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Theoretical Motivation for millicharged particles 
Millicharged particle (mCP) (𝜒) has mass 𝑚!  and charge 𝑄! = 𝜀𝑒. 
• mCP are not forbidden by the SM and have not yet been ruled out.
• Charge quantization is not yet fully understood. Some theories include: 

ØGrand Unification Theories (GUTs) 
ØString theory

• mCP may be a dark matter candidate.
• Two common mCP models: 
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Pure mCP:
1. No hidden U(1) [dark photon] needed
2. Prediction from String theory
3. Rational or irrational charge, 𝑄! 
4. No annihilation channel to 𝛾"

Effective mCP:
1. Hidden U(1) required
2. Predicted by GUTs
3. Dark photon kinetically mixes with SM photon
4. Annihilation to 𝛾′ -> 𝛾 ; affects CMB (ΔNeff)  

𝜒

𝜒̅ 𝛾′ 𝛾
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Motivation from previous experimental searches

Stony Brook University, YITP –– Megan McDuffie

Proton beam dump: SENSEI

Electron  beam dump: SLAC-mQ
90 m

[2305.04964]

10!"

29.5 GeV

scintillator 
detector 

10!"

120 GeV

2g Skipper CCD
48 g/days exposure 

Skipper CCD
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Motivation from previous
 experimental searches
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Motivation from previous
 experimental searches
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Motivation from previous
 experimental searches

Skipper CCDs have become a new and  
interesting tool to search for mCP at 
beam dump experiments.
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Motivation from previous
 experimental searches

What if we put a Skipper CCD in front of an 
electron beam dump with more EOT 
compared to SLAC?

Can we probe new parameter space? How 
much?

How difficult/affordable is this to do?
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BDX proposal  @ JLab : DM search 

BDX  Proposal
Ie. [1910.03532]

Concrete, shielding

Iron, shielding
Detector

20 m

Dirt
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10''	EOT

10.6 GeV

104 more EOT than SLAC

e-

4.5 X closer than SLAC
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BDX proposal  @ JLab + Skipper CCD

Concrete, shielding

Iron, shielding
Detector

20 m

Dirt
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10##	e-

10.6 GeV Skipper CCD

Skipper CCDs have demonstrated low 
background, single electron precision via 
repeated non-deconstructive read out

2 cm X 10 cm 
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BDX proposal  @ JLab + Skipper CCD

Concrete, shielding

Iron, shielding
Detector

20 m

Dirt
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10##	e-

10.6 GeV Skipper CCD

Skipper CCDs have demonstrated 
low background, single electron 
precision via repeated non-
deconstructive read out

2 cm X 10 cm 

How difficult/affordable is this to do?
 à  Relatively inexpensive and 
possible to run parasitic with BDX 
proposal 
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mCP production channels at electron beam dumps

Trident Electron-Positron 
annihilation

Compton Vector meson 
decay
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mCP production channels at electron beam dumps:
EM cascade of daughter particles (𝛾, e+, e-) 

Trident Electron-Positron 
annihilation

Compton Vector meson 
decay

Stony Brook University, YITP –– Megan McDuffie 12



Stony Brook University, YITP –– Megan McDuffie 13

mCP production and geometric acceptance 

Kinematic Threshold ~50 MeV
Condition: 4𝑚!

#~	𝑠 = 2𝑚𝑒𝐸𝑒 +𝑚$
#
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mCP production and geometric acceptance 

Kinematic Threshold 
@ 𝑚! = 0.5	𝑚% 	
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mCP production and geometric acceptance 



mCP production and geometric acceptance 
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mCP production and geometric acceptance 
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mCP production and geometric acceptance 
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mCP detection with Skipper CCDs: Signal Prediction
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𝑑𝜎
𝑑𝜔 𝜀 ∝ .𝑑𝑘

1
𝑘 𝐼𝑚

−1
𝜖(𝜔, 𝑘) ∝ 𝜀#
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Electron Loss Function (ELF)

mCP, 𝛽 = 1



mCP detection with Skipper CCDs: Signal Prediction
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mCP, 𝛽 = 1
𝑑𝜎
𝑑𝜔 𝜀 ∝ .𝑑𝑘

1
𝑘 𝐼𝑚

−1
𝜖(𝜔, 𝑘) ∝ 𝜀#
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• Dominant  signal ~ 18 eV 
• Higher threshold detectors miss 

enhancement from collective 
excitations

• Better rejection of  background without 
loss of signal. 

• SENSEI has demonstrated background-
free searches in this signal region.



Expected number of signal events
Detector efficiency ~0.20

Detector width
and electron number density
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𝜎$ 𝜀 ∝ 	.𝑑𝜔	𝑃$	×	.𝑑𝑘
1
𝑘 	𝐼𝑚

−1
𝜖(𝜔, 𝑘) 	 ∝ 𝜀

# 
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One (2g) Skipper-CCD 
exceeds sensitivity of 
existing experiments 
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One (2g) Skipper-CCD 
exceeds sensitivity of 
existing experiments 

… and performs better than a hypothetical 
1m3 BDX-like detector with threshold 
energy 300 MeV 
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Skipper-CCDs are 
competitive with other 
proposed experiments 

… and world leading at low masses 
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Summary

• Millicharged particles are theoretically motivated as a natural extension 
to the SM. 
• mCP are a possible DM candidate (although do not have to be).
• We properly calculate the mCP production rates in all channels relevant 

at an electron beam dump.
• Including a Skipper-CCD detector near the proposed BDX detector 

seems possible and relatively inexpensive.
• We can probe new mCP parameter space at JLab with ONE Skipper-CCD.
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Single electron sensitivity with Skipper CCDs
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[2106.08347] [1706.00028]

Non-deconstructive read-out 
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QCDark [2305.04964]
𝐼𝑚

−1
𝜖(𝜔, 𝑘)
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: Electron Loss Function (ELF)

Dielectric Function, calculated by DFT 

[2403.00123]

Collective
excitations

mCP detection with Skipper CCDs



Higher threshold detectors miss enhancement from 
collective excitations
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Csi (BDX proposed) Skipper-CCDs



Backgrounds
• Interesting backgrounds to consider: 

1. beam-induced neutrons, gammas, and muons
2. cosmic rays
3. pile up from single-electron events

• Each is handled differently
• High energy events are masked. This lowers the effective area of the detector. We 

estimate a detector efficiency of 20%, loosely motivated by SENSEI.
• Low energy events (ie. 1 electron excitations) are not considered.
• Beam induced neutrons with energy O(100 keV) could reproduce mCP signal.

• We find that these backgrounds are minimal (< 1 for 1022 EOT), with sufficiently shielding (concrete 
and iron) after the dump.

• Background analysis should be done carefully, given a defined experimental set up.
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Dark matter interacting with an ultralight dark photon
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• Ultralight (𝑚!" ≪ 1	𝑒𝑉) dark photon kinetically mixes with SM photon.
• After EWSB 𝜒 becomes an effective mCP with coupling to SM photon current.
• Effective coupling 𝑄! = 𝜀𝑒	, with 𝜀 = 𝜅𝑔#.

• We define a reference cross section 𝜎$ =
%&	()!*!+"#!

()-$)$
 , which direct detection 

experiments can constrain. 

• Note 1: if DM is pure mCP or effective mCP with massless 𝛾′, then no direct detection 
bounds. These mCP can not penetrate the solar wind to interact with terrestrial 
detector.

• Note 2: if 𝑔#~1.0 then strong CMB constraints (easily overproduce 𝛾) for 𝑓/ > 0.4%.



Dark matter interacting with an ultralight dark photon
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Comparison with other experiments
• SLAC-mQ (1990s): electron beam, more energy, larger detector, farther 

away
• Liquid Scintillator Neutrino Detector (LSND) (1990s): electron beam dump 
• BEBC (1970s-80s): proton beam dump + Bubble Chamber detector 
• SENSEI (with NUMI beam): proton beam, higher energy, lower POT
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• SUBMET: proton beam @ J-PARC, currently taking data. 
• milliQan: proton beam @ CERN, demonstrator already produced results. 
• FerMINI: milliQan-like detector with NUMI beam
• FORMOSA: milliQan-like detector @ LHC
• OSCURA: skippers at NUMI beam, same as SENSEI but 500x larger detector
• Nominal BDX design:  larger detector, larger threshold energies
• LDMX: electron beam, missing momentum search @ SLAC
• JUNO: mcp produced from cosmic ray showers

Stony Brook University, YITP –– Megan McDuffie

Comparison with other proposed experiments
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Geometric acceptance for other designs

Geometric Acceptance for a 𝐿×𝐿 skipper CCD detector 
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BDX-like Detector
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Trident Process
In the first radiation length approximation 
Trident process dominates. 

Secondary e+/e- trident: 
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𝑁%
&'(). ∝ 𝑁+,- 	𝜆./0	𝜎(𝐸1)



Millicharged particle production at electron beam dumps: 
beyond the first radiation length 

𝑁%
&'(). ∝ 𝑁+,- 	𝜆./0	𝜎(𝐸1)𝑁%

&'(). ∝ 𝑁+,- 	𝑋2	𝜎-'3)145

(in 1st Rad. Length)

Trident:

Electron-Positron 
annihilation: 

𝜎64437.~
!
8
𝑚% < 10	𝑀𝑒𝑉 , 

~	0 	𝑚% > 50	𝑀𝑒𝑉 , kinematic threshold

Compton:  𝜎9(:&5.	~
𝛼
2𝜋 ln

𝑠
𝑚1
# 𝜎64437. , always suppressed compared to annihilation.

Vector Meson:  
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See other slide



Annihilation Production
• Annihilation of positrons with atomic electrons  
•  s = 2meE + me

2 , center-of-mass-energy squared
• Mcp produced at smaller angles. Boost of the mcp is the photon 

propagator momentum = incident positron with momentum, pz
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Compton Production
• Same kinematic threshold as annihilation
• ~ 10^2 suppression compared to annihilation 



Vector Meson decay
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Given a sample of ρ and ϕ mesons, we simulate their two-body decays into χχ¯ in the rest frame and 
boost the mCPs to the lab frame in order to get the total flux within the detector geometric acceptance
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MCP detection with Skipper CCDs: Signal Prediction

Differential cross section for relativistic particle with charge 𝑞 = 𝜀𝑒 interacting with silicon, per e- (in material)  [cm2/eV]

ne = Number density of valance electrons in detector.
𝛽 ≈ 1 detector is located to only accept forward scattering.
𝜀 𝜔, 𝑘  : dielectric function, function of ionization energy (𝜔) and electron momentum transferred from mcp (𝑘).
 Calculated with QCDark code (Density Functional Theory)
Im(-1/ 𝜀 𝜔, 𝑘  ) : electron loss function (ELF), describes the electron transitions due to a perturbation
 
𝑘;<= = 	𝜔/𝛽  (limited by kinematics) ; 𝑘;>? = 2 𝑝⃗ − 𝑘;<= → ∞	 (interaction is negligible after fermi momentum ~ 5 keV)

For ionization energy 𝜔~15 − 20eV and 𝛽 > 0.1 , the mcp can excite collective excitations (access plasmon peak).

[2403.00123]
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Small Relativistic Correction 
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