy for global effects, e.g. the initial effective energy in the collision

 $E_{\text{eff}} = \sqrt{s} - E_{\text{leading}}$

Independent proxies given the large η separation

Two-dimensional analysis as a function of:

• Charged-multiplicity at midrapidity proxy for local effects, e.g. jet production

• Leading energy

proxy for global effects, e.g. the initial effective energy in the collision

 $E_{\text{eff}} = \sqrt{s} - E_{\text{leading}}$

ALICE can measure:

• midrapidity multiplicity (SPD)

Independent proxies given the large η separation

Two-dimensional analysis as a function of:

- Charged-multiplicity at midrapidity proxy for local effects,
 e.g. jet production
- Leading energy

proxy for global effects, e.g. the initial effective energy in the collision

 $E_{\text{eff}} = \sqrt{s} - E_{\text{leading}} \simeq \sqrt{s} - E_{\text{ZDC}}$

of: $\eta = 0$ $\eta = 0$ $\eta = 0$ TS ZP ZP $\eta \to -\infty$ $\eta = 0$ $\eta = 0$ ZP ZP ZN $\eta \to \infty$

ALICE can measure:

- midrapidity multiplicity (SPD)
- leading energy (ZDC)

Independent proxies given the large η separation

Two-dimensional analysis as a function of:

 Charged-multiplicity at midrapidity proxy for local effects,
 e.g. jet production

• Leading energy

proxy for global effects, e.g. the initial effective energy in the collision

$$E_{\text{eff}} = \sqrt{s} - E_{\text{leading}} \simeq \sqrt{s} - E_{\text{ZDC}}$$

Independent proxies given the large η separation

ALICE can measure:

- midrapidity multiplicity (SPD)
- leading energy (**ZDC**)
- forward multiplicity (**VOM** = V0A+V0C)

Event classification

Standalone:

event classes defined by increasing $n_{\rm ch}$ and decreasing ZN energy

The forward energy decreases with increasing particle multiplicity produced at midrapidity [1]

ALI-PUB-580691

Event classification

Standalone:

event classes defined by increasing $n_{\rm ch}$ and decreasing ZN energy

High-local-multiplicity
 Low-local-multiplicity
 event classes with similar average values
 of n_{ch} but different ZN energies

Event classification

Standalone:

event classes defined by increasing $n_{\rm ch}$ and decreasing ZN energy

High-local-multiplicity
 Low-local-multiplicity
 event classes with similar average values
 of n_{ch} but different ZN energies

High-ZN-energy
 Low-ZN-energy
 event classes with similar average values
 of ZN energies but different n_{ch}

Strange hadron reconstruction

Kinematical and geometrical criteria are used to reconstruct candidates for strange hadrons

Identification of (multi-)strange baryons is based on two topologies:

 neutral particle decaying weakly into a pair of charged particles (V-shaped decay)

$$egin{array}{l} \mathrm{K}^0_\mathrm{S} o \pi^+ + \pi^- \ \Lambda o \mathrm{p} + \pi^- \end{array}$$

Cascade \rightarrow

charged particle decaying weakly into a V⁰ + charged particle $\Xi^- \rightarrow \Lambda + \pi^ \bar{\Xi}^+ \rightarrow \bar{\Lambda} + \pi^+$

ALI-PUB-580716

Results: standalone classification

Results for strange mesons

At fixed leading energy and at fixed multiplicity, **small-to-no dynamics** observed for strange mesons (K_{s}^{0}) as a function of both observables

Results for strange baryons

Results for strange baryons

Connection to the MPIs in PYTHIA

MPIs increase at fixed local multiplicity with decreasing leading energies

Universal dependence with the leading energy, i.e. common for all selections

In PYTHIA, the number of **Multiple Parton Interactions** strongly **influence** the **string hadronization processes** responsible for strange hadron production

Summary

Novel approach to study strangeness production in small systems \rightarrow focus on the interplay between multiplicity and effective energy on particle production

- Strange baryon enhancement in pp collisions is connected to global properties of the event, e.g. the effective energy → the local multiplicity is <u>not</u> the key observable in this phenomenon (NEW!)
- Strange mesons (K⁰_S) seems to be less influenced by the effective energy, suggesting different hadronization mechanisms at play for baryons and mesons → strange baryon enhancement
- The leading energy is predicted to be strongly correlated to the number of MPIs
 → intriguing input to tune strange baryon production mechanisms in the models

Outlook

The results presented today are included in the paper: <u>https://arxiv.org/abs/2409.12702</u> Currently on arxiv and recently accepted by JHEP

The work is based on my PhD thesis:

Title: "The interplay of multiplicity and effective energy for (multi) strange hadron production in pp collisions at the LHC" Supervisors: Prof.ssa Luisa Cifarelli, Dott. Francesco Noferini Link: <u>http://amsdottorato.unibo.it/11341/</u>

The thesis was awarded with the ALICE Thesis Award 2024

Backup

Event engineering

Event engineering

Connection to hard-scattering processes in PYTHIA

The presence of jets at midrapidity is studied in PYTHIA considering the $\langle p_T^{\pi} \rangle_{|y|<0.5}$, proxy for the p_T of the hard parton scattering process

Very **mild dependence** of $\langle p_T^{\pi} \rangle_{|y|<0.5}$ with the **leading energy**

Local phenomena, such as jets at midrapidity, are correlated with local observables, such as the charged-multiplicity

 p_{T} spectra

 p_{T} spectra

