

The BDX experiment at JLab

Marco Spreafico

On behalf of BDX collaboration

09 - 04 - 2025

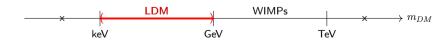
- Dark Matter
 - Light Dark Matter
 - Inelastic Dark Matter
 - Muon-philic Dark Scalar

- BDX
 - Experimental setup
 - Physics reach

- BDX-MINI
 - Experimental setup
 - Results

Outlook

Dark Matter Problem

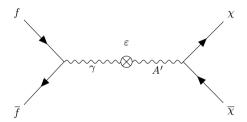

Astrophysical observations suggest existence of DM

- \rightarrow Information only from gravitational interaction
- \Rightarrow No clue on DM nature

$\label{lem:common assumption: thermal origin of DM} \end{common assumption:}$

- ightarrow constrain on available mass range
- \rightarrow strong constraint on viable DM \rightarrow SM interaction

Thermal DM


Light Dark Matter - Dark Photon model

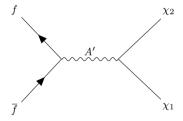
Simplest possibility: "vector portal"

 $\rightarrow U(1)$ gauge boson (dark photon) coupling to electric charge

$$\mathcal{L}_{LDM} \sim g_D A'_{\mu} J^{\mu}_{\chi} + \varepsilon e A'_{\mu} J^{\mu}_{EM} + [...]$$

Annihilation in SM:

Model parameters:

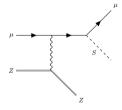

- ullet Dark Photon mass $m_{A'}$, coupling to SM arepsilon
- \bullet Dark Matter mass m_χ , coupling to DM g_D $(lpha_D \equiv g_D^2/4\pi)$

$$y \equiv \frac{g_D^2 \epsilon^2 e^2}{4\pi} \left(\frac{m_\chi}{m_{\Lambda I}}\right)^4 \sim \langle \sigma v \rangle_{relic} m_\chi^2$$

Light Dark Matter - Inelastic Dark Matter

Dark Sector may be composed of two states with different mass

ightarrow Stable low mass state χ_1 and unstable high mass state χ_2



Same parameter $y\equiv \frac{g_D^2\epsilon^2e^2}{4\pi}\left(\frac{m_\chi}{m_M}\right)^4\sim \langle\sigma v\rangle_{relic}m_\chi^2$ can be used to probe this model

Dark Sector could explain SM anomalies, for example muon $(g-2)_{\mu}$ anomaly

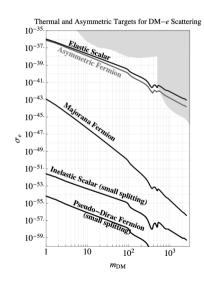
ightarrow Simplest possibility: Dark Scalar coupled only to muons

Dark Scalar Production

DS decay

Model parameters:

- ullet Dark Scalar mass m_S
- ullet DS-muon coupling g_{μ}

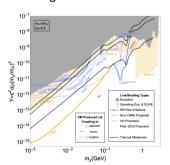

Direct detection not suited for sub-GeV DM searches:

- DD experiments optimized for $m_{\gamma} > \text{GeV}$

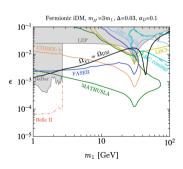
 - $ightarrow E_R \propto m_\chi^2/m_N$ ightarrow very low recoil energy

- LDM-SM interaction cross section depends on impinging particle velocity
 - DD sensitivity strongly model-dependent

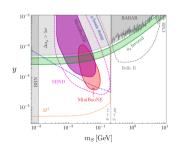
- Inelastic DM almost impossible to probe
 - Upscattering kinematically forbidden


Light Dark Matter

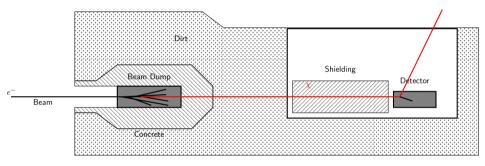
LDM at accelerators


Accelerator based experiments at the intensity frontier uniquely suited to search for LDM:

- \rightarrow High intensity \Rightarrow increased possibility of DM production
- $\rightarrow~$ Production of relativistic DM \Rightarrow testing different models


Light Dark Matter

Inelastic Light Dark Matter

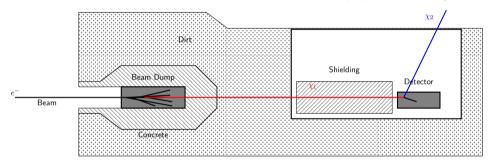


Muonphilic Dark Scalar

Beam Dump experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)¹

χ production

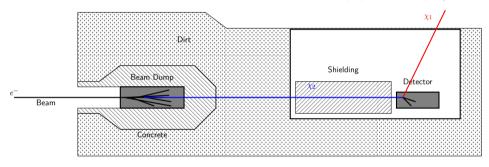

- \bullet e^- beam impinging on target
- $\bullet~\chi$ from decay of A^\prime produced in the dump

χ interaction

- ullet χ propagate through shielding
- χ scattering through A' exchange

¹ Izaguirre et al., Phys. Rev. D 88, 114015 arXiv:1607.01390

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)


$\chi_{1,2}$ production

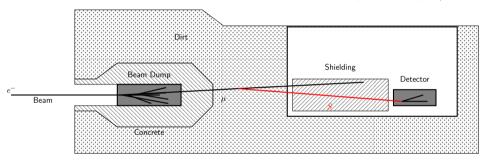
- \bullet e^- beam impinging on target
- $\chi_1\chi_2$ from decay of A' produced in the dump

$\chi_{1,2}$ interaction

- \bullet χ_1 scattering through A' exchange
- \bullet χ_2 decay in χ_1 and e^+e^-

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

$\chi_{1,2}$ production


- \bullet e^- beam impinging on target
- $\chi_1\chi_2$ from decay of A' produced in the dump

$\chi_{1,2}$ interaction

- \bullet χ_1 scattering through A' exchange
- \bullet χ_2 decay in χ_1 and e^+e^-

Beam Dump experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)²

DS production

- ullet Secondary μ cross different materials
- \bullet DS production from μ scattering

DS decay

- DS propagate over large distance
- ullet DS decay identified as two high energy γ s

Phys.Rev.D 110 (2024) 5, 055032
L. Marsicano et al., Phys.Rev.D 98 (2018) 11, 115022

BDX

JLab experiment approved by PAC46

• Run time: 2026-2029

• Fully optimized for LDM searches

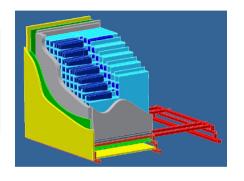
JLAB offers the best condition for BDX:

- Medium high energy beam (11 GeV)
- High electron beam current (65 μ A)
- Fully parasitic wrt Hall-A physic program (Moeller)

New facility to be built in front of Hall-A beam dump:

- ullet new underground (~ 8 m) hall
- 25 m downstream of Hall-A beam dump
- ullet passive shielding (~ 7 m steel) to reduce beam related background

BDX - Detector


Detector design

Electromagnetic calorimeter:

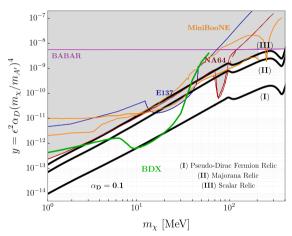
• homogeneous 3 tons ECal

Veto system:

- hermetic multi layer veto
- 2 layer of plastic scintillator counters
- 5 cm lead vault between veto and calorimeter

Modular detector arrangement:

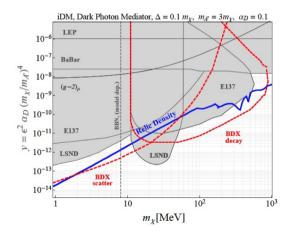
- ECal (BGO, PbWO₄)
- Multi-layer veto


 \rightarrow total: 3 modules (1 BGO, 2 PbWO₄)

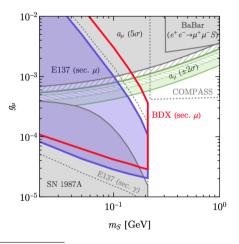
Signal detection:

 \bullet EM shower (\gtrsim 100 MeV) and no corresponding activity in the active veto

BDX - Reach

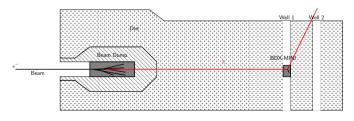

Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to explore different LDM models

Outlook


BDX - Reach

Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to explore different LDM models

BDX - Reach


Thanks to CEBAF high luminosity and an optimized detector layout, BDX will be able to explore different LDM models

BDX-MINI - Experimental Setup

Pilot version of BDX:

- ullet detector placed \sim 25 m downstream of beam dump
- \bullet 2.56 GeV e^- beam
- current up to $150 \ \mu A$
- \bullet measurement alternating beam on and beam off data (beam on time \sim 50 %)
 - → Cosmogenic background studied with beam-off data
- \bullet accumulated 2.54×10^{21} EOT

BDX-MINI - Detector

Electromagnetic calorimeter (ECal):

- 44 PbWO₄ crystals $(4 \times 10^{-3} \text{ m}^3 \text{ active volume})$
- SiPM readout


BDX-MINI - Detector

Electromagnetic calorimeter (ECal):

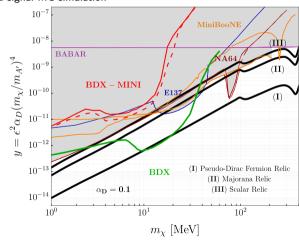
- 44 PbWO₄ crystals (4×10^{-3} m³ active volume)
- SiPM readout

Veto system

- Active veto:
- Octagonal (IV) plastic scintillator
- Cylindrical (OV) plastic scintilaltor
- Passive tungsten shielding

 $\ensuremath{\mathsf{BDX}}\textsc{-MINI}$ analysis fully optimized for DM searches

- Cosmic background studied using beam-off data
- Signal cut optimized using beam-off data and signal MC simulation


Experimental results

Yields (for $N_{EOT} = 2.54 \cdot 10^{21}$)

- $N_{on} = 3623$
- $N_{off} = 3822 \ (\tau = 1.054)$

No excess is observed

- $\rightarrow \;$ evaluated 90% exclusion limit in the LDM parameter space
- → results comparable with flagship experiments

Outlook

- Dark matter in the MeV-to-GeV range is largely unexplored
- BDX: search for Dark Sector particles in the MeV-GeV mass range
 - Technique viable to probe different DM candidates
 - JLab provides unique opportunities to probe different models
- BDX-MINI: pilot version of BDX
 - First modern beam dump experiment searching for Light Dark Matter
 - Detector optimized for LDM searches
 - Analysis aimed to LDM detection
 - ullet Evaluated exclusion limit o competitive to flagship experiments
- Beam dump experiment with e beam highly sensitive to Light Dark Matter in the MeV-GeV range
 - ightarrow Sensitivity to large variety of models
 - → BDX-MINI remarkable results demonstrate that BDX is a mature, ready-to-run experiment (after the construction of a new underground experimental hall)