

– flexiBlE hYbrid neutrON Detectors – INFN - Grant Giovani Ricercatori e Ricercatrici 2023-2024

Ilaria Fratelli – associata INFN Bologna, RTT UNIBO DIFA

16 Dicembre 2024

Semiconduttori Innovativi per Rivelazione di Radiazione

Low-cost large-area printing techniques

Space Missions

Semiconduttori Innovativi per Rivelazione di Radiazione

SIEMENS – X-ray detectors – PEROVSKITES

Tedde S. *et al.* High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. *Nat Electron* **4**, 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3

SAMSUNG – X-ray detectors – PEROVSKITES

Kim, Y., Kim, K., Son, DY. *et al*. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. *Nature* **550**, 87–91 (2017). https://doi.org/10.1038/nature24032

Sinergie e Background

Sinergie e Background

Sinergie e Background

NEUTRONI VELOCI – perovskiti a film sottile –

2D hybrid perovskite thin films

Lédée, F., Ciavatti, A., Verdi, M., Basiricò, L., Fraboni, B., (2022). *Advanced Optical Materials, 10*(1), 2101145. Fratelli, I., Basiricò, L., Ciavatti, A., Margotti, L., Cepić, S., Chiari, M., & Fraboni, B. (2024) *Advanced Science, 2401124*. Ciavatti A., Foderà V., Armaroli G., Maserati L., Colantoni E., Fraboni B., Cavalcoli D., Adv. Funct. Mater. 2024, 34, 2405291

2D hybrid perovskite thin films

2D hybrid perovskite thin films

Ilaria Fratelli – 16 Dicembre 2024

4/10

Meccanismo di Interazione

10

8

Target Atomic Number

1

16

32

64

Simulazioni – Toolkit Geant4

PPEROVSKITE IBRIDA 2D

 \rightarrow ALTA DENSITÀ DI ELEMENTI A BASSO Z

 \rightarrow MAX TRASFERIMENTO DI ENERGIA A SEGUITO DELL'URTO ELASTICO

CLASS	ACTIVE MATERIAL	DENSITY	HYDROGEN DENSITY	CARBON DENSITY
		8 •	× 10 ²² cm ⁻³	× 10 ²² cm ⁻³
SOLID STATE	MHyPbCl3	3.242	3.79	
	Rubrene	1.26	3.99	
	4MHB	1.46	4.62	
LIQUID SCINTILLATOR	EJ301		4.82	3.98
	EJ309		5.43	4.35
	Stilbene	1.15	4.61	
PLASTIC	EJ276D	1.099	4.65	4.94
SCINTILLATOR	EJ200	1.023	5.17	4.69
THIS WORK	PEA ₂ PbBr ₄	2.27	4.25	2.84

Simulazioni – Toolkit Geant4

100

10

1

1

Neutron Energy = 2.5 MeV PVK thickness = $5 \mu m$

PPEROVSKITE IBRIDA 2D → ALTA DENSITÀ DI ELEMENTI A BASSO Z → MAX TRASFERIMENTO DI ENERGIA A SEGUITO DELL'URTO ELASTICO				¹ H (n,n) ¹ H ¹ H (n,n) ¹ H ¹⁰⁰ ¹⁰⁰ ¹⁰⁰	¹² C (n,n) ¹² C	
CLASS	ACTIVE MATERIAL	DENSITY g cm ⁻³	HYDROGEN DENSITY × 10 ²² cm ⁻³	CARBON DENSITY × 10 ²² cm ⁻³	$ \begin{array}{c} 0 & 0.4 \\ $	0.2 0.4 ¹² C k
	MHyPbCl3	3.242	3.79			
SOLID STATE	Rubrene	1.26	3.99			,,,,,
	4MHB	1.46	4.62		te (a	
	EJ301		4.82	3.98	vski	
	EJ309		5.43	4.35	whick erc	
CINTILLATON	Stilbene	1.15	4.61		□ the	
PLASTIC	EJ276D	1.099	4.65	4.94		1 H(n,n) 1 H
SCINTILLATOR	EJ200	1.023	5.17	4.69	n of I	¹² C(n,n) ¹² C
THIS WORK	PEA ₂ PbBr ₄	2.27	4.25	2.84	0 5 10 Berovskite Thickne	15 20

Simulazioni – Toolkit Geant4

Neutron Energy = 2.5 MeV PVK thickness = 5 μm

PPEROVSKITE IBRIDA 2D → ALTA DENSITÀ DI ELEMENTI A BASSO Z → MAX TRASFERIMENTO DI ENERGIA A SEGUITO DELL'URTO ELASTICO 0.6 **HYDROGEN CARBON** DENSITY ACTIVE DENSITY DENSITY **CLASS** MATERIAL g cm⁻³ 0.5 × 10²² cm⁻³ × 10²² cm⁻³ MHyPbCl3 **SOLID STATE** 1.26 1.46 4.62 EJ301 4.82 3.98 LIQUID 5.43 4.35 **SCINTILLATOR** 1.15 4.61 1.099 4.65 4.94 **PLASTIC SCINTILLATOR** EJ200 1.023 5.17 4.69 2.84 **THIS WORK** 4.25 PEA₂PbBr₄ 2.27

Irraggiamento @ INFN-LNL

Acceleratore Van der Graaff (INFN-LNL, CN, 0° beamline) Fascio 5 MeV di Deuterio, target ⁹Be Fast Neutrons ⁹Be(d,n)¹⁰B (Energia = [1 – 4] MeV Flusso = [0.4 - 3] · 10⁵ n s⁻¹ cm⁻²)

Ilaria Fratelli – 16 Dicembre 2024

SELETTIVITÀ (= trasparenza al campo gamma)

Ilaria Fratelli – 16 Dicembre 2024

Ilaria Fratelli – 16 Dicembre 2024

Fratelli I., in preparation

Ilaria Fratelli – 16 Dicembre 2024

Tempo di risposta (τ_{rise} = 1,6 s; τ_{fall} = 4,2 s)

🗸 Ripetibilità e Stabilità

✓ **SELETTIVITÀ** (= trasparenza al campo gamma)

Ilaria Fratelli – 16 Dicembre 2024

Efficienza a diversi spessori di perovskite

Ilaria Fratelli – 16 Dicembre 2024

Fratelli I., in preparation 9/ 10

Efficienza a diversi spessori di perovskite

Ilaria Fratelli – 16 Dicembre 2024

E I NEUTRONI TERMICI??

${}^{10}B + n \begin{cases} \xrightarrow{94\%} \alpha (1.47MeV + {}^{7}Li(0.84MeV) + \gamma (0.48MeV) \\ \xrightarrow{6\%} \alpha (1.78MeV + {}^{7}Li(1.01MeV) \end{cases}$

Ilaria Fratelli – 16 Dicembre 2024

10x 20x

③ <u>DEPOSIZIONE della</u> <u>PEROVSKITE IBRIDA 2D</u>

> SPIN COATING Thickness ≈ 2 μm

> > INFN

MECCANISMO DI INTERAZIONE

Irraggiamento @ INFN-LNL (linea MUNES)

Cables > 10 m to keep the electronics far away, behind the wall **PMT+ LiBO** placed close to the sample to monitor the flux in the same conditions

Bi window to attenuate gamma , rays

Irraggiamento @ INFN-LNL (linea MUNES)

Cables > 10 m to keep the electronics far away, behind the wall **PMT+ LiBO** placed close to the sample to monitor the flux in the same conditions

Bi window to attenuate gamma

Turno 10 giorni fa...

Stay tuned...

Conclusioni

RIVELAZIONE NEUTRONI VELOCI

PEROVSKITE IBRIDA 2D

- → Alta densità intrinseca di atomi a basso Z (H e C)
- → Migliori proprietà di trasporto rispetto ai materiali organici
- → Maggior <u>stabilità</u> ambientale, soppressione della migrazione ionica, bassa dark current Configurazione a **FILM SOTTILE**
 - → Stampa da soluzione scalabile su larghe aree e substrati flessibili
 - → Trasparenza ai raggi gamma = <u>selettività</u>

RIVELAZIONE NEUTRONI TERMICI

- PEROVSKITE IBRIDA 2D
 - → Stampa da soluzione scalabile su <u>larghe aree</u> e substrati <u>flessibili</u>
 - + possibilità di avere un <u>miglior ricoprimento</u> delle
 - microstrutture 3D

MICROSTRUTTURE 3D ¹⁰B

 \rightarrow <u>Trasferimento di carica</u> al semiconduttore più efficiente

Ilaria Fratelli – 16 Dicembre 2024

INFN-Bologna and UNIBO Department of Physics and Astronomy - DIFA

Prof. B. Fraboni

INFN-Padova and LNL

Dr. I. Fratelli

G. Napolitano

C. Bordoni

PADOVA

Dr. F. Pino

Dr. G. Maggioni

Prof. S. Moretto

Grazie per il supporto e… per la pazienza ;)

Eugenio Scapparone Carla Sbarra e Gruppo V Anselmo Margotti e l'officina meccanica Riccardo Travaglini e Ignazio Lax Elisa Zini e Antonella Aiello Elena Amedei Martina Allegro Alberta Raimondi e Susan Bondi Sara Haghshenas Cecilia Pancaldi e Carlo Crescentini

GRAZIE a tutte e tutti voi per l'attenzione!

Dr. J. Delgado

Dr. M. Cinausero

Ilaria Fratelli – 16 Dicembre 2024

Starting Point – Neutroni Veloci

Ilaria Fratelli – 16 Dicembre 2024

4/12

Starting Point – Neutroni Veloci

Ilaria Fratelli – 16 Dicembre 2024

4000

Starting Point – Neutroni Termici

4 / 12

2D layered Perovskites

$\mathbf{PEA_2PbBr_4} (\mathbf{PEA} = \mathbf{C_6H_5C_2H_4NH_3^+})$

3D

VS.

2D

- Lower lon migration
- temperature <150°C
- properties tuning by relative amounts of the components

Boron Neutron Capture Therapy e dosimetria

Incident Beam Quality

- 1) Epithermal neutron flux > 10⁹ n cm⁻² s⁻¹
- 2) Neutron energy range [0,5 eV 10 keV]
- 3) Fast neutrons and gamma rays as low as possible

 ${}^{10}B + n \begin{cases} \stackrel{94\%}{\longrightarrow} \alpha(1.47MeV + {}^{7}Li(0.84MeV) + \gamma(0.48MeV) & (Q = 2,31 \text{ MeV}) \\ \stackrel{6\%}{\longrightarrow} \alpha(1.78MeV + {}^{7}Li(1.01MeV) & (Q = 2,792 \text{ MeV}) \\ & {}^{6}Li + n {\longmapsto} {}^{3}H(2.72MeV + \alpha(2.05MeV) & (Q = 4,78 \text{ MeV}) \end{cases}$

Dymova MA, et al. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun 2020;40(9):406–21.

Stato dell'Arte per la rivelazione di neutroni

Interazione neutrone termico-materia

$${}^{10}B + n \begin{cases} \stackrel{94\%}{\longrightarrow} \alpha (1.47 MeV + {}^{7}Li(0.84 MeV) + \gamma (0.48 MeV) & (Q = 2,31 MeV) \\ \stackrel{6\%}{\longmapsto} \alpha (1.78 MeV + {}^{7}Li(1.01 MeV) & (Q = 2,792 MeV) \\ & {}^{6}Li + n {\longmapsto} {}^{3}H(2.72 MeV + \alpha (2.05 MeV) & (Q = 4,78 MeV) \\ \end{cases}$$

	Cross Section (barn) @ 0.025 eV	Natural Abundance (%)
⁶ Li	942	7,6%
¹⁰ B	3842	19,9%

Spettrometria con PVK - letteratura

He, Y., Matei, L., Jung, H.J. et al. Nat Commun 9, 1609 (2018).

Ilaria Fratelli – 16 Dicembre 2024

Quevedo-Lopez M., et al. Adv Mater Technol. 2020;5(12):3–9.

Electron/hole pair creation mean energy

empirical model of Devanathan $W = 2E_G + 1.43 \text{ eV}$

The energy gap value of (PEA)₂PbBr₄ of $E_G = (3.00 \pm 0.03) \rightarrow W_{(PEA)_{2}PbBr_4} = (7.43 \pm 0.06) \text{ eV}.$

REQUIRED PROPERTIES

• HIGH SENSITIVITY

MATERIAL	ELECTRIC FIELD (V μm ⁻¹)	PROTON ENERGY (MeV)		SENSITIVITY	REF.
bBr ₃ + (PEA) ₂ PbBr ₄	0.2	5	(1	12 ± 0.01)·10 ⁻¹⁸ C H ^{+ -1}	[1]
PGe-pentacene	0.03	5		(6.4 ± 0.2)·10 ⁻²⁰ C H ^{+ -1}	[2]
MAPbBr ₃	0.01	3	(2	2.19 ± 0.03)·10 ⁻¹⁸ C H ^{+ -1}	[3]
CsPbCl ₃	2	100-228		4·10 ⁻²⁰ C H ^{+ −1}	[4]
(PEA) ₂ PbBr ₄	0.2	5	(2	I.25 ± 0.02)·10 ⁻¹⁸ C H ^{+ −1}	This work
	response (> 2 G Basiricò, Fraboni et al., <i>Adv. Sci.</i> 2022 , <i>2204815</i> , 1.				04815, 1.
	I. Fratelli, Fraboni et al., <i>Sci Adv</i> 2021 , 7, eabf4462. H. Huang, et al., <i>ACS Appl Electron Mater</i> 2022 , DOI 10.1021/acsaelm.2c01406.				
	M. Bruzzi, et al., Front Phys 2023 , 11, 1.				
				L	

Basiricò, Fraboni et al., *Adv. Sci.* **2022**, *2204815*, 1.

REQUIRED PROPERTIES

• HIGH SENSITIVITY

- → HIGH Signal to Noise Ratio → dark current has to be lower than 1% of the signal current
- FAST RESPONSE for Real-Time monitoring
- **TRANSPARENT** to be placed in-line avoiding perturbation of the primary beam
- <u>RADIATION TOLERANT</u> for reliable and stable response (> 2 Gy)
- <u>LARGE AREA</u> and <u>FLEXIBLE</u> (> 10 x 10 cm²) and good <u>SPATIAL RESOLUTION</u>

REQUIRED PROPERTIES

• HIGH SENSITIVITY

 → HIGH Signal to Noise Ratio → dark current has to be lower than 1% of the signal current

• **FAST RESPONSE** for Real-Time monitoring

- <u>TRANSPARENT</u> to be placed in-line avoiding perturbation of the primary beam
- <u>RADIATION TOLERANT</u> for reliable and stable response (> 2 Gy)
- LARGE AREA and <u>FLEXIBLE</u> (> 10 x 10 cm²) and good <u>SPATIAL RESOLUTION</u>

Fratelli et al., Adv. Sci. 2024, 101002/advs.202401124

Each 5 MeV proton passes through the 2D perovskite layer releasing 12 keV $\mu m^{\text{-1}}$

REQUIRED PROPERTIES

- HIGH SENSITIVITY
- → HIGH Signal to Noise Ratio → dark current has to be lower than 1% of the signal current
- **FAST RESPONSE** for Real-Time monitoring
- **TRANSPARENT** to be placed in-line avoiding perturbation of the primary beam
- <u>RADIATION TOLERANT</u> for reliable and stable response (> 2 Gy)
- <u>LARGE AREA</u> and <u>FLEXIBLE</u> (> 10 x 10 cm²) and good <u>SPATIAL RESOLUTION</u>

REQUIRED PROPERTIES

HIGH SENSITIVITY

- HIGH Signal to Noise Ratio → dark current has to be lower than 1% of the signal current
- FAST RESPONSE for Real-Time monitoring
- TRANSPARENT to be placed in-line avoiding perturbation of the primary beam
- **RADIATION TOLERANT** for reliable and stable response (> 2 Gy)
- <u>LARGE AREA</u> and <u>FLEXIBLE</u> (> 10 x 10 cm²) and good <u>SPATIAL RESOLUTION</u>

Flexible and large area beam monitor based on 2D perovskite thin film

Voltage (V)

12

Pixel dimension down to 0.5 mm

50 X-ray Photocurrent variation (%) 25 -Current (A) —■— device 1 œ Ω device 2 device 3 H device 5 -25 device 6 10⁻¹³ – Mevice 7 device 8 ---- device 9 -50 10 7 8 9 -10 -5 1 2 3 5 5 6

REQUIRED PROPERTIES

• HIGH SENSITIVITY

- HIGH Signal to Noise Ratio
 dark current has to be lower than 1% of the signal current
- o **FAST RESPONSE** for Real-Time monitoring
- <u>TRANSPARENT</u> to be placed in-line avoiding perturbation of the primary beam
- <u>RADIATION TOLERANT</u> for reliable and stable response (> 2 Gy)
- LARGE AREA and FLEXIBLE (> 10 x 10 cm²) and good SPATIAL RESOLUTION

Device Fratelli et al., Adv. Sci. 2024, 101002/advs.202401124

Flexibility

Studio di diversi spessori per aumentare l'efficienza

Fig. 4. A summary of the ⁹Be(d, n) thick-target spectra for deuteron energies of 2.6 to 7 MeV in steps of 0.4 MeV.

Meadows, J. W. (1993). The 9 Be(d, n) thick-target neutron spectra for deuteron energies between 2.6 and 7.0 MeV. In *Nuclear Instruments and Methods in Physics Research* (Vol. 324).