

Missing energy experiments at positron accelerators

Pietro Bisio, Luca Marsicano

INFN-Genova

10/04/2025

Outline

2 POKER/NA64-e⁺

3 The JPOS-LDM experiment

Vector mediated LDM

New massive U(1) gauge-boson (Dark Photon / A') acting as a portal between SM and DS.

Model parameters:

- Dark Photon $m_{A'}$ and Dark Matter m_{χ} masses (sub-GeV)
- ${\cal A}'-\chi$ coupling ${\it e_D}\simeq 1$
- $A' \gamma$ coupling via kinetic mixing ε

Annihilation cross section ($\chi \bar{\chi}
ightarrow SM$) reads:

$$\langle \sigma v \rangle \propto rac{\varepsilon^2 \alpha_D m_\chi^2}{m_{A'}^4} = rac{\varepsilon^2 \alpha_D m_\chi^4}{m_{A'}^4} rac{1}{m_\chi^2} \equiv rac{y}{m_\chi^2}$$

If χ s make DM, the thermal origin hypothesis (freeze-out) imposes a "thermal target" $y(m_{\chi})$.

Missing energy approach - the active thick target is the detector

- High intensity e^+/e^- beam impinging on thick active target \rightarrow EM shower is initiated
- A' are produced from e⁺/e⁻ in the shower and promptly decay to χ particles
 "invisible decay"

Missing Energy Signature

- Specific beam structure: particles impinging "one at a time" on the active target
- Deposited energy *E*_{dep} measured event-by-event
- Signal: events with large $E_{miss} = E_{beam} E_{dep}$

Main A'production mechanisms:

Target/ECAL/HCAL

The NA64-e experiment at CERN

- Missing-energy experiment at CERN SPS H4, 100 GeV e^- beam
- H4 beamline: $\simeq 10^7$ particles/spill, $\sigma_E < 1\%$, contamination $\sim 0.4\%$

The NA64-e detector

- Active Target: 40 X₀ Pb + Sc calorimeter (ECal) with PMT readout ($\sigma_E/E \simeq 10\%/\sqrt{E} \oplus 5\%$)
- Magnetic spectrometer + SRD for beam particle tagging $(\frac{\Delta\rho}{\rho}\simeq 1\%)$
- Sc VETO + large sampling hadronic calorimeter (~ 30 λ_l) for hermeticity (HCal)

Signal signature (see A. Marini's talk):

- Large missing ECal energy: $E_{miss} \gtrsim 0.5 \cdot E_{beam}$
- Well-reconstructed 100-GeV impinging e⁻ track
- Negligible activity in the downstream VETO and HCal

The JPOS-LDM experiment

LDM yield in NA64-e: A'-Strahlung

- Radiative A' emission in nucleus EM field followed by $A' \to \chi \bar{\chi}$
- Scales as $Z^2 \alpha_{EM}^3$
- Forward-boosted, high-energy A' emission
- Dominant over large *m_A* range.

LDM yield in NA64-e: Resonant annihilation

- Resonant annihilation of secondary positrons with atomic $e^-\colon e^+e^-\to {\cal A}'\to \chi\bar\chi$
- Breit Wigner-like cross section
- Scales as $Z\alpha_{EM}$
- Dominant in the $\sqrt{2m_e E_{thr}} \lesssim m_A' \lesssim \sqrt{2m_e E_{beam}}$ mass range

POKER: POsitron resonant annihilation into darK mattER

An optimized light dark matter search with positrons in the NA64-e framework

Project goal

 Perform a dedicated missing energy measurement in NA64-e with the SPS positron beam, replacing the existing NA64-e ECAL with a new high resolution active target

10.1103/PhysRevLett.121.041802

The PKR-Cal Detector

Requirements:

- Improved energy resolution ($\sigma({\it E})/{\it E}\simeq 2.5\%/\sqrt{{\it E}}\oplus 0.5-1\%)$ \rightarrow match the resonant peak width
- Fast response time \rightarrow Reduce pile-up effects.
- High-density material \rightarrow EM shower absorbed in a compact detector.
- Low passive-material volumes \rightarrow Reduce spurious missing energy/improve resolution.

The new PKR-CAL detector:

- $\sim 29 X_0$ PbWO₄ calorimeter.
- 9x9 matrix of 20 \times 20 \times 220 mm 3 crystals.
- 2 layers in front (pre-shower).
- Readout: 4x $6\times 6~mm^2$ Hamamatsu S14160-6010 SiPM per crystal (10 μm cell size)

POKER/NA64-e⁺ 00000€00

PKR-Cal R&D status

POKERINO: small-size prototype $(3 \times 3 \text{ crystals matrix})$ built to validate the PKR-Cal technical choices

- POKERINO test-beam performed at H8, H6 beam lines of CERN SPS
- response linearity tested in the 10 GeV - 120 GeV energy range
- measured resolution well within the PKR-Cal requirements
- crucial role of the SiPMs heating

PKR-Cal Status

- Detector fully assembled and operational at INFN-Genova labs
- First tests with cosmic rays ongoing
- Installation in NA64-e scheduled in June 2025

NA64- e^+ - 100 GeV measurement and post LS3 program

During the R&D of the POKER active target, a first measurement with a 100 GeV e^+ beam, using the current NA64-e setup has been performed in 2022: $\sim 10^{10} e^+$ OT collected

No events in the signal region after data unblinding

- Results motivated the collaboration to propose to SPSC a future program with 40 GeV and 60 GeV e⁺ beams at H4 beamline (CERN-SPSC-2024-003; SPSC-P-348-ADD-4)
- Tentative schedule including two runs of $10^{11} e^+$ OT each to be performed after LS3

NA64- e^+ - 70 GeV measurement and post LS3 program

- Preliminary measurement at 70 GeV, in view of future post-LS3 program, performed in 2023; \sim 1.5 \times 10¹⁰ e⁺OT collected
- Improved setup including new veto HCal (VHCal) for better hermeticity
- Reduced hadron contamination w.r.t. the 100 GeV measurement
- Signal window: $E_{ECal} < 42$ GeV, $E_{HCal} < 1$ GeV
- No event observed in the signal box after unblinding

The Ce⁺BAF Proposal

Jefferson Lab (Newport News, Virginia, USA) hosts the Continuous Electron Beam Accelerator Facility (**CEBAF**), which accelerates electrons up to 12 GeV.

In recent years, the JLAB community has investigated a **positron-beam upgrade** (Ce⁺BAF) to complement the laboratory's physics program.

- Primary $\sim 12~{\rm GeV}~e^+$ beam with negligible particle contamination.
- Highly-collimated beam: $\sigma_x, \sigma_y < 300 \ \mu m$
- Continuous time-structure.

Missing-energy technique requires e^+ to impinge "one at a time" \rightarrow A dedicated solution is needed

\sim MHz Positron Beam at Ce⁺BAF

A low beam current (\sim 0.1 pA) is incompatible with the diagnostic tools that control the CEBAF beam. A "**mixed operation mode**" was considered:

- High-intensity macro-pulses are injected in the CEBAF at 60 Hz to operate the beam diagnostic systems.
- In between, low-intensity physics pulses, populated on average by less than 1 e⁺, are injected using an ad-hoc laser system (R&D is needed).

- The experiment acquires data only during low-intensity pulses in which *e*⁺ impinge on the detector, on average, every 500 ns.
- To reduce the radiation dose in the active target, a fast magnetic deflector can transport the high-current pulses to a beam dump.

Preliminary Sensitivity Evaluation

Preliminary, semi-analytical evaluation for the sensitivity of a missing-energy experiment searching for LDM with a future \sim 10 GeV positron beam at JLAB.

Assumptions:

- 11 GeV e^+ beam
- 1 $e^+/\mu s imes 1y \simeq 10^{13}$ POT
- Missing energy threshold = 5.5 GeV
- Zero background events
- Signal efficiency $\sim 50\%$
- A' produced only through the resonant annihilation channel

Conceptual Design Studies

This promising result motivated a **conceptual design study**, based on **Monte Carlo** simulations, to assess the experiment's feasibility and perform a preliminary setup optimization.

- Computational limitations: it is critical to adopt a brute-force approach and simulate $\sim 10^{13}$ events.
- Extrapolations and multi-step simulations were used to estimate background events.
- **Single-event study and simulation precision**: the implementation of some phenomena (e.g. large-angle bremsstrahlung) within the code is based on approximation and assumptions. Results may deviate from reality for rare events.
- A **comparative approach** between different simulations was adopted to determine critical parameters that affect the experimental sensitivity.

The Simulated Setup

Homogeneous PbWO₄ crystals ECAL

- Fast scintillation time (\sim 20 ns)
- High density ($\sim 8.3~g/cm^3)$
- Strong radiation hardness
- Segmentation allows shower-shape studies to reject backgrounds

Sampling hadronic calorimeter (Sc + Pb)

- Plastic scintillator is divided into tiles
- Covering all the target's faces
- Modular design

POKER/NA64-*e*+ 00000000

Signal simulation: ECAL Geometry

- Signal efficiency ($E_{miss} > 5$ GeV, veto not activated) as a function of the target geometry.
- HCAL geometry and energy thresholds moderately affect the results.

• ECAL length $\simeq 35X_0$, width 20×20 cm² \rightarrow Signal efficiency $\sim 90\%$

Background Simulations: EM Events - Large-Angle Bremsstrahlung

- In $\sim 50/10^{10}$ EM shower simulation, an **energetic photon** is emitted **backward** ($E_{\gamma} > 2$ GeV, $\theta > 90^{\circ}$), escaping from the target.
- A cavity in the target can shift the beam impact point inside the calorimeter.

 $E_{e^+} = 5 \text{ GeV}$

- Few experimental data available
 → MC depend on assumptions
 in the implementation.
- Experimental measurements are needed to investigate this background.

Background simulations: Neutral Hadronic Events - Sampling

- ECAL simulation \rightarrow we selected critical **neutral hadronic events**:
 - $E_{Miss} > 5 \text{ GeV}$
 - No charged particles exit the ECAL with kinetic energy > 500 MeV
- Average kinetic energy of escaping neutrons (K_L) as a function of their multiplicity:

Background simulations: Neutral Hadronic Events - Inefficiency

- HCAL simulations \rightarrow veto inefficiency for a single, neutral hadron
- Different geometries (layers thickness), veto conditions (energy threshold, number of hits) and MC physics lists were tested

• HCAL length \simeq 20 λ_{l} , few MeV veto threshold \rightarrow Expected bkg < 1

Estimated Sensitivity (90% CL)

- 11 GeV e^+ beam
- 10¹³ POT
- *E^{CUT}*: 5 GeV, 7 GeV,9 GeV
- Signal efficiency $\sim 90\%$
- No background events
- A' produced only through the resonant annihilation channel

- Starting point: further steps forward must be based on experimental measurements.
- The construction a modular detector will necessarily proceed in steps.
- MC will be tuned with experimental results starting from low-statistics, preliminary runs.

Conclusions

- Positron resonant annihilation is a powerful mechanism to search for vector-mediated LDM. Fixed-target missing-energy experiments can fully exploit this production process.
- The POKER project aims to perform an optimized LDM search with e⁺ beams at CERN SPS, within the NA64-e experimental context
 - A new improved active target, to be included in the NA64-e detector, will be soon tested on beam (summer 2025)
 - Preliminary measurements performed with the current NA64-e apparatus support the feasibility of a post LS3 program with multi-energy e⁺ beams
- We performed a **conceptual design study** for a missing-energy experiment, searching for LDM with an **11 GeV positron beam at JLAB**.
 - This study represents a first confirmation of the potential and feasibility of such project

Backup Slides

PKR-Cal R&D - radiation tolerance

- Radiation dose during PKR-Cal operation estimated via FLUKA simulations
- Maximum dose in the central crystal at $\sim 9X_0$ depth: 200 rad/h (dose for CMS *PbWO*₄ calorimeter: \sim 500 rad/h)
- Crystals exposed to \sim 30 Gy from $^{60}{\rm Co}$ at the "Strahlenzentrum" (Gießen), to assess radiation tolerance (loss in transparency).

Mitigation Strategies

- Most radiation-tolerant crystals placed in the center of the PKR-Cal
- Beam rastering
- Monitor transparency with laser system
- Crystals annealing

Background: Muon Pair Photoproduction

Cross-section biasing: collected statistics equivalent to 10¹² POT.

- ~ 1 event every 10⁶ POT
- Muons mostly produced at forward angles

5x107 Expected Muon Events

- Analytical calculation to evaluate the required veto layers
- n \sim 12 results in less than 1 background event for 10¹³ POT

12 GeV Ce⁺BAF : Polarized Electron or Polarized Positron Beams

Mach	nine Parameter	Electrons	Positrons	
Hall	Multiplicity	4	1 or 2	
Ener	gy (ABC/D)	11/12 GeV	11/12 GeV	
/ Sean	n Repetition	249.5/499 MHz	249.5/499 MHz	
Duty	Factor	100% cw	100% cw	
Unpc	larized Intensity	170 µA	> 1 µA	
Polar	ized Intensity	170 µA	> 50 nA	A CONTRACTOR
Bean	n Polarization	> 85%	> 60%	
🔏 Fast/	Slow Helicity Reversal	1920 Hz/Yes	1920 Hz/Yes	
Julie .			A CARDENIE -	A STRACT
and the second			Construction of the second	The second
				- 45
A la her				AN AN
C FLA		and is an a think		
Participa Cont	PERSONAL PROPERTY	A A A A A A A A A A A A A A A A A A A		
Put Callert	A CARD A CARD AND A CARDING		and the second state of the	State of

Signal Simulation: Cross-Section Biasing

- We implemented the χ , A' particles and their interactions in GEANT4 code.
- Best ε² value (DM-SM coupling) in Monte Carlo: minimizes computational time without distorting the simulations of Standard Model processes.

DM events

A' produced per positron on target vs ε^2 :

- $\varepsilon^2 \ll p0$ linear region.
- $\varepsilon^2 \gg p0$ asymptotic region.
- $\varepsilon^2 = 1$ was set to perform the signal efficiency studies.