

The X17 experiment at LNL

<u>B. Gongora-Servin</u>, **T. Marchi**, <u>D. Tagnani</u>, A. Celentano, A. Goasduff, J.J. Valiente-Dobón

and the NUCLEX collaboration

Genova 10/04/2025

Foreword: Internal Pair Creation

Emission of e⁺e⁻ pairs coupled to the Nuclear Field.

It must be disentangled from pair production due to high energy gamma rays.

- Possible only for ΔE >1.022 MeV
- Competes with gamma emission (typical cross section ratio is 10⁻³)
- Allowed for monopole transitions
- <u>Allows to directly probe transition properties</u>

Detecting "high energy" e+e- pairs (sharing 10-20 MeV of kinetic energy) emitted in an environment dominated by gamma-rays poses an experimental challenge. Theory is well established since Rose's work:

- M.E. Rose, <u>Phys Rev 76, 678 (1949);</u>
- E.K. Warburton, <u>Phys Rev 133, 6B (1964)</u>
- P. Schlüter et al, <u>Phys Rep 75, 327 (1981)</u>
- P. Schlüter et al, <u>At Data and Nucl Data Tab 24, 509 (1979)</u>

It is possible to compute:

Pair Conversion Coefficients (PCC) Electron-positron angular correlations

Outline

- Motivation and interest on the "X17 case"
- Aipac8Be: a new setup at LNL for IPC studies
- Preliminary experimental results for ⁸Be* decay

Motivation: renewed interest on IPC.

The reaction: ⁷Li(p,e⁺e⁻)⁸Be allows to selectively populate the 17.64 MeV and 18.15 MeV resonances. The considered transitions are M1 type. Isospin is assigned in analogy to isobaric

nuclei -> two iso-scalar and two iso-vector transitions.

 7 Li(p,e⁺e⁻)⁸Be

140

160

[A. J. Krasznahorkay et al, Phys Rev Lett 116, 042501 (2016)]

PRL **116**, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,* M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár,

FIG. 4. Experimental angular e^+e^- pair correlations measured in the ⁷Li(p, e^+e^-) reaction at $E_p = 1.10$ MeV with $-0.5 \le y \le 0.5$ (closed circles) and $|y| \ge 0.5$ (open circles). The results of simulations of boson decay pairs added to those of IPC pairs are shown for different boson masses as described in the text.

FIG. 5. Invariant mass distribution derived for the 18.15 MeV transition in ⁸Be.

The deviation between the experimental and theoretical angular correlations is significant and can be described by assuming the creation and subsequent decay of a $J^{\pi}=1^+$ boson with $m_0c^2=16.70\pm0.35(\text{stat})\pm0.5(\text{syst})$ MeV/ c^2 . The branching ratio of the e^+e^- decay of such a boson to the γ -decay of the 18.15 MeV level of ⁸Be was found to be 5.8×10^{-6} for the best fit.

Such a boson might be a good candidate for the relatively light $U(1)_d$ gauge boson [4], or the light mediator of the secluded WIMP dark matter scenario [5] or the dark Z (Zd) suggested for explaining the muon anomalous magnetic moment [7].

F.W. N. de Boer et al, Phys Lett B 388, 235 (1996) F.W. N. de Boer et al, J. Phys G: Nucl Part Phys 23, L85 (1997) F.W. N. de Boer et al, J Phys G: Nucl Part Phys 27, L29 (2001) And several others.

> dedicated experiments are reported yielding <mark>further</mark> indications for an anomaly at 9 MeV/c2 Results of two correlation of IPC. The first experiment (8Be) shows a deviation from IPC at in the anaular large correlation angles presumably due to the same anomaly in the transition to the first excited state. The second experiment (12C) shows a relatively large anomaly at 9 MeV/c2, albeit with limited statistics. Both results are compatible with an X-boson scenario where the boson-nucleon coupling strength is proportional to the isoscalar strength in the M1 transition. Exploiting isospin structure as a guideline, further high statistics experiments are needed to establish the nature of the anomaly.

Table 1. Experimental results relevant for the search of anomalous e^+e^- production in nuclear transitions with respect to IPC, in the invariant mass range from 5 to 15 MeV/c². Listed are the nucleus, the quantum numbers, the energy (*E*) and character (E1, M1) of the transition, the derived boson emission branching ratio (*B_X*) with respect to γ emission, the boson decay width (Γ_X), the isospin dependent effective coupling strength (α_X), relative to $\tilde{\alpha} = 1.7 \times 10^{-6}$ (the axion–nucleon coupling strength), the invariant mass m_X and the literature references. Values for B_X and Γ_X have been derived at 95% CL.

^{A}Z	Ιπ	Т	E MeV	B_X	Γ_X meV	$lpha_X$ $1.7 imes 10^{-6}$	m_X MeV/c ²	Reference
²⁰ Ne	1-	1	17.8 E1 16.2 E1	$\leqslant 1.3 \times 10^{-4}$	≤ 3	≤ 1.8		[20]
¹² C	1^{-} 2^{-}	1 1	17.2 E1 12.3 E1	$\leqslant 2.3 \times 10^{-5}$	≤ 1	≤ 0.3		[1]
¹² C ¹² C ¹² C ⁸ Be	1^+ 1^+ 1^+	0 1 1, 0	12.7 M1 15.1 M1 114 M1 17.6 M1	$\begin{array}{l} (1.6 \pm 0.7) \times 10^{-3} \\ \leqslant 4.6 \times 10^{-5} \\ \leqslant 9.8 \times 10^{-5} \\ (11.4 \pm 3.4) \times 10^{-5} \end{array}$	$0.55 \pm 0.24 \\ \leqslant 1.7 \\ \leqslant 8 \\ 1.9 \pm 0.4$	$38 \pm 17 \le 0.9 \le 0.8 \ 1.5 \pm 0.4$	9.2 ± 1.0 9 ± 1	[6] [6] [8, 23] [1]
⁴ He	0-	0	14.6 M1 21.0 e ⁺ e ⁻		74 ± 30	32 ± 12	8 ± 2	[15, 5]

Table 1. Experimental results for anomalous e⁺e⁻-emission interpreted in the light of a short-lived 9 MeV/ c^2 X-boson in six M1 transitions and an M0 transition. Listed are the nucleus, the energy and the width of the resonance E_R and Γ_R , the (iso)spin-parity quantum numbers, the transition energy E_{γ} , the X-branching ratio B_X with respect to γ -emission, the X-decay width Γ_X , the coupling strength α_X relative to $\tilde{\alpha} = 1.7 \times 10^{-6}$ (the axion–nucleon coupling strength), the invariant mass m_X , and the references. Values for B_X and m_X have been derived at 95% CL.

^A Z	E_R (MeV)	Γ_R (eV)	I^{π}, T	E_{γ} (MeV)	B_X	Γ_X (meV)	α_X 1.7×10^{-6}	m_X (MeV/ c^2)	Refs
¹² (C 12.71	18.1	1+,0	12.71	$(7\pm3)\times10^{-4}$	0.24 ± 0.11	18 ± 7	9.0 ± 1.0	Present
				12.71	$(1.6 \pm 0.7) \times 10^{-3}$	0.56 ± 0.25	38 ± 17	9.2 ± 1.0	[5–7]
	15.11	43.6	1+, 1	15.11	$\leq 4.6 \times 10^{-5}$	≤1.8	≤0.9	_	[5–7]
⁸ B	e 17.64	10.7×10^3	1+, 1	17.64	$(1.1 \pm 0.3) \times 10^{-4}$	1.9 ± 0.4	1.5 ± 0.4	9 ± 1	[2-4]
				14.64	$(8.5 \pm 2.6) \times 10^{-5}$	0.7 ± 0.2	1.5 ± 0.4	9 ± 1	[2-4]
	18.15	138×10^3	$1^+, 0$	18.15	$\leq 4.1 \times 10^{-4}$	≼1.2	≤5.7	_	Present
				15.15	$(5.8 \pm 2.2) \times 10^{-4}$	2.2 ± 0.8	10.5 ± 4.5	9.5 ± 1.2	Present
^{4}H	e 21.0	850×10^3	0-,0	M 0	$0^- \rightarrow 0^+, e^+e^-$	74 ± 30	32 ± 12	8 ± 2	[5–7]

Is alpha-clustering hiding behind the scene?

								16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne
Z																
		14F							16F	17F	18F	19F	20F	21F	22F	23F
8					120	130	140	150	160	170	180	190	200	210	220	
					10N	11N	12N	13N	14N	15N	16N	17N	18N	19N	20N	21N
6				8C	90	10C	11C	12C	13C	14C	15C	16C	17C	18C	19C	20C
			6B	7B	8B	9B	10B	11B	12B	13B	14B	15B	16B	17B	18B	19B
4			5Be	6Be	7Be	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be		
		3Li	4Li	5Li	6Li	7Li	8Li	9Li	10Li	11Li	12Li	13Li				
2			3He	4He	5He	6He	7He	8He	9He	10He						
		0		2		4		6		8		10		12		N

Can we provide independent data?

We do have a useful facility

AN2000 by High Voltage Engineering Operational since 1971.

lons: ${}^{1}({}^{2})$ H+, ${}^{3-4}$ He+. Maximum Terminal Voltage: 2.5 MV, single stage (belt). Beam current: up to 1 μ A.

The Aipac8Be setup at AN2000

- Positrons are not discriminated from electrons. -> Future coupling to magnetic field.
- Target composition and stability are critical.
- Solid angle coverage is limited to theta=90°.
- Can we improve energy resolution?
- Angular resolution is limited by straggling:

Spessore [mm]	Energie [MeV]					
- F []	10	15	20			
0.7	8°	5.5°	3.5°			
1	9°	6.8°	4.5°			
1.5	11°	8°	5.5°			

therefore detectors must be placed inside the scattering chamber

Figure 3.1: Absorption position of electrons (a, b) and positrons (c, d), with a logarithmic scale on the counts, at different emission energies: 10 MeV (blue), 15 MeV (red), 20 MeV (brown).

A new setup: proposal

- Improve angular resolution by reducing material budget.
- Improve angular coverage and measure out-of-plane correlations
- Improve confidence on target composition.
- Allow future coupling with a magnetic field.
- Focus on ⁸Be and, possibly, ¹²C cases.

Single Telescope Modular detector

A new setup: proposal

- Improve angular resolution by reducing material budget.
- Improve angular coverage and measure out-of-plane correlations
- Improve confidence on target composition.
- Allow future coupling with a magnetic field.
- Focus on ⁸Be and, possibly, ¹²C cases.

Array of clovers

Four Telescope Cluster

Light readout

Position reconstruction

Position Measurement @ 0°C (⁹⁰Sr/⁹⁰Y source)

Setup @ AN2000 (30° beamline), LNL-INFN

- Cooling system at 0°C.
- Block on top of the target ladder to cool the target frame.
- PT100 sensor to monitor the temperature in the detectors, target frame, and chamber
- **Thermal camera** to monitor the temperature in the target on the beam spot
- System of two cameras for visual check of the target integrity

Experiment	Number of Clovers	Angles [0]	Time [hrs]	
Commissioning	2	30, 315	155	
Experiment I	4	30, 165, 240, 315	236	
Experiment II	4	30, 150, 240, 330	392	

Beam and targets

- H beam at 0.441 and 1.03 MeV (up to 600 nA)
- LiF on Cu backing
- LiF on C backing
- LiF with Au coating

The |S(E)| factor of ${}^{7}\text{Li}(p, \gamma)^{8}\text{Be}$ and consequences for S(E) extrapolation in ${}^{7}\text{Be}(p, \gamma_{0})^{8}\text{B}$

D. Zahnow¹, C. Angulo², C. Rolfs³, S. Schmidt¹, W.H. Schulte¹, E. Somorjai³

¹Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Universitätstrasse 150, D-44780 Bochum, Germany ²CSNSM, Orsay, France ³ATOMKI, Debrecen, Hungary

Received: 30 August 1994/Revised version: 19 October 1994

New analysis of $p+{}^{19}\mathrm{F}$ reactions at low energies and the spectroscopy of natural-parity states in ${}^{20}\mathrm{Ne}$

Ivano Lombardo, Daniele Dell'Aquila, Jian-Jun He, Giulio Spadaccini, and Mariano Vigilante Phys. Rev. C **100**, 044307 – Published 10 October 2019

LaBr₃ spectrum for target monitoring and AN2000 calibration

Preliminary results – tracking and total energy

Gate to account for the low efficiency in the borders of the detector

- Time coincidence of the three layers:
 - γ -rays interact mostly with only layer
 - Reduction up to 4 orders of magnitude the γ-ray background

$$y = \frac{E_{e^+} - E_{e^-}}{E_{e^+} + E_{e^-}}$$

|y| < 0.5 Atomki |y| < 0.75 This work

Add-back

P/T (peak to total ratio) improves from 24% to 38% for a 17.6 MeV transition

Add-back consequence: some events shifted to the high-energy region

Preliminary results – straight path selection using ΔE -E

Efficiency estimation through random correlations: pairs generated by merging two events with a multiplicity one.

EXP I

EXP II

E. Rose, Phys. Rev. 76 (1949) 678.E. Rose, Phys. Rev. 78 (1950) 184.

average discrepancy ~ 5%

A new *e*+*e*- pair spectrometer has been built to study the IPC in light nuclei:

- The energy resolution ($\Gamma_{17.6}$ =0.88 MeV) is comparable with the value of the spectrometer built at Atomki ($\Gamma_{17.6}$ =0.8 MeV)
- The spectrometer works in vacuum
- γ -ray suppression factor is 10^4
- Angular resolution of 2.52± 0.02 deg

The angular correlation distribution for the E0 transition in ¹⁶O was measured with an average discrepancy of 5% with respect to the model of Rose

Next steps:

- Complete the data analysis to determine the angular correlation distribution in ⁸Be
- New runs to increase the statistics
- Add veto detectors to constrain cosmic background (?)

M1 Transition at 18.12 MeV

Collaboration Members:

B. Gongora-Servin^{1,2}, T. Marchi¹, D. Tagnani³, A. Goasduff¹, J.J. Valiente-Dobón¹, A. Celentano⁵,
F. Azaiez¹, P. Aguilera⁴, F. Angelini^{1,4}, L. Baldesi⁷, M. Balogh¹, S. Barlini⁷, S. Bottoni⁹, R. Bolzonella², D. Brugnara¹, J. Benito-Garcia⁴, A. Camaiani⁷, S. Carollo⁴, G. Casini⁷, G. Cobari⁹, D. Dell'Aquila⁶, F. Ercolano⁷, A.Ertroprak¹, D. Fabris⁴, F. Galtarossa⁴, F. Gramegna¹, A. Gottardo¹, A, Gozzelino¹, D. Lazzaretto⁴, I. Lombardo⁶, D. Mengoni⁴, A. Nannini⁷, L. Palombini⁴, J. Pellumaj^{1,2}, R.M. Perez-Vidal¹, S. Piantelli⁷, S. Pigliapoco⁴, M. Polettini⁴, E. Pilotto⁴, D. Stramaccioni^{1,4}, G. Spina⁹, M. Sigmund F. Recchia⁴, L. Redilogo⁶, K. Rezynkina⁴, L. Rigon⁴, M. Rocchini⁷, M. Rossi⁴, M. Sedlak¹, F. Simpsi⁴, S. Valdre⁷, M. Vigilante⁸, L. Zago^{1,4}, I. Zanon¹⁰, L. Zappacosta⁴.

¹INFN Laboratori Nazionali di Legnaro, ²Università di Ferrara, ³INFN Sezione di Roma Tre, ⁴Università di Padova e INFN Sezione di Padova, ⁵INFN Sezione di Genova, ⁶INFN Sezione di Catania, ⁷Università di Firenze and INFN Sezione di Firenze, ⁸INFN Università di Napoli Federico II e INFN Sezione di Napoli, ⁹INFN Sezione di Milano, ¹⁰Stockholm University, ¹¹RBI Zagreb