The DarkMESA Experiment in Mainz

Light Dark Matter 2025 @ Genova, Italy

Luca Doria (doria@uni-mainz.de)

PRISMA⁺ Cluster of Excellence and Institut für Kernphysik Johannes-Gutenberg Universität Mainz

Precision Physics, Fundamental Interactions and Structure of Matter

Overview

The new MESA facility Beam Dump experiments DarkMESA - overview DarkMESA - detector technology * Sensitivity * Summary

The MESA Facility

Luca Doria, JGU Mainz

A2 Collaboration

Existing High-power Beam Dump

Existing Halls cleared for MESA

A1 Collaboration 3-spectrometer setup Experiments with electrons

A2 Collaboration

New MESA Hall and Building

Existing High-power Beam Dump

Existing Halls cleared for MESA

A1 Collaboration 3-spectrometer setup Experiments with electrons

The MESA Facility

The MESA Accelerator

- 155 MeV max. beam energy
- 2 SC TESLA-like cavities

- Energy recovery/3x recirculation

Beam-Dump Experiments

Luca Doria, JGU Mainz

The DarkMESA Examination of the DarkMESA Examination of the DarkMESA Example o

Thursday, June 18, 15

 $Y_{Prod} \sim \epsilon^2 / m_A^2$

Luca Doria, JGU Mainz

$$Y_{Det} \sim \epsilon^2 \alpha_D / m_A^2$$

The DarkMESA How

Luca Doria, JGU Mainz

The DarkMESA experimental principle

Beam Dump

- 20 X₀ Beam Dump
- Material: Aluminum (+ Water)
- Energy on Dump: ~135 MeV
- 10⁴ h of operation; 10²² EOT

Fluka Simulation (Neutrons)

100Neutro 10

The "Target"

Detector Technologies

M. Lauß et al., Nucl. Instr. Meth. A, 1012, 165617 (2021) M. Christmann et al., Nucl. Instr. Meth. A, 960, 163665 (2020) M. Christmann et al., Nucl. Instr. Meth. A, 958, 162398 (2020)

Luca Doria, JGU Mainz

Staged Approach to the final detector

Prototype Detector 5x5 crystals + cosmics veto system

Luca Doria, JGU Mainz

Staged Approach to the final detector

Staged Approach to the final detector

PbWO₄

Density ~8.3 g/cm³ Output 50-200 ph./MeV Fast (~10 ns)

BGO

Density ~ 7.1 g/cm³ Output ~10,000 ph./MeV Slow (~300-600 ns)

PbF_2

Density ~8.4 g/cm3 Output ~16 ph./MeV **Fast (~10ns)**

Luca Doria, JGU Mainz

Prototype Detector

Mirco Christmann

Matteo Lauss

Christian Stoss

Michail Kontogoulas

Luca Doria, JGU Mainz

Prototype Detector

Luca Doria, JGU Mainz

First Tests

Electronics/DAQ

CAEN V1742 (5GHz, 32ch, sigle ended) - Fast, more expensive PANDA sADC (80 MHz, 64ch, diff.)

- Slower, cheaper, shaping required.

Operation with cosmics started: Central BGO crystal for test. Surrounding crystals: PbF₂.

SiPM readout

Background Studies

Cosmic Rays Simulation

- CRY Library (LANL)
- Overburden
- Neutrons

Cosmic Rays Veto Detector

- Plastic Scintillators
- SiPM readout

OpAmp

- Custom electronics

Out0

x10

50Ω

Beam Tests (Cherenkov Radiators)

MAMI Beam (6-14 MeV)

- Produced PEs
- Lower Threshold
- Neutron efficiency (source)

Luca Doria, JGU Mainz

Liquid Scintillators

Opaque Scintillators Load LS with wax (e.g. 80%-20%) Opaqueness: scattering w/o absorption PID: topology of vertices Readout: optical fibres.

Stefan Schoppann et al. (JGU) arXiv:2407.05999

Luca Doria, JGU Mainz

Detector Concept

Prototype of a $0\nu\beta\beta$ experiment (NuDoubt⁺⁺) Test isotopes: ⁷⁸Ke, ¹²⁴Xe, ¹⁰⁶Cd Aim: observe $0\nu\beta\beta$ + in p-rich isotopes:

No only a detector test: <u>DarkMESA</u>.

<u>Technology</u>: Liquid Scintillator (Opaque/W-based) Optimised WLS Fibres (OWL) Readout: SiPMs

Concept for NuDoubt++/DarkMESA

Detector Concept

Simulation towards a ~10cm³ prototype. To be tested at MAMI accelerator (JGU). Key point: threshold, tracking, PID.

Luca Doria, JGU Mainz

Simulation of neutron background

Michail Kontogoulas

Light Dark Matter 2025

19

Projected Limits

Moving from G4+MadGraph to full G4 simulation (A. Celentano).

Add background contributions.

Simulate other physics models:

- Z'
- axions

• • •

Light Dark Matter 2025

Summary

*MESA finally under construction: first 55 MeV beam in 2025. *Beam Dump experiments: a lot of EOTs, sensitivity, direct measurement. DarkMESA: sensitivity to DM < 10MeV</p> *Investigation of different technological options underway.

Summary

*MESA finally under construction: first 55 MeV beam in 2025. *Beam Dump experiments: a lot of EOTs, sensitivity, direct measurement. DarkMESA: sensitivity to DM < 10MeV</p> *Investigation of different technological options underway. Thank you!

