DIRECT DETECTION OF DARK SUPERCONDUCTING NANOWRES

DR. ROBERTA CALABRESE

UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II" ISTITUTO NAZIONALE DI FISICA NUCLEARE - SEZIONE DI NAPOLI RCALABRESE@NA.INFN.IT

WIMP = main paradigm in the last 40 years

However, extensive searches have yielded no definitive WIMP detections, raising the need to consider alternatives

WIMP = main paradigm in the last 40 years

However, extensive searches have yielded no definitive WIMP detections, raising the need to consider alternatives

Several theories suggest Dark Matter could be **much lighter** than previously assumed, possibly even down to eV scales.

How can we reveal light Dark Matter?

- Dark Matter nucleon scattering
- Dark Matter electron scattering
- Dark Photon absorption

PUSHING THE BOUNDARIES: HOW LOW IN MASS CAN CURRENT EXPERIMENTS GO?

DARK MATTER - NUCLEON SCATTERING

DR. ROBERTA CALABRESE

DARK MATTER - ELECTRON SCATTERING

PUSHING THE BOUNDARIES: HOW LOW IN MASS CAN CURRENT EXPERIMENTS GO?

DARK MATTER - NUCLEON SCATTERING

DR. ROBERTA CALABRESE

DARK MATTER - ELECTRON SCATTERING

BEYOND THE LIMITS: PUSHING THE SEARCH TO EVEN LOWER MASSES

In the last few years, several ideas have emerged to explore the sub-MeV region

- Atomic excitations (R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012))
- Electron recoils in semiconductors (R. Essig, J. Mardon, and T. Volansky, PRD 85, 076007 (2012); R. Essig, A. Manalaysay, J. Mardon, P. Cabrera, PRD 99, 123005 (2019).)
- Superfluid Helium (QUEST-DMC collaboration Eur.Phys.J.C 84 (2024) 3, 248, HeRALD collaboration PRD 110 (2024) 7, 072006)
- Superconductors (Y. Hochberg, et al, PRL 116, 011301 (2016), JHEP 08 (2016) 057, Phys Rev. Lett. 123, 151802 (2019), Phys. Rev. D 107, 076015 (2023), Phys. Rev. D 106, 112005 (2022), QROCODILE collaboration Arxiv: 2412.16279)

Sorensen, and T. Volansky, PRL 109, 021301 (2012); P. W. Graham, D. E. Kaplan, S. Rajendran, and M. T. Walters, PDU 1, 32 (2012); N. Kurinsky, T. C. Yu, Y. Hochberg, and B.

BEYOND THE LIMITS: PUSHING THE SEARCH TO EVEN LOWER MASSES

In the last few years, several ideas have emerged to explore the sub-MeV region

- Atomic excitations (R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012))
- Electron recoils in semiconductors (R. Essig, J. Mardon, and T. Volansky, PRD 85, 076007 (2012); R. Essig, A. Manalaysay, J. Mardon, P. Cabrera, PRD 99, 123005 (2019).)
- Superfluid Helium (QUEST-DMC collaboration Eur.Phys.J.C 84 (2024) 3, 248, HeRALD collaboration PRD 110 (2024) 7, 072006)
- Superconductors (Y. Hochberg, et al, PRL 116, 011301 (2016), JHEP 08 (2016) 057, Phys Rev. Lett. 123, 151802 (2019), Phys. Rev. D 107, 076015 (2023), Phys. Rev. D 106, 112005 (2022), QROCODILE collaboration Arxiv: 2412.16279)

Sorensen, and T. Volansky, PRL 109, 021301 (2012); P. W. Graham, D. E. Kaplan, S. Rajendran, and M. T. Walters, PDU 1, 32 (2012); N. Kurinsky, T. C. Yu, Y. Hochberg, and B.

SNSPDS: A NEW FRONTIER FOR DARK MATTER DETECTION

Superconducting nanowire single photon detectors (**SNSPDs**) are a rapidly developing technology with applications in

- Space communications
- Lidar
- Quantum Information science

• ...

SNSPDS: A NEW FRONTIER FOR DARK MATTER DETECTION

Why SNSPDs?

- Sub-eV energy threshold
- High efficiency (Reddy, D. V., et al, Optica 7, 1649–1653 (2020))
- Fewer than 10 dark counts/day in optimal **CONDITIONS** (E. Wollman et al., Opt. Express 25, 26792 (2017).)
- High Scalability: Prototypes with 1k SNPDs already demonstrated (E. E. Wollman et al., Opt. Express 27, 35279-35289 (2019). And A. N. McCaughan et al., Appl. Phys. Lett. 121, 102602 (2022).), with 400k planned in the near future (B.G. Oripov et al., Nature 622, 730-734 (2024))

SNSPDS: HOW LOW IN MASS CAN THEY GO?

Dark Matter interacts with electrons or nucleons, imparting kinetic energy.

 $E_{\rm max} \approx v_{\rm max}^2 m_{\chi} \rightarrow E_{\rm th} \sim 10^{-6} m_{\chi}.$

Sub-eV threshold \rightarrow down to sub-MeV masses.

Dark Photons can be absorbed by the SNSPDs electron, transferring their entire mass-energy into the detector.

Sub-eV threshold \rightarrow down to subeV masses.

SNSPDS: ALREADY USED IN PROOF-OF-CONCEPTS EXPERIMENTS

Most recent results!

QROCODILE collaboration

 10^{-8}

 10^{-9}

 10^{-10}

 10^{-13}

 10^{-14}

 10^{-15}

 10^{-16}

WHAT ARE WE DOING?

- Born from the synergy of the Dark Matter and superconducting Quantum groups @ Università degli studi di Napoli "Federico II"
 - C. Bruscino, R. Calabrese, P. Ercolano, G.
 Fiorillo, G. Grauso, G. Matteucci, L. Parlato, M.
 Peluso, G. Pepe, D. Rudik, D. Salvoni, CJ Zhang.
- The final setup will be housed in IRIS (Innovative Research Infrastructure for Applied Superconductivity) laboratory in Naples (L. Rossi et al., IEEE Transactions on Applied Superconductivity no. 9500309)

WHAT ARE WE DOING?

- NbN nanowire from Photec with a mass of 4.9 ng
- 2000 s exposure
- 5×10^{-4} Hz dark count rate
- 0.8 eV energy threshold
- Efficiency: $\sim 90\%$

WHAT ARE WE PLANNING?

- Test several alloy and select that with the best performances
- Test several working conditions
- Implement shield and veto system
- Scale up the system
- Perform a run with a high exposure

DARK MATTER SCATTERING: MEDIATORS

We can write the cross-section as

DR. ROBERTA CALABRESE

Assumption: χ interacts with Standard Model particles via the exchange of a mediator ϕ

 $\sigma_t = \overline{\sigma}_t \times \mathscr{F}_{med}(q)^2$

17

DARK MATTER SCATTERING: MEDIATORS

We can write the cross-section as

DR. ROBERTA CALABRESE

Assumption: χ interacts with Standard Model particles via the exchange of a mediator ϕ

DARK MATTER - ELECTRON SCATTERING

Electrons are not free: they are bound in Cooper's pairs.

Where \vec{q} is the momentum transfer, ω the energy deposit.

DR. ROBERTA CALABRESE

 $\overline{\sigma}_{\rho}^{bound} = \overline{\sigma}_{e} \times S(\vec{q}, \omega)$

DARK MATTER - ELECTRON SCATTERING

Electrons are not free: they are bound in Cooper's pairs.

Where \vec{q} is the momentum transfer, ω the energy deposit.

DR. ROBERTA CALABRESE

 $S(\vec{q},\omega)$

Free electron cross-section

 $\overline{\sigma}_{\rho}$

Dynamical structure function: Describes the response of the system to external perturbation

DARK MATTER - ELECTRON SCATTERING

The Dynamical structure function is determined by the available final states of the target system

$$S(\vec{q},\omega) = \frac{2\pi}{V} \sum_{f} \left| \left\langle f \left| \hat{n}(-\vec{q}) \right| 0 \right\rangle \right|^{2} \delta(\omega - E_{f} + E_{0}) = 2 \operatorname{Im} \left[-\frac{q^{2}}{e^{2}} \frac{1}{\varepsilon(\vec{q},\omega)} \right]$$

Where $\varepsilon(\vec{q},\omega)$ is the dielectric function, defined as the linear response of the system.

DARK MATTER - ELECTRON SCATTERING

The event rate per unit detector mass is

$$R = \frac{\pi n_{\chi} \overline{\sigma}_{e}}{\mu_{e-\chi}^{2} \rho_{t} (2\pi)^{3}} \times \int d\vec{v}_{\chi} d\vec{q} \, d\omega$$

• f_{MB} is the Dark Matter velocity distribution

•
$$\omega_q = \vec{q} \cdot \vec{v}_{\chi} - q^2/2m_{DM}$$

•
$$q_{ref} = \alpha m_e$$

DR. ROBERTA CALABRESE

$\mathcal{F}_{MB}(\vec{v}_{\chi}) \mathcal{F}_{med.}^{2}(|\vec{q}|) S(\vec{q},\omega) \delta(\omega - \omega_{\vec{q}})$

DARK MATTER - ELECTRON SCATTERING

DARK MATTER - NUCLEON SCATTERING

- phonon that can disrupt Cooper pairs
- Small kinetic energies: we can treat the interaction as Coherent
- Assumption: χ couple the same to neutron and proton
- Reference cross-section: $q_{\rm ref} = m_{\chi} < v_{\chi} >$

• **Cooper pair dissociation:** Nuclear scattering in the SNSPDs or its substrate produce

DARK MATTER - NUCLEON SCATTERING

The event rate per unit detector mass is

$$R = \frac{n_{DM}\overline{\sigma}_n}{2\mu_{DM,n}^2 \sum_i A_i} \sum_i \int d\omega.$$

- A_i is the atomic mass number
- $\mathscr{F}_i^2(\vec{q})$ is the Helm nuclear form factor • $\eta(v_{min}) = \left[d\vec{v} v f_{MB}(\vec{v}) \Theta(v - v_{min}) \right]$

 $\mathcal{D}A_i^3 \mathcal{F}_{med}^2(\vec{q}) \mathcal{F}_i^2(\vec{q}) \eta(v_{min})$

DARK MATTER - NUCLEON SCATTERING

DARK PHOTON ABSORPTION

Minimal Dark Sector model: introduce an additional $U(1)_V$

Kinetic mixing (κ) of the hypercharge field strength $F_{\mu\nu}$ with the field strength $V_{\mu\nu}$ of $U(1)_V$ links the Standard Model to the new physics sector.

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

In this case, the absorption rate is

$$R = \frac{n_{\chi}}{\rho_t} \int d\vec{v}_{\chi} f_{\chi}^A(\vec{v}_{\chi},\kappa) \Gamma_A$$

$$-\frac{1}{4}V_{\mu\nu}V^{\mu\nu} - \frac{\kappa}{2}F_{\mu\nu}V^{\mu\nu}$$

where
$$\Gamma_A = m_{\gamma'} \kappa^2 e^2 p_{\gamma'}^{-2} \frac{S(\vec{p}_{\gamma'}, m_{\gamma'})}{2}$$

DARK PHOTON ABSORPTION

WORK IN PROGRESS STAY TUNED!

We are finalizing the results of the run!

Many improvements will be show in the paper.

For instance, we will include the effects of **Earth and atmosphere attenuation** on the flux!

CONCLUSIONS

EXPANDING THE SEARCH

- **Superconducting band gap: e**xceptionally sensitive to small energy depositions
 - Access to unexplored Dark Matter masses
 - Finalizing our paper
 - Add shielding and veto systems
 - Study of different alloys and configurations
- Final expansion to a large array of SNSPDs.

30