

Visible dark photon searches at JLab

Rafayel Paremuzyan

Light Dark Matter @ Accelerators (LDMA) Apr 8 – 12, Genova, Italy

Kinetic mixing

What if Nature contains an additional broken U(1) (Abelian) force mediated by a massive vector boson, A'?

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu} + \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + m_{A'^2} A'^{\mu} A'_{\mu}$$

Kinetic mixing

Induces week coupling to electric charge

Generated by heavy particles X interacting with $oldsymbol{\gamma}$ and A/

Where can A's be produced

Where you can produce photons, you can produce dark photons!

Light Dark Matter @ Accelerators (LDMA)

Simplistic visible decay model has 2 parameters: ϵ^2 and $\mathbf{m}_{A'}$.

Decay length
$$l_0\equiv\gamma c au\propto rac{1}{\epsilon^2 m_{A'}}$$

Depending on the mass and the mixing strength (ϵ^2) the dark photon can be short or long lived.

Different experimental techniques target different regions of phase space.

 10^{-4}

 10^{-5}

 a_e

HPS 2015

APEX Test Run

Bump hunting

Short-lived A's manifest themselves as a bump over the copious electromagnetic background.

Searching for a signal 100s of meters downstream the beam dump

At smaller masses and smaller ϵ^2 , A' can travel 100s of meters before decaying.

Electro-produced heavy photon kinematics on fixed targets

- Unlike Bremsstrahlung, A' takes almost all the beam energy: $E_{A'} \sim E_b(1 m_{A'}/E_b)$
- Peaked at forward angles: $(m_{A'}/E_b)^{3/2}$

- Fixed target experiments are therefore designed to be sensitive to small angles
- Maximize acceptance for high $E_{sum} = E(I^-) + E(I^+)$

Background processes in A' production w/ e- beam off fixed target

Continuous Electron Beam Accelerator Facility

- Two parallel linear accelerators arranged in racetrack configuration.
- Simultaneous delivery of electron beam to 4 experimental halls
- Up to 11 GeV to Halls A, B and C
 - Hall-D can get 12 GeV
- High beam polarization (> 80%)
- Three approved experiments at JLab to search for visible decays of A'
 - ApEX, HPS and X17

A Prime Experiment

- Septum magnet allows to move average scattering angles from 12° to 5°.
- Symmetric acceptance for e⁻ and e⁺.
 - P≈0.5*Eb
- $\delta \theta = 0.5 \text{ mrad } \delta \phi = 1 \text{ mrad}$
- Multi-foil targets: increase the mass range and reduce the multiple scattering

Target: ×10 Tungsten Foils

Detector components

Target assembly

10 Graphite foils, tot 0.07% RL

Calibration of magnetic optics

10 Tungsten foils, 2.8% RL

Top view

Electrons are detected in HRS-L while positrons in HRS-R

A Prime Experiment

• 2010 Test run:

- Eb = 2.29 GeV
- Successfully demonstrated the concept of the experiment
- Back in 2010 the "ε² vs mass" phase space was mostly empty

2019 Production Run:

- 30th January until March 10th, 2019
- ~ 34 C of accumulated charge on target for
- Eb 2.1 GeV

Significant territory is already excluded since 2010 approval.

Heavy Photon Search

- In Hall-B
- Compact detector:
- Si. Tracker inside Dipole magnetic field
- Electromagnetic calorimeter
- Can do Bump Hunt and Displaced vertex search De

Detector for 2015 and 2016 runs

- 6 layers (2015 and 2016 runs)
- Each layer has axial and stereo strips
- Acceptance starts from 15 mrad

- 2 symmetric sectors
 - Top and bottom
 - In total 442 crystals
- Provide trigger
- Good timing
 - Cleans accidentals

Wide Angle Bremsstrahlung

- 2 step process: Wide Angle Bremsstrahlung Then Photon conversion into ee+ pairs can fake the trident final state.
- Most of the contributions comes from the conversion in the 1st and 2nd layers of SVT.

Mass resolution

- Good understanding of mass resolution is critical for "Bump Hunt" analysis
- Mass resolution of data is known in a single mass point (at Moeller mass)
- For other masses we have to rely on MC.

ρ

e

- Smear mom. resolution to match FEE width
- With just mom. smearing the width of the MC Moeller mass agrees with the data within 6%.

Invariant mass distributions

2015 run 50 nA beam @1.1 GeV, 1.7 days

2016 run 200 nA @2.3 GeV, 5.4 days

No significant bump is found, so upper limit is set.

Displaced Vertex Search

- Background is parametrized as Gaussian + Exponential tail
- Z cut is determined to have 0.5 Bgr event
- Limits are set using the Optimum Interval Method
- No exclusion in 2016 data
- Highest sensitivity is obtained for $m_{A'}$ = 82 MeV and ϵ^2 = 1.710⁻⁹,
 - A' cross section is scaled by x7.9

Phys.Rev.D 108 (2023) 1, 012015

2015 and 2016 Engineering run limits

- HPS is approved for 180 days of running.
- Two opportunistic engineering runs
 - On weekends and/or after work hours
 - 2015 Engineering Run 50 nA @ 1.06 GeV 1.7 days (10 mC) of physics data
 - 2016 Engineering Run 200 nA @ 2.3 GeV 5.4 days (92.5 mC) of physics data
- The statistics from engineering runs is not enough to test uncharted territory, however it we have learned a lot
 - Backgrounds
 - Developed analysis procedures
 - Detector performance and limitations which lead to two upgrades (next two slides)
 - Addition of a new tracking layer
 - Single arm trigger

SVT upgrade

-Adding a new thin SVT layer at 5 cm downstream of the target, will significantly improve the vertexing resolution

Zcut 0.16 0.1 acceptance Move L2-L3 Layer 0 vertexing acceptance 0.0 0.02 20 30 40 50 60 70 80 10 z-vertex position (mm) * 20 cm CM

-Moving SVT Layers 2-3 closer to the beam increase the acceptance for longer lived A's

Trigger upgrade

2015 and 2016 run trigger required coincidence of two clusters: one in e- side another in e+ side.

Events w/ electron in the gap are lost

- Significant number of events have electron going to the ECal hole
- A new hodoscope is built on the positron side: and the new trigger is a coincidence between the hodoscope and cluster in the positron side.

2019 and 2021 Runs

Two physics runs are completed with the upgraded detector.

2019 run

- Eb = 4.55 GeV
- Lumi = 128 pb-1
- Target 8μ m and 20 μ m W foils

2021 run

- Eb = 3.74 GeV
- Lumi = 168 pb-1
- Target: 20 μ m W foil

Results are expected soon...

The X17 experiment

- Validate existence or establish an experimental upper limit on the electroproduction of the hypothetical X17 particle claimed in several ATOMKI low-energy proton-nucleus experiments.
- Search for a dark photon in the mass range $M \in (3 \text{ MeV} 60 \text{ MeV})$ through it's $A' \rightarrow e^-e^+$ decay.

 e^{-} + Ta $\rightarrow e^{-} e^{-} e^{+}$

- Detection of all three final state particles e['], e⁻ and e⁺.
- Magnetic-spectrometer-free experimental setup.
 - Particle energies are measured with a PbWO4 part of HyCal calorimeter.
 - Two-layers GEMs allow to suppress photon background.
 - GEMs also allow to cut charged tracks originating from the beam pipes.
 - High resolution calorimeter along with GEMs provide good precision target constrained mass resolution.

Beamline and detectors

HyCal calorimeter

Mainz experiment

Outer part of the HyCal will not be used for X17

Lead Tungstate: PbWO4: inner part

- Provide trigger
- 2.05 × 2.05 cm² x 18 cm (20 X0)
- 34 × 34 square matrix
- Inner 2x2 crystals are removed
- In addition, two Innermost layers will not be used
- Full azimuthal coverage
- Very forward angles (0.47° 3.78°)
- σ E/E = 2.6%/VE
- $\sigma xy = 2.5 \text{mm/VE}$

Lead glass

- 3.82x3.82 cm² x45 cm
- 576 crystals
- Will not be used for the X17 experiment

Will be read out by fADC250

GEMs

Photo of PRad GEMs

Vacuum Chamber ALL ALL

Photo from Xinzhan Bay

- To Veto/select neutrals
- Being currently build in UVA
- 2 layers displaced wrt each other by 40 cm
- Double GEMs to reduce the material budget
- 123 cm X 123 cm
- A hole 4 cm x 4x cm to allow beam pipe to pass through
- Better than 100 um position resolution
 - PRad achieved 70 um resolution

Experimental resolutions

Particles originating from the vacuum window will be effectively cleaned.

Mass resolutions

Detector efficiency

Acceptance calculation:

- Electron angle generated (0°-3°)
- Energy 30 MeV to few 100 MeV
- A' decayed into e⁻e⁺ isotopically in CM frame then boosted to lab frame.
- Note: A' here is not generated with the same kinematics as Radiative Photons. This can have significant impact on the acceptance calculation.
- The re-evaluation of the acceptance is in progress.
- Trigger configuration:
 - Total energy sum in calorimeter: $\Sigma E_{clust} > 0.7 E_{beam}$.
 - 3 clusters in PbWO4 calorimeter;
 - each cluster energy: 30 MeV < Eclust < 0.8xEbeam (rejects the elastic scattered electrons)

Initial proposal was submitted for 2.2 GeV and 3.3 GeV beam energies, however 3.3 GeV being non-standard CEBAF energy, we will run with 2.2 and/or 4.4 GeV energies.

Exclusion limit

- Limits are calculated for 20 days w/ 2.2 GeV beam and 30 days 3.3 GeV beam
- Note: as mentioned earlier, acceptances are being reevaluated with using MADGRAPH5 A' generator.
 - This will change the limit

$$\epsilon^2 = \frac{N_{A'}}{N_e CT \epsilon^2 \frac{m_e^2}{m_{A'}^2}}$$

This experiment is highly likely to run early 2026.

Summary

- JLab has a broad dark photon search program
 - APEX, HPS and X17
 - Search is through A'-Strahlung
 - Searches include both "Bump hunt" and "Displaced Vertex"
 - All experiments probed and/or will probe uncharted territories
- New publications and data taking are expected soon.

Backup

Seth Hall's slide

A' Invariant Mass Resolution

σ_{MS} - Multiple-Scattering contribution

Dark-Photon (A') Search with APEX

Jefferson Lab

6

Mass resolution for APEX 2019 run

P-value

Future prospects

New reach estimates for analysis using the full upgraded detector and the allocated run-time show clear reach in the thermal relic target band

- Sensitivity region more than doubled as compared to 2016 data-set
- The sensitivity grows almost linearly and does not saturate at the end of the approved beam-time

- HPS is approved for 180 PAC days of running
- So far (up to 2021): 75 days

Data run	Beam Energy (Gev)	Beam Current (nA)	Luminosity (pb ^{.1})	Beam Time	
2015 Engineering run	1.05	50	1.17	1.7 d	
2016 Engineering run	2.3	200	10.7	5.4 d	
2019 Physics run (w upgrade)	4.55	150	122	4 w	1
2021 Physics run (w upgrade)	3.7	120	168	4 w	
				3	4

