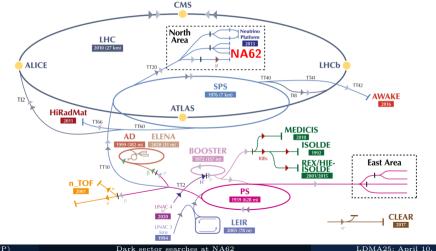


Dark sector searches at NA62 $\,$

Jan Jerhot

Max Planck Institute for Physics


Light Dark Matter @ Accelerators; April 10, 2025

European Research Council Established by the European Commission

Introduction: NA62 experiment

Fixed-target experiment at CERN SPS (north area - ECN3 experimental cavern)

Jan Jerhot (MPP)

E DQC

Introduction: NA62 experiment

- Main goal: study of ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay, yet NA62 covers: broad kaon physics program (precision measurements, LFV/LNV decays, LLP searches) beam-dump physics (LLP searches) program + more exotic searches (neutrino tagging, ...)
- Data-taking periods 2016-18, 2021-26: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis of 2016-22 data published¹ (5 σ obs)

Introduction: Long-lived particles (LLPs)

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);

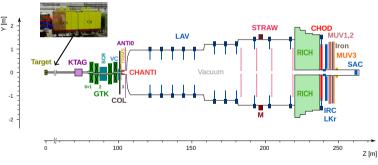
NP Particle	$_{\mathrm{type}}$	SM portal (dim ≤ 5)	PBC	decay c	hannels ($m \lesssim 1 { m GeV}$)
HNL (N_I)	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_I$	6-8	$\pi\ell, K\ell, \ell_1$	$\ell_2 \nu$
dark photon (A'_{μ})	vector	$-\epsilon/(2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$	1-2	$\ell\ell$	$2\pi, 3\pi, 4\pi, 2K, 2K\pi$
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	4-5	$\ell\ell$	$2\pi, 4\pi, 2K$
$\mathbf{axion}/\mathbf{ALP}$ (a)	pseudoscalar	$\frac{(C_{VV}/\Lambda)gaV_{\mu\nu}\tilde{V}^{\mu\nu}}{C_{ff}/(2\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f}$	$9,11 \\ 10$	$\gamma\gamma,\ell\ell$	$2\pi\gamma,3\pi,4\pi,2\pi\eta,2K\pi$

• Dark Sector (SM-DM) portals typically probed:

Introduction: Long-lived particles (LLPs)

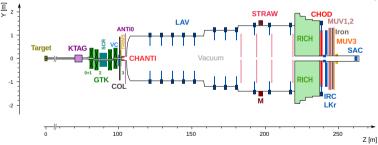
Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);
- Dark Sector (SM-DM) portals typically probed:


NP Particle	type	SM portal (dim ≤ 5)	PBC	decay channels ($m \lesssim 1{ m GeV}$)	
HNL (N_I)	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_I$	6-8	$\pi\ell, K\ell, \ell_1\ell_2\nu$	
dark photon (A'_{μ})	vector	$-\epsilon/(2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$	1-2	$\ell\ell$	$2\pi, 3\pi, 4\pi, 2K, 2K\pi$
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	4-5	$\ell\ell$	$2\pi, 4\pi, 2K$
$\mathbf{axion}/\mathbf{ALP}(a)$	pseudoscalar	$(C_{VV}/\Lambda)gaV_{\mu\nu}\tilde{V}^{\mu\nu}$	9,11	$\gamma\gamma, \ell\ell$	$2\pi\gamma, 3\pi, 4\pi, 2\pi\eta, 2K\pi$
		$C_{ff}/(2\Lambda)\partial_{\mu}aar{f}\gamma^{\mu}\gamma^{5}f$	10		

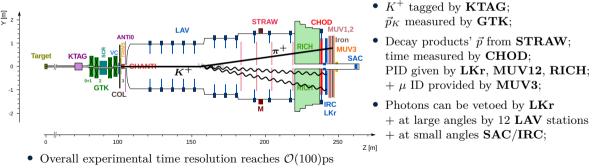
Two types of direct searches for NP particles at fixed-target experiments:

- NP particle production in SM particle decays reconstruction from both initial and final state particles
- NP particle decay to SM particles reconstruction of original particle from the SM final states

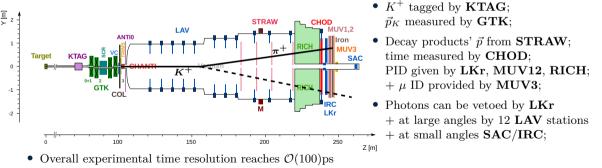

NA62 experiment can do both in two modes of operation - kaon mode and beam-dump $mode_{A,C}$

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected (~ 6% of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)²;

²The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 *HNST* **12** P05025, [1703:08501]

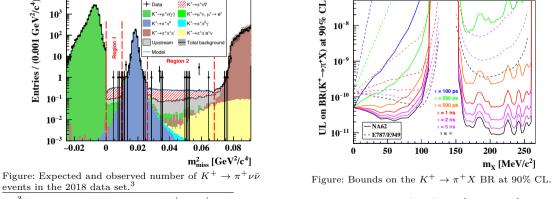

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected (~ 6% of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)²;

• K^+ tagged by **KTAG**; \vec{p}_K measured by **GTK**;

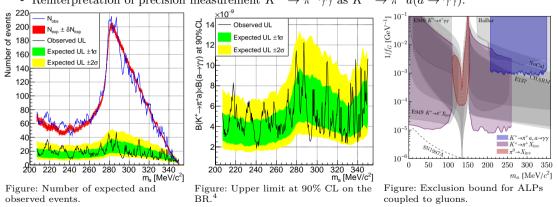

²The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 *HNST* **12** P05025, [1703:08501]

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected (~ 6% of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)²;

 2 The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 *HNST* **12** P05025, $\frac{1}{170308501}$ $\stackrel{\circ}{\sim}$


- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected (~ 6% of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)²;

 $^{^2}$ The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 *HNST* **12** P05025, $\frac{1}{170308501}$ $\stackrel{\circ}{\sim}$


Search for LLP (escaping detection) in $s \to d$ transition

- DP, DS or ALP with C_{WW}, C_{GG}, C_{qq} can be produced in FCNC decays
- $K^+ \to \pi^+ \nu \bar{\nu}$ has the same signature as $K^+ \to \pi^+ X(X)$ with X escaping (similarly $K_{2\pi}, \pi^0 \to \text{invis.}$)

 ${}^{3}\text{Measurement of the very rare } K^{+} \rightarrow \pi^{+}\nu\bar{\nu} \text{ decay. NA62 Collaboration. } JHEP \text{ 06 (2021) 093;} 2103 \pm 5389 \text{ for all } 103 \pm 538$

Search for LLP (decaying inside FV) in $s \to d$ transition

• Reinterpretation of precision measurement $K^+ \to \pi^+ \gamma \gamma$ as $K^+ \to \pi^+ a(a \to \gamma \gamma)$:

Search for LLP (decaying inside FV) in $s \to d$ transition

Reinterpretation of search for the ultra-rare $K^+ \to \pi^+ e^+ e^- e^+ e^-$ decay BR $(K_{\pi 4e}) = 7.2 \times 10^{-11}$:

- no signal observed, BR $(K_{\pi 4e}) < 1.4 \times 10^{-8}$ at 90% CL
- $K^+ \to \pi^+ aa(a \to e^+e^-)$ or $K^+ \to \pi^+ S(S \to A'A', A' \to e^+e^-)$ interpretation
- QCD axion excluded as a possible explanation of the 17 MeV anomaly

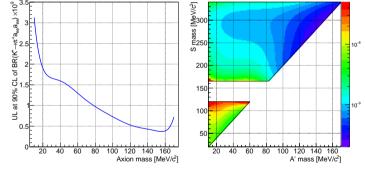
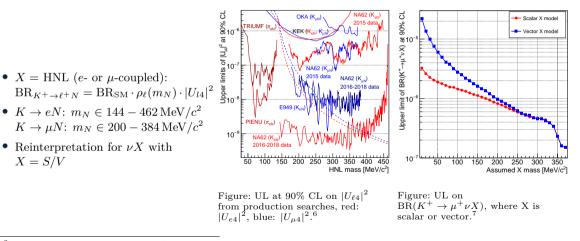


Figure: Upper limit at 90% CL on the ALP BR. 5


Figure: Bound on the combined BRs of the decay chain.

⁵Search for K^+ decays into the $\pi^+ e^+ e^- e^+ e^-$ final state. NA62 Collaboration. *Phys.Lett.B* 846 (2023) 138193, [2307.04579]

Jan Jerhot (MPP)

= 200

Search for LLP in $K^+ \to \ell^+ X$ decay

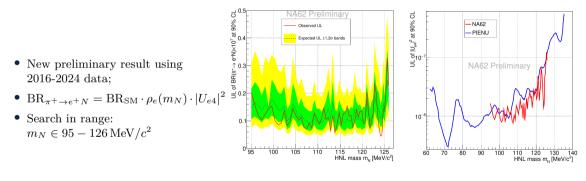
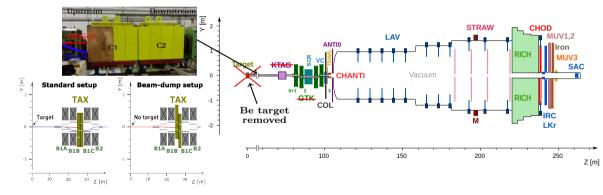
⁶Search for HNL production in K^+ decays to positrons. NA62 Collaboration. Phys. Lett. B 807 (2020) 135599. ⁷Search for K^+ decays to a muon and invisible particles. NA62 Collaboration. Phys. Lett. B 816 (2021) 136259 nac

Jan Jerhot (MPP)

٠

Dark sector searches at NA62

Search for HNL in $\pi^+ \to e^+ N$ decay

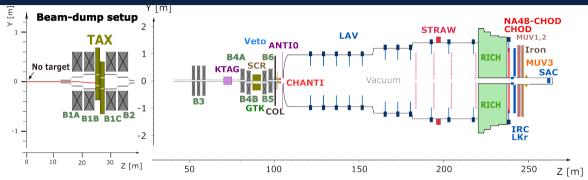
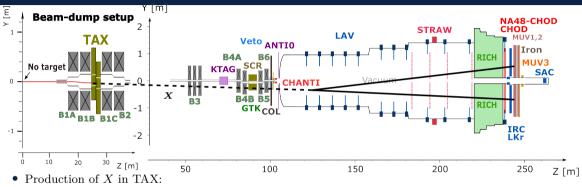
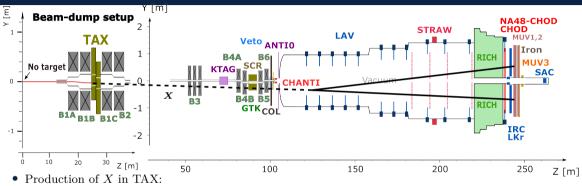

Figure: UL on BR $(\pi^+ \to e^+ N)$.

Figure: UL at 90% CL on $|U_{e4}|^2$ compared with the result from the PIENU experiment⁸.


⁸Improved search for heavy neutrinos in the decay $\pi \to e\nu$. PIENU Collaboration. Phys. Rev. D 97 (2018) 7, 0720120 $\land \bigcirc$

• target removed and TAX closed; KTAG and GTK not used; ANTIO used as an upstream veto:



⁹NA62 Collaboration JHEP 09 (2023) 035 [2303.08666]; PRL 133 (2024) 11 [2312.12055];=accepted by EPJ € [2502.04241] ○

- DS/DP: p-Brems. $pN \to X + ...$; ALP mixing with $P = \{\pi^0, \eta, \eta'\}$; DP mixing with $V = \{\rho, \omega, \phi\}$
- ALP/DS/DP: meson decays: $B \to KX$; $P \to A'\gamma$ and $V \to A'P$; ALP Primakoff

 ${}^{9}\text{NA62 Collaboration JHEP 09 (2023) 035 [2303.08666]; PRL 133 (2024) 11 [2312.12055]; accepted by EPJC [2502.04241]] and the second s$

- DS/DP: p-Brems. $pN \to X + ...$; ALP mixing with $P = \{\pi^0, \eta, \eta'\}$; DP mixing with $V = \{\rho, \omega, \phi\}$
- ALP/DS/DP: meson decays: $B \to KX$; $P \to A'\gamma$ and $V \to A'P$; ALP Primakoff
- $N_{\rm POT} = (1.4 \pm 0.3) \times 10^{17}$ protons on target (POT) collected in 2021; plan: $N_{\rm POT} \simeq 10^{18}$ by LS3
- NP searches with $\mu\mu$, ee and hadronic $\pi^+\pi^-(\gamma,\pi^0,\eta,2\pi^0), K^+K^-(\pi^0)$ final states published⁹

 $^9 \text{NA62 Collaboration JHEP 09 (2023) 035 [2303.08666]; PRL 133 (2024) 11 [2312.12055] = accepted by = EPJ \in [2502.04241] \odot [2502.04241]$

Search for LLP decays in beam-dump mode (selection)

Search strategy:

- selecting two oppositely charged tracks + PID \Rightarrow reconstructing their \vec{p} and m;
- tracks forming a vertex in FV (+ search for additional photons) \Rightarrow reconstructing \vec{p}_X and m_X ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);
- blind analysis (signal and control regions defined around primary vertex location kept masked).

Search for LLP decays in beam-dump mode (selection)

Search strategy:

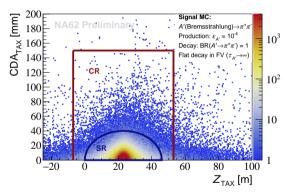
- selecting two oppositely charged tracks + PID \Rightarrow reconstructing their \vec{p} and m;
- tracks forming a vertex in FV (+ search for additional photons) \Rightarrow reconstructing \vec{p}_X and m_X ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);
- blind analysis (signal and control regions defined around primary vertex location kept masked).

Vetoes:

- μ^{\pm} : no in-time activity in LAV
- e^{\pm} : + no geometrically associated ANTI0 signal
- hadrons: + no signal in SAV

Search for LLP decays in beam-dump mode (selection)

Search strategy:


- selecting two oppositely charged tracks + PID \Rightarrow reconstructing their \vec{p} and m;
- tracks forming a vertex in FV (+ search for additional photons) \Rightarrow reconstructing \vec{p}_X and m_X ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);
- blind analysis (signal and control regions defined around primary vertex location kept masked).

Vetoes:

- μ^{\pm} : no in-time activity in LAV
- e^{\pm} : + no geometrically associated ANTI0 signal
- hadrons: + no signal in SAV

Signal and control regions (SR, CR):

- extrapolation of \vec{p}_X from vertex to TAX: definition of SR and CR in terms of primary vertex location
 - $\mu^+\mu^-$: SR is a box $6 < Z_{\text{TAX}} < 40$ m and CDA_{TAX} < 20 mm; CR is a box surrounding SR;
 - e^+e^- and hadrons: SR is an ellipse centered at $Z_{\text{TAX}} = 23$ m and $\text{CDA}_{\text{TAX}} = 0$; box CR;

Search for LLP decays in beam-dump mode (acceptance)

In model-independent case $(C^i = C^i_{ref}, BR^f = 1)$: $N^{if}_{exp}(m_X, \Gamma_X) = N_{POT} \times \chi^i_{pp \to X}(C^i_{ref}) \times P^i_{rd} \times A^{if}_{acc}$

- $\chi_{pp\to X}(C_{ref})$: LLP prod. probability for ref. coupling
- $P_{\rm rd}$: probability to reach NA62 FV and decay therein
- $A_{\rm acc}$: signal selection and trigger acceptance

Search for LLP decays in beam-dump mode (acceptance)

In model-independent case ($C^i = C^i_{ref}$, $BR^f = 1$): $N^{if}_{exp}(m_X, \Gamma_X) = N_{POT} \times \chi^i_{pp \to X}(C^i_{ref}) \times P^i_{rd} \times A^{if}_{acc}$

- $\chi_{pp\to X}(C_{ref})$: LLP prod. probability for ref. coupling
- $P_{\rm rd}$: probability to reach NA62 FV and decay therein
- A_{acc} : signal selection and trigger acceptance

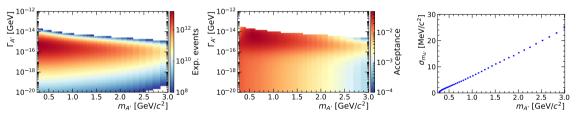


Figure: Left: expected $A' \rightarrow \pi^+\pi^-$ yield after full selection, assuming $\varepsilon = 1$ and BR = 1. Center: acceptance after full selection for LLPs that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

- Distributions above obtained for all 61 combinations of production and decay channels
- All available on HepData: https://doi.org/10.17182/hepdata.156981.v1

Jan Jerhot (MPP)

Dark sector searches at NA62

 ΔT of the tracks suggests two types of background mechanisms for $X \to \ell^+ \ell^-$: Combinatorial:

- Background from random superposition of two uncorrelated upstream particles;
- Dominating for $\mu^+\mu^-$;
- Simulation based on single tracks selected in data artificially overlaid to emulate a random superposition.

Prompt:

- Background from secondaries of μ interactions with the traversed material (hadron photo-production);
- Dominating for e^+e^- .
- Simulation based on backwards MC using single muons from the data + unfolding.

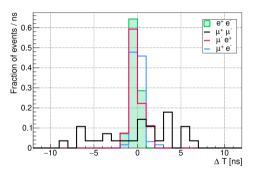


Figure: $X \to \ell^+ \ell^-$ background before LAV veto (SR and CR masked).

Kaon decays:

- Background from upstream kaons entering the FV via non-instrumented ANTI0 hole;
- Dominating for hadrons;
- Simulation based on single kaons selected in data and forced to decay in the FV.

Neutrino-induced background:

- Interactions of ν_{μ} from TAX in detector material;
- Negligible for all final states.

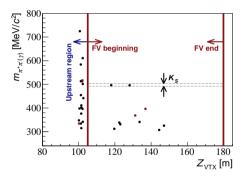


Figure: $\pi^+\pi^-(\gamma)$ events in $Z_{\rm VTX}$ – invariant mass plane after inverting ANTI0 veto. Solid lines indicate the FV. Dashed lines indicate the K_S 3σ mass window.

Table: Summary of total expected number of background events at 68% CL for all studied decay channels in CR and SR after full selection.

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\mu^+\mu^-$	0.17 ± 0.02	0.016 ± 0.002
e^+e^-	$0.0097^{+0.049}_{-0.009}$	$0.0094\substack{+0.049\\-0.009}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$

Background-free hypothesis **not only** at $N_{\rm POT} = 1.4 \times 10^{17}$ but also for $N_{\rm POT} = 10^{18}$ and beyond

E SQQ

Search for LLP decays in beam-dump mode (result)

- 0 events observed in all CRs;
- 1 event observed in $\mu^+\mu^-$ SR (2.4 σ global significance); 0 events observed in e^+e^- and hadronic SRs;

¹⁰ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. JHEP 67 (2022) 0945 [2201.05170]]

Search for LLP decays in beam-dump mode (result)

- 0 events observed in all CRs;
- 1 event observed in $\mu^+\mu^-$ SR (2.4 σ global significance); 0 events observed in e^+e^- and hadronic SRs;
- Public tool ALPINIST¹⁰ used for the model-dependent interpretation: $N_{\exp}(m_X, C_X) =$ $\sum_{if} BR^f(m_X, C_X) \times (C^i/C^i_{ref})^2 \times$ $\times N^{if}_{\exp}(m_X, \Gamma_X = \Gamma_X(m_X, C_X))$
- Observed 90% CL contours obtained using the CL_s method.

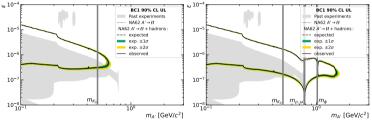


Figure: The observed 90% CL exclusion contours in BC1 (dark photon) benchmark together with the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands (theory uncertainty not included). Left: Bremsstrahlung production without resonant enhancement. Right: Bremsstrahlung production with resonant enhancement.

 $^{^{10}}$ ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. JHEP 07 (2022) 094; [2201.05170] \odot

Search for LLP decays in beam-dump mode (result)

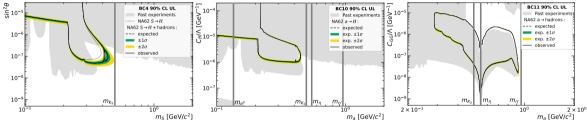


Figure: The observed 90% CL exclusion contours in BC4 (left), BC10 (center) and BC11 (right) benchmarks together with the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands (theory uncertainty not included).

-

Summarv

- NA62 is a multipurpose experiment allowing search for LLP in beam-dump mode and in kaon decays;
- Searches for LLP in $K^+ \to \pi^+$, $K^+ \to \mu^+$ and $K^+ \to e^+$ decays using 2016-2018 dataset and $\pi^+ \rightarrow e^+$ using 2016-2024 dataset were presented:
- Blind analyses searching for LLP decays $X \to \ell^+ \ell^-$ and $X \to$ hadrons have been performed on the beam-dump data collected in 2021:
- New regions of LLP parametric spaces were probed with no NP signal observed;
- Much more data already collected, plan to collect $\simeq 10^{18}$ POT in beam-dump mode by LS3; ٠
- Several new searches for LLPs in kaon decays and semi-leptonic or di-gamma final state decays in beam-dump mode are in progress.

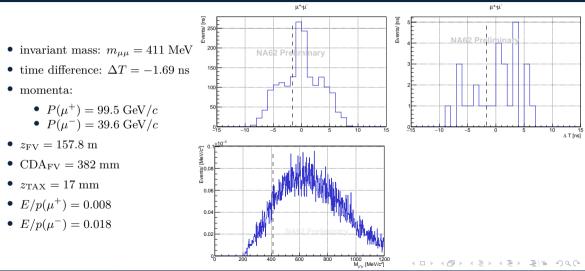
ELE NOR

Summary

- NA62 is a multipurpose experiment allowing search for LLP in beam-dump mode and in kaon decays;
- Searches for LLP in $K^+ \to \pi^+$, $K^+ \to \mu^+$ and $K^+ \to e^+$ decays using 2016-2018 dataset and $\pi^+ \to e^+$ using 2016-2024 dataset were presented;
- Blind analyses searching for LLP decays $X \to \ell^+ \ell^-$ and $X \to$ hadrons have been performed on the beam-dump data collected in 2021;
- New regions of LLP parametric spaces were probed with no NP signal observed;
- Much more data already collected, plan to collect $\simeq 10^{18}$ POT in beam-dump mode by LS3;
- Several new searches for LLPs in kaon decays and semi-leptonic or di-gamma final state decays in beam-dump mode are in progress.

Thank you for your attention!

ELE NOR

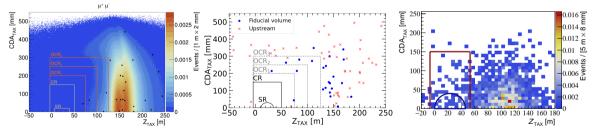

Backup slides

Jan Jerhot (MPP)

Dark sector searches at NA62

< □ ▶ 《 □ ▶ 《 ■ ▶ 《 ■ ▶ 《 ■ ▶ ■ ■ つへで LDMA25; April 10, 2025

Search for $A' \to \mu \mu$ - details on observed event



Jan Jerhot (MPP)

Dark sector searches at NA62

LDMA25; April 10, 2025 1 / backup

Distributions of the simulated background events in the (Z_{VTX} , CDA_{VTX}) plane for $\mu^+\mu^-$, e^+e^- and $\pi^+\pi^-(\gamma)$ final states:

- $\mu^{\pm}: E_{\rm LKr}/p \sim 0 + {\rm MUV3};$
- $e^{\pm}: E_{\rm LKr}/p \sim 1 + !MUV3;$
- h^{\pm} $(\pi^{\pm} \text{ and } K^{\pm})$:
 - LKR+MUV12 BDT classifier $p_{\pi} > 80\% + !MUV3;$
 - K^{\pm} : h^{\pm} with K^{+} selected by RICH (else π^{\pm});
 - search neutral LKr clusters and reconstruction of γ , π^0 , η based on opening angle wrt decay vertex;