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Search for aresonance on a thin target
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with respect to alternative signal production processes (dem2, Olem®) X17

« /s has to be as close as possible to the expected mass = fine
scan procedure with the et beam - expected enhancement in /s
over the standard model background

At PADME, X7 produced through resonant annihilation in thin target:
Scan around E(e*) ~ 283 MeV with the aim to measure two-body final state yield N,

N2(s) = Npor(s) X [ B(s) + S(s; My, 9) ]
to be compared to N,(s) = Npor(s) X B(s)

Inputs:

Neot(s) number of e+ on target from beam-catcher calorimeter

B(s) background yield expected per POT

S(s; My, g) signal production expected per POT for {mass, coupling} ={My, g}

. signal acceptance and selection efficiency 5



Search for aresonance on a thin target

® New physics interpretations not fully excluded - still some phase-space available
® |nthe present talk, for brevity, | will only focus on the Vector state
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.071101
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.104.L111102

What’s PADME - the facility

Positrons from the DAFNE LINAC up to 550 MeV, O(0.25%) energy spread
Repetition rate up to 49 Hz, macro bunches of up to 300 ns duration
Intensity must be limited below ~ 3 x 104 POT / spill against pile-up

Emittance ~1 mm x 1.5 mrad @ PADME
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@] Collimators

Past operations:
e  primary, target, e* selection, 250 um Be vacuum separation [2019]

Run |
Run Il e*primary beam, 125 um Mylar™ vacuum separation, 28000 e*/bunch [2019-20]
Run Il dipole magnet off, ~3000 e*/bunch, scan s2 around ~ 17 MeV [End of 2022] 4



RU n- | | | S et u p Charged particle detectors in vacuum

2022 Run-1ll setup adapted for the X17 search: Vacuum tank,
106 — 10" mbar

Active target, polycrystalline diamond

No magnetic field
Lead glass
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Charged-veto detectors not used

Newly built in front of Ecal for efy
Timepix silicon-based detector for beam spot
Lead-glass beam catcher (NA62 LAV spare block)
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X17 viaresonant-production: Run Il

Run 1l PADME data set contains 3 subset
= On resonance points (263-299) MeV

= Over resonance, energy 402. MeV

1 over resonance energy point
Statistics ~2 x 101° total
Used to calibrate POT absolute measurement

On resonance points, mass range 16.4 — 17.5 MeV
Beam energy steps ~ 0.75 MeV ~ beam energy spread
Spread equivalent to ~ 20 KeV in mass

Statistics ~ 10'° POT per point

Below resonance points

Beam energy steps ~1.5 MeV
Statistics ~ 10%° POT per point
Used to cross-check the flux scale

POT [107]
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Run-1ll concepts

“Run”: DAQ for ~8 hours, determine beam avg position/angle, ECal energy scale
“Period”: a point at a fixed beam energy, typically lasts 24 hours

“ ” a chronological set of periods typically decreasing in energy

Scan 1 and 2 periods spaced ~ 1.5 MeV but interspersed in energy

Chronological Period ID 50771711115
e :
30" | T

20F ., | :

10:_ Ceoy —:

Ol e T | SY2[MeV]
16.4 16.6 16.8 17 17.2 17.4

Detailed GEANT4-based MC performed for each period 7




Run-Ill concepts — the signal selection

Aim to select any two-body final state (ee, yy):
1. Fix Ry.x at Ecal, away from Ecal edges
2. Given s, derive Ry, Evin: Evax SUCh that both daughters are in ECal acceptance

3. Select cluster pairs: = e
« With Energy > E,,, x 0.4 7 BERES NS
« Intime within 5ns = | \\\\
. Within R;- Dand R, + D, D=15L3crystals &£ aripRERRt
4. Select cluster pairs back-to-back in the c.m. frame >_8 o crr
i
Rmax chosen to be away from Ecal N
edges by more than the size of 1 L3 By (mm)
crystal cell for any period in the data set -

10=1L3crystal=21.5x21.5 mm



Run-Ill concepts — the signal selection

Neglecting m.E terms, the c.m. angles are independent on the lab energies
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Run-Ill concepts — the signal selection

Selection algorithm made as independent as possible on the beam variations:
 Retune beam center run by run with an error << mm
« Overall, make marginal use of the cluster reconstructed energy

Selected events, 4 % background
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Grand scheme of the analysis

Rewrite the master formula as:
Na(S) / (Npor(s) B(s)) =[1+ S(s; My, 9) ]

gr(S)
The analysis observable is gg(s)

Different effects (see later) lead to a linear scale deviation K(s) from above
MC with My = 16.8 MeV, g, = 8x10*

J.oaP

Question: is ggr(s) more consistent with gr(S) t

K(s) or with K(s) [ 1 + S(s; My, g) 1? 14 +
SITETRER T
0.9;; H} ﬂr#ﬁ ﬁ Hﬁ ! #+++#H + +#



The N, event yield error budget

Selection counts around 30k / period:
Statistical error: 8N, ~ 0.6% up to 0.7%

Background subtraction using angular side-bands (bremsstrahlung, 4%)
Carries additional statistical uncertainty 6N, ~ 0.3%

Data quality using time-averaged energy deposited on ECal:
Dominated by primary beam (brems. on upstream vacuum separation window)

Contribution of two-body events negligible
A few % of the spills are outliers and removed
Overall systematic error from data quality, 6N, << %

Statistics ~0.6

Background subtraction 0.3

Total 0.65
12



Grand analysis scheme: B

B , the expected background / e*, is determined with MC + data-driven checks

MC statistics 0.4 Next slide
Data/MC efficiency (Tag&Probe) 0.2 here

Cut stability 0.2 here
Beam spot variations 0.1 here
Total 0.5

Correlated (common) systematic errors on B enter in the scale K(s), e.g.:
Absolute cross section (rad. corr. at 3%), target thickness (known @ 5%)

B expectation is compared to below
resonance points, improving the Low-energy period statistics 0.4
systematic uncertainty

("]

Acceptance of low-energy, target 0.5 er

Scaling errors are accounted for thickness variations

Total 0.6



Detalils on expected background: s dependence
Expected background B determined from MC, stat error per period: 6B ~ 4x103

Fit of B(s12) with a straight line (only including statistical errors here)

B [ 10 events per POT]

3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2

I

1 N R
X2/ ndf 15.46 /20
Prob 0.7494
pO 3.549e-06 + 3.208e—09
p1 3.712e-07 + 1.023e-08

X2/ ndf 19.34/17
Prob 0.3095
po 3.567e-06 + 3.505e—09
pi 3.957e-07 + 1.364e-08
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T I T ST N
172 17.4
s'2 (MeV)

1r

Onlyscanl  3.549(3) 3.71(10) 0.12 75%
Onlyscan2  3.567(4) 3.96(13) -0.19 31%
All periods  3.558(2) 3.85(8) -0.008 9%

Background curve slightly depend on the scan

Considered in alternative analysis (see later)

14



Grand analysis scheme: Nyt

Flux Npor determined using Lead-glass detector charge, Q,c:
I\IPOT - QLG / Q1e+, 402 MeV X 402 / Ebeam [MeV]

Common systematic error dominated by Qq..
Known at 2%, see JHEP 08 (2024) 121

Uncorrelated systematic error due to value of E, .,y from BES, 0.25%
Common scale error on beam energy, up to 0.5%, cancels @ 0.1%

Multiple corrections to be applied:

1. Leakage @ E,.,m / Leakage @ 402 MeV: from data + MC, details here
2. Radiation-induced response loss: from data, details here

15



Grand analysis scheme: Ny error budget

Uncorrelated uncertainty on background Npor:

Statistics, ped subtraction negligible

Energy scale from BES 0.3 BES from timepix spot G,
Error from ageing slope Variable, ~0.35 here
Total 0.45

Correlated (common) systematic errors on Npor:

pC/MeV 2.0 Analysis in JHEP 08 (2024) 121
Leakage, data/MC 0.5 here
Ageing, constant term 0.3 here

Total 2.1

16



Grand analysis scheme: g error budget

Uncorrelated uncertainty on gr(s) = N5(s) / ( Npor(S) B(s) ):

Relative error per period

0.014 .
0.012; —f
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0.004F L -
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- . _
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s12 (MeV)



Grand analysis scheme: signal yield / POT, S

Analysis compares gg(s) to K(s) x [1 + S(s; M,qg,) ]

Expected signal yield from PRL 132 (2024) 261801, includes effect of motion of
the atomic electrons in the diamond target from Compton profiles

X
| —
o

&

Parameterized S with a Voigt function:
» Convolution of the gaussian BES with the Lorentzian
*+ OKin the core within % with some dependence on BES

S(s; M,g,) L e e motion absent

Uncertainty in the curve parameters as nuisances:

 Peak yield: 1.3%

« Lorentzian width around the resonance
energy: 1.72(4) MeV

« Relative BES, as said: 0.025(5)% 1
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Points from authors of PRL 132 (2024) 261801 e



Grand analysis scheme:
Analysis compares ggr(s) =N,/ ( B X Npg7) to K(s) [1 + S(M,qg,) &/B]

Expected background signal efficiency = determined from MC.:
Beam spot vs run from COG, negligible uncertainty from COG error
Large cancellation of systematic errors seen using

Fit with a straight line, include fit parameters as nuisances:

Errors: , correlation = -2.5%
Separate fits for scanl and 2, baS|caIIy compatible
Behavior reproduced with toy MC

19



Grand analysis scheme: possible scale effects, K(s)

Radiative corrections evaluated using Babayaga, ee(y) and yy(y)

% 1.10ﬁ T ] T T T ‘ T T T T T T T T T | T T N
3 "~ PADME ToyMC —+ Bhabha .
[3] O —=— gg-production 7
Q& 1.05: \ l ]l ]
= C 2
§ 100 l | } } { m i1l — Babayagareferences:
© C Col RINE {{1” et es E Nucl. Phys. B 758 (2006) 227
0o B P | e ~ Phys. Lett B 663 (2008) 209
E ¥2/ ndf 47.26/39 %2/ ndf 25.01/39 E
0.90 — Prob 0.1708 Prob 0.9599 —
C po 0.984 +0.00258 po 0.9706 + 0.0005831 |
- pl 0.005885 + 0.009657 pi 0.006044 + 0.002156  _|
ogsl 1L . o 1l b b )
16.4 16.6 16.8 17.0 17.2 17.4

Vs [MeV]
Possible negative offset of ~ -2.3% - within the scale error of 2.1%
Possible slopes with sqrt(s):

Radiative effects, slope of +0.6(2)% MeV-1
Tag & probe correction, slope of -2.2(6)% MeV-1
Total slope of -1.6(6)% MeV1!

20



Grand analysis scheme: expected sensitivity

Evaluate expected 90% CL UL in absence of signal

Define Q statistic based on Likelihood ratio: Q = Ls,g5(9,, My) / Lg
The likelihood includes terms for each nuisance parameter pdf
For agiven My, CLs = Pg /(1 - Pg) is used to define the UL on g,

o .]><10_3
o KLOE, 2015 T_he prqbabilities Ps and Py are obtained using
simulations, where the observables are always
- sampled, while the nuisance parameters stick to
0.7 the B and S+B fits
0.6— -
- 90% CL UL: -
0.5 — CLs Median |4 .
= a E For comparison, we show also:
0.4 CLs+20 m : . . .

- [ cLs 1o | « the median of the limits obtained using the
03 ey ... AL median® | Rolke-Lopez likelihood-ranking method with
02 e e Bkg stat only<[.... the 5 periods with largest signal yield
0.4 PADME Preliminary NAG4, 2019 "« the purely statistical UL, 1.28 N,/2

16 16.5 17 17.5 18 Mx (Me\‘l’?.S

For details: arXiv: 2503.05650 21



Comparison with past evaluations

The projected sensitivity shown in arXiv:2503.05650 was with

1%, 0.6%, 0.4% projected uncertainties on Npyr, B, &5 (1.2% total vs 0.8% now)
2% scale uncertainty

arXiv: 2503.05650 = Present analysis
%107 1 x10 ;
1 q mg f
KLOE, 2015 0.9 KLOE, 2015
0.8
0.7
. 0.6— -
s gL - 90% CL UL: 3
<= == GLs Median 0.5:— —— CLs Median |-
l:l Cls 220 04 f_ \:I CLs 20 é
l:’cugm 035_ \:ICLS‘ﬂO‘ é
— Modan s 169 Y F W Ry RLmedian |4
: - 02 @ e oo Bkg stat only [
01 | i 0.1 PADME Preliminary NA64, 2019
16 165 17 17.5 18 18.5 16 16.5 17 17.5 18 18.5
x (MeV) M, (MeV)
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The “blind unblinding” procedure

To validate the error estimate, we applied the procedure in 2503.05650 [hep -ex]

Aim to blindly define a side-band in gg(s), excluding 10 periods of the scan

Define the masked periods by optimizing the probability of a linear fit in s/2

1.

2.
3.
4

Therefore, proceed to box opening

Threshold on the 2 fit in side-band is P(x?) = 20%, corresponding to reject 10% of the times

If passed, check if the fit pulls are gaussian

If passed, check if a straight-line fit of the pulls has no slope in s¥? (within 2 sigma)

If passed, check if constant term and slope of the linear fit for K(s) are within two sigma of the
expectations, i.e.: +/- 4% for the constant, +-2% MeV-! for the slope

Successfully applied:

1. P(x?)=74%

2. Pulls gaussian fit probability 60%

3. Slope of pulls consistent with zero

4. Constant term =1.0116(16), Slope = (-0.010 +- 0.005 ) MeV*!

23



Box opening

Some excess is observed beyond the 2o local coverage (2 50 Iocal)

o 1x10 A—

o = =
At My = 16.90(2) MeV, g,e = 5.6 x 104, the 098 SeeA
global probability dip reaches 3.9_; ;%1 %, 08 E
corresponding to 1.77 +- 0.15 o one-sided o7i8 E
(look-elsewhere calculated exactly from oo 90% CL UL: -
the t -event 05  [EEEREARAN | |- CLs Median |-
e toy pseudo-events) ok - :
= [JcLs+io g
A second excess is present at larger e o sl kg statonly |-
0.2 —— Observed limit |
masses - 17.1 Me_:V, butothe absolute o1 PADME preliminary | Lo

probability there is ~ 40% T —— e e
Pvalue M, (MeV)

'E D A ' =

09 e =

0.8F ¢ & —

o7 ¢ E

ooF- T E

S5E- ¢ =

%11 4 =

03 § =

02E- ¢ =

01E PADME Preliminary =

q: 16.5 1I7 17|.5 1|8 1—8.




Box opening - I
Check the data distribution vs likelihood fit done to evaluate Q,,s(S+B)
Fit probability is 60%

gR(s) : | . ZZ; KLOE, 2015 ;;
1.04— | r o8 E
1.03 - . ‘ ! = e
; y i = |
1.02— o YU = o |
= g - - o1~ PADME Preliminary =~~~ NAea 2019
1-01 — T ‘ _— 16 16.5 17 17.5 M (Mev?s
m o )
15 ' -
- . Masked point of scan 1
0.99 = e g
= - @® Masked point of scan 2
0.98F" PapMEPreliminarty =~ o Sideband point of scan 1
164 166 16.8 17 17.2 17.4 . :
@ Sideband point of scan 2

s'2 (MeV)

< »
< >

Region masked by automatic procedure 25



Box opening — Ill Other checks

Checked other sensitivity methods

Perform the automatic procedure but fit with a constant:

Result: Original version:

1. P(x?) =37% 1. P(x?) =74%

2. Pulls gaussian fit prob > 30% 2. Pulls gaussian fit probability > 45%

3. Slope of pulls consistent with zero || 3. Slope of pulls consistent with zero

4. Constant =1.0112(14) 4. Constant =1.0116(16), Slope = (-0.010 +- 0.004 ) MeV-!

The center of the masked region does not change: 16.888 MeV
The excess also remains basically of the same strength: 1.6c

Use scanl-scan2 separate parametrizations for B(s) instead of using B(s) / point:
The excess region is slightly affected and is equivalentto 1.6 o

Check the PCL method using CLsb, equivalent number of 6 =1.62 +- 0.13

26




Box opening — IV Check of corrections

Checked behavior of gg(s) for each of the corrections applied:
subtraction of background from N,

9(8) 4 06—

1.04

1.02

II|III|III

1

0.98 B No N2bkg subtraction

@ After correction

0.96

III|III|III|III|]II|III

PADME Preliminary Best fit

PR AN T T [ T S T T ST SR NN ST T ST ST S S N
164 16.6 16.8 17 172 17.4
stz (MeV) .

0.94




Box opening — IV Check of corrections

Checked behavior of gg(s) for each of the corrections applied:
leakage correction for NPoT

e -
gr(s)

1.04

1.02

>
>
>
’I—.’—!
>
>
I
' >
——
——
e
>
|
>
||||||||||

1

A No leakage correction

0.98

@ After correction

0.96 Best fit

|||||||||||||||||||||||

—@—i

|—.—|>

> -

|—.—|§>> -
> -
>

B

>

>
|—»—|

PADME Preliminary

N I I T T T P
16.4 16.6 16.8 17 172 17.4
81/2 (MeV) 28

0.94




Box opening — IV Check of corrections

Checked behavior of gg(s) for each of the corrections applied: ageing correction
for NPoT

1.06 T I T L T L I B B B 3 T
gr(s)
1.04

1.02

|
———i
x
x
x
x
b 4
——
——
x
||||||||||

1

# No ageing correction

0.98

@ After correction
=

x
PADME Preliminary

0.96 Best fit

|||||||||||||||||||||||
——
|—.—|E§
———
X
x

1 | 1 1 1 | 1 1 1 | 1 1 le 1

LT
16.4 16.6 16.8 17 172 17.4
s'2 (MeV)

0.94




N, PoT,__ .. /(NPoT*Bkg)

Box opening — IV Check of corrections

After box opening, can check ageing correction applied, slope was 0.097(7)
Fully consistent (observed excess alters only marginally)

0.98
0.96
0.94
0.92

0.9
0.88
0.86

_IIII_I_‘_J_III|III‘\II|III|II!|I-

T T T I T T T T T T T T ] T
X2/ ndf 57.8 /44

Prob 0.07929
p0 0.9274 +0.001167
pi 0.1006 + 0.004158

I[|III|I11|I

1III|II!I

PADME Preliminary -

27 Oct 2022

PoT integrated

8 Dec 2022

.11111111.1‘.111.1|1111g11.1|1><109
100 | 200 300 400 500 600
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Conclusions

The analysis has been successfully blessed using the blind-sideband method
Overall uncertainties at 0.9% or slightly better

No indications of X17 beyond two-sigma-equivalent global p-values

An excess has been observed, with global p-value equivalent to 1.77(15) o
New data to be acquired to better clarify, we are commissioning a new detector
for Run IV, including a new micromegas-based tracker with the goal of

separately measuring the absolute cross sections of ee/yy thus allowing a
combined analysis

31



Additional material
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Details on the event count N,

Background subtraction using side-bands (bremsstrahlung, ~4%)
Correction relative variation +-1%, statistical uncertainty on 6N, ~ 0.3%

N,
- T i - ';‘ :\ """""""" R LR AT RE R B =
40000 g — s o8 +++ . data =
= = ';' F  Normalization ++ #‘+‘+‘ Entries 28402 E
35000 — — R R t 1, Mean 3.131
- P ~ 3 E o.ef— ' i Std Dev 0.1105;
30000(— s . s . e« Yo — E . ¢ =
F e 0% 00, o 4% 04 ,0_% 3 05 " BremMC
25000 s e0 o ¢ . ® . . = 4 Entries 753 3
= - E + ¢+  Mean 3.005 3
20000— ° bt — 03 . * StdDev 0.1947 3
- = ¢ . -
164 166 168 17 72 74 02/ > i PPOME Frsfiminarny 5
- . 4
1/2 0.1 e TR =
8N2 / N2 S (MeV) | Q.:.:.I.:‘:m“tf. oo"’T“ *e, 0*%0%0%0g00°%e%*, OM‘.' 3
A LA 2 e 20 I L B ol B I B
E T T T j T j j T T e 0 2.7 2.8 29 3 3.1 3.2 3.3 = 3.4 3.5 3.6
— A —
0.007 F— A = 6, + 6, [rad]
0.0065— " " = _ _ _
e L L e e L = Shape of ee signal due to residual magnetic
.006 — A A AT, A = :
2 R N s+, 3 field (MNP CERN SPS type)
0.0055— - 4
ety , . , 4 =2 Fully modeled using MC + detailed map
16.4 16.6 16.8 17 172 174

s12 (MeV) 33



Detalls on background: cut stability

Check if MC and data yields stable vs Rmin, Rmax (edge effects, leakage)

Vary R, by +-2 E.4 cells around nominal cut of 270 mm: 230 mm - 300 mm
R, varies correspondingly, following the two-body kinematics

For 270 - 230 mm and 270 - 300 mm, the yield varies by -5% and +3%

The uncorrelated error is 0.3% from the combination of counts and bkg subtr.

1.008E- : o
el oy E- Cut relative stability 2 /ndf 49.29 /40
Stability is observed within a 1.006 Y Frob 0.1489

1.004 1 +£0.0003592
coverage band of +-0.2%, used as |,

additional uncorrelated systematic 1

error on B S
0.996
0.994

0.992

HX—
|III|III|III|III III|III|III|III|II

.I|III|III|III|III III|III|III|I
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T

Details on background: acceptance variations -~

The selection makes use of the expected beam direction, from the spot measured
at the diamond target and the center of gravity (COG) of 2 body final states at ECal

Systematic shifts in the COG position translate into acceptance systematic errors

Largest effect in y due to acceptance limitations (rectangular magnet bore)
Fractional variations range from 0.08% to 0.1% mm-! for s2 from 16.6 to 17.3 MeV

An error of 1 mm in the COG is a conservative estimate = systematic error < 0.1%
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Detalls on background: cluster reconstruction
Efficiency <Method /MC true>

Tag and probe technique, the method-
induced bias is 2.3(2)% and stable along

the data set

Data/MC method efficiency stable along the
data set and at the few per mil

Efficiency Data/MC

1.15

1
1.05

0.95

_rl[1lll[lIllIlllI]I!YT[IIIT]I‘

0.9

Example, periods 6, 7, 8

lllJllllllllllllllllllllllll

-h
o
o

—
ol

110 120 130 140 150 160 170 180 190

Expected cluster energy (MeV)

1.08
1.06
1.04
1.02
1

0.96

' T
— —*— Period 35
—s— Period 20
—— Period 45
—e— Period 5

x2 / ndf

0.94

MC True efficiency

0.98-

1H“ﬁ”’*”ﬁ””l”H““FH“"*”“’”HW\"L"J"'L“

4.601/7 x*/ndf 336/7 ¥?/ndf 6.025/9 x*/ndf 6.016/ 11

0 ctssom m cssome 10 tcsooesn 0 16stsaoum -
20 130 140 150 160
Expected cluster energy (MeV)
1:‘_‘ “"“““"“"'[““l'r““;
0.95- PR s
09— e =
085 - =
08 - =
075 =
07
0.65?— PADME Preliminary —é
10 120 130 140 150 160 170 180

True energy (MeV)



Detalls on background: cluster reconstruction

Check of reconstruction efficiency:

Efficiency for data and MC evaluated using tag-and-probe technique
Statistical error dominated by background subtraction at tag level

Data/MC energy-flat, compatible with 1, error O(1%) per period

<Data/MC> slope ~ 2.2(6)% MeV-!, Pc.(const) = 9% (27% in 16.55 < s'2< 17.3 MeV)

No correction applied per period, statistical-systematic error of 0.2%

Efficiency <Data/MC>

1.03F
1.02F
1.01F
:
0.99F
0.98F
0.97F

T
38.77 /40

0.5257

0.9997 £0.001678
0.0227 +0.005854

i

PR S
16.8

L 1I7 P
st2 (MeV)

P I
172 174
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Leadglass PMT cathode limitations

(1) Cathode linearity

Photosats Parameters |  Spectral response (Peak wavelength) Upper limit of linearity
Materials (nm) (Average current)
Ag-O-Cs 300 to1200 (800) 1 pA

Sb-Cs up to 650 (440) 1 uA
Sb-Rb-Cs up to 650 (420) 0.1 pA
Sb-K-Cs up to 650 (420) 0.01 pA
Sb-Na-K up to 650 (375) 10 pA
Sb-Na-K-Cs up to 850 (420), up to 900 (600) extended red 1 A

Ga-As (Cs) up to 930 (300 to 700) (%) 1 pA
Ga-As-P (Cs) up to 720 (580) (%) 1 puA
Cs-Te up to 320 (210) 0.1 pA

Cs-l up to 200 (140) 0.1 uA

() Cathode sensitivity considerably degrades if this current is high.

Table 4-4: Photocathode materials and cathode linearity limits

Hamamatsu PMT handbook, section 4.3.2
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What’s PADME - the detector: beam monitors

1.5 x 1.5 mm? spot at active, 100 um diamond target: position, multiplicity
1 x 1 mm? pitch X,Y graphite strips [NIM A 162354 (2019)]

re e* high ener.
' Dipole magnet ,1‘ gveto ¥
i )
) Y et
e* veto Vacuum vessel am monitor
llllll 'l-ll..ll.l.II.' t i
. e/ i 'SAC
- '™ g »_.——/ -__‘____,.,-—/
= —— =
ve | e AR E
e~ veto ECAL
X[mm]
<€ 3.5m >

Bend by CERN MBP-S type dipole: 0.5 T, 112x23 mm? gap, 70 cm long
Beam monitor (Si pixels, Timepix3) after bending: 6p/Ppeqm < 0.25%
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What’s PADME - the TDAQ concepts

Three trigger lines: Beam based, Cosmic ray, Random

Trigger and timing based on custom board [2020 IEEE NSS/MIC, doi:
10.1109/NSS/MIC42677.2020.9507995]

Most detectors acquired with Flash ADC’s (CAEN V1742), O(103) ch’s:
1 us digitization time window
1V dynamic range, 12 bits
sampling rates at 1, 2.5, 5 GS/s

Level 0 acquisition with zero suppression, x10 reduction = 200 KB / ev.
Level 1 for event merging and processing, output format ROOT based

First experiment goal (A’ invisible search) required 1013 POT, O(80 TB)
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Details on the flux Np57: leakage correction

Loss from detailed MC vs vertical position checked against data in test beam
Very good data-MC agreement, correction 1.2%, systematic error 0.5%
Significant period-by-period variation of the correction: -4% to +2%

u]i 1 __’PADME II-"re/iminalry | i l i | — ] )
= - X . ] Relative leakage correction
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Details on the flux Npo7: ageing correction -

The literature indicates possible changes in SF57 transparency for O(krad)
Estimate of Run-Ill dose: 2.5 krad

Estimated from 3 flux proxy observables: Qx target, <Eg.,>, period multiplets
Leadglass yield decreases with relative POT slope of 0.097(7)
Constant term uncertainty of 0.3% added as scale error
Slope error included in POT uncertainty

) x> Relative ageing correction
8 0.3 = PADME Coliaboration x2 ! ndf 20.28 /17 i . _ _
g E Prob 0.2602 106" F  ~ ¢t 1 g ' =
8 029 PO 0.0002528 + 1.3046-06 - ¢
(e ] 0.28- p1 0.1089 + 0.01842 1.04— .
~ = TR & e
X = : .
g 027 1.02F ®oo,
g 026 - ¢ i
0.25; 1= ¢, - .
F [F e, ]
0.24: 0.98 te,, =
0.23- . T gy , ]
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0.22 Ll A R SRR L1 ax10® 0'96: } ty $ I ]
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Details on the flux Npo7: ageing correction -

The literature indicates possible changes in SF57 transparency for O(krad)
Estimate of Run-Ill dose: 2.5 krad

Estimated from 3 flux proxy observables: Qx target, <Eg.,>, period multiplets
Leadglass yield decreases with relative POT slope of 0.097(7)
Constant term uncertainty of 0.3% added as scale error
Slope error included in POT uncertainty
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Measurement of e*e- - yy: data set and concept

Using <10% of Run Il data, Npor = (3.97 £ 0.16) x10! positrons on target
Expect Ng.s,, ~0.5 M, statistical uncertainty < 1%
Include various intensities, e* time profiles for systematic studies
Evaluate efficiency corrections from MC + data

Master formula:

o
- ~
- ~S

~
Se

O-e+ e* _),)/,-y : - N e N i T

{Npor ¥ nes (Ag - Api €t e —yy

’ ~
~ ~ ~
————————————————————————

Npor from diamond active target

Uncertainty on e- density n,s = pNy Z/A d
depends on thickness d

-

o

Run NPOT e*/bunch  length
# [1019] [10°] [ns]
30369 8.2 270+ 1.7 260
30386 2.8 190+ 1.4 240
30547 7.1 31514 270
30553 2.8 358+1.3 260
30563 6.0 268+1.2 270
30617 6.1 273+1.5 270
30624 6.6 205+2.1 270

30654 No-target ~ 27 ~ 270

30662 No-Target ~ 27 ~ 270
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e*e =2 yy. POT, target thickness

Npor from active target, uncertainty is 4%:

1.

Absolute calibration by comparing with lead-glass calorimeter fully
contained from 5k to 35k e+/bunch

2. When focusing beam into 1-2 strips, non-linear effects observed

Ngs from target thickness, uncertainty is 3.7% (i.e., ~3.7 um)

1.

Measured after assembly with profilometer with 1 um resolution as
difference with respect to the supporting surface

Correction due to roughness (quoted as 3.2 um by producer): compare
precision mass and thickness measurements on similar diamond samples

45



It

The blind unblinding procedure: details

8,61.08{:—
Sios H Constant term and slope of the optimized
il fit estimate the true values for K(s)
o - ; ! | ! Results of the procedure ran on toy
ot + M‘ # +H+++%H ﬁ#*### et experiments with constant = 1, slope = 0
098: + 7
| E R R B B B +| L € 1.01 I\Ellr:::i —O:)gig
16.4 16.6 16.8 17 17.2 17.4 ..cg Mean y 1
s (MeV) 2 StdDevx  0.006
Q StdDevy 0.002
—~ po 14 0.001 O
.00 pl_ —0.0009+ 0.003 ‘ 1.005[— ]
1.04; 1—
102 + *
1:_ %+ ++ ({' % #*1 #1} x+1 %[{»%
- } i ftet THJ'T ft {T 0.995/—
. L e e Y e T R T R T
Moreover the procedure correctly finds the central location of signals when present Slope
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The PCL method

Using CLsb but clipping to the median every downward fluctuation of the limit

x10°°
o 1
a,>
0.9 KLOE, 2015
o p-value
0.7 = e & g o° E
= .y 5 . . =
0.6 7E- . . . =
i 90% CL UL: 3 AR X 3
05— W I\ A 4B | CLs Median - 05E- % é ; -5
= []cLs+26 . i . =
0.4 [ lcLs+io E 02E- o* =
o3 o Bkg statonly | 015~ , & ! L =
= —— Observed PCL - % 16.5 17 17.5 18 18
0.2 ] oo Observed limit | M, (MeV)
0.1 NAG64, 2019 X
16 16.5 17 17.5 18 18.5 equivalent to (1.63 +- 0.13) ¢
M, (MeV) q ( )

The p-value is only slightly affected, consistent with the coverage modifications of this method
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