The search for dark matter with CCDs

Alvaro E. Chavarria University of Washington

- Dark matter (DM) direct detection.
- DM-e⁻ scattering searches.
- Charge-coupled devices (CCDs).
- DAMIC-M at Modane Underground Lab.
- Results from the LBC test stand.
- DAMIC-M status and prospects.

Dark matter is *cold*, i.e., it is bound to the galaxy.

Hence, the dark matter particle speed is ~the same as stars: 100s km/s.

$$E_{\chi} = \frac{1}{2} M_{\chi} v^2$$
$$E_{\chi} = \frac{1}{2} M_{\chi} c^2 \beta^2 \quad \beta \approx 10^{-3}$$
$$E_{\chi} \approx \left(\frac{M_{\chi} c^2}{\text{GeV}}\right) \text{keV}$$

Dark matter particles

We do not know the particle mass (M_x)

A 1 GeV (proton-mass) particle has 1 keV of kinetic energy (very little).

Dark matter signal

- Small interaction cross-section.
- low backgrounds.

World Status

- World-wide effort to directly detect DM signals.
- For "particle" DM the search currently spans from ~1 MeV to the Planck mass.
- Different technologies target different mass ranges.
- CCDs have greatest sensitivity below 35 MeV*
- *Depends on the Migdal effect (10⁻⁶ probability of ionization, see McCabe's talk)

5

Mediator A' mixes with SM photon.

Most sensitive direct-detection probe for sub-GeV hidden-sector DM!

DM-e exclusion limits

DAMIC-M has world-leading exclusion limits for sub-GeV hidden-sector DM!

easy cryogenics (~100 K).

CCD readout

- Extremely low ~10⁻⁶ inefficiency in charge transfer.
- Extremely low leakage current ~7 e⁻/cm²/day. arXiv:2410.18716

"Skipper" readout: Perform N uncorrelated measurements of the same pixel.

Introduced to particle physics in 2017

PRL119(2017)131802

Skipper readout

Ð

of pixels [/0.01

Sample CCD image (~15 min exposure) segment in the surface lab.

Cosmic muon

CU

7

Point-like

 β particle

Zoom

. .

.

50 pixels

15 • 20 10 25 5 Energy measured by pixel [keV]

Spatial resolution

- Surface background rejection by depth (z) reconstruction, and classification (α , β , NR) by track topology (at high E>80 keV_{ee}).
- Spatial coincidence searches to identify decay sequences: JINST16(2021)P06019
- Cosmogenic ³²Si: $^{32}Si(T_{1/2}=150 \text{ y}, \beta) \rightarrow ^{32}P(T_{1/2}=14 \text{ days}, \beta)$

140 ± 30 µBq / kg

- Also upper limits on every β emitter in the U/Th chain.
- Reject crystal defects "hot spots" that dominate device leakage current.
- NR identification by spatial correlation between ionization event and defect left behind in the crystal (R&D): PRD110(2024)043008

- 2012–2017: we built DAMIC at SNOLAB, the first low background CCD array for DM searches.
- ► 2017: DAMIC releases first DM search results from $\sim eV$ ionization signals.
- ► **2017:** "Skipper" CCDs are introduced for 10x improvement in noise to provide increased sensitivity for DM-e searches.
- Two skipper-CCD experiments started: SENSEI and **DAMIC-M**.
- Multiple detector iterations, fast progress from both collaborations until now.
- ► 2025: DAMIC-M's LBC probes benchmark hidden-sector models: Highlight of today
- ► **2026+:** DAMIC-M coming online with >100 CCDs!

DANIC-M

DANIC-M

- ► 52 CCD modules in LSM (France) for kg-year target exposures.
- Skipper readout for 2 or 3 e- threshold.
- Background reduction to a fraction of d.r.u. (events per kg-day).
- Under construction. Commissioning by end of 2025!

Law Background Chamber

- Low Background Chamber (LBC) test setup for DAMIC-M at LSM for performance and background studies.
- Operating in LSM clean room since 2022.
- Several detector iterations. Details in JINST19(2024)T11010
- First science results. Spectral analysis: PRL130(2023)171003
- Daily modulation: PRL132(2024)101006

Prototype CCD module packaged and tested at UW

Detector upgrades • Two DAMIC-M modules (8 CCDs for 26g) electroformed copper box lids DAMIC-M low-noise electronics 5000 ~1% masked 4500 ~300 images 4000 3500 3000 2500 CCD-A: 2000 1500

2000 2500 3000 3500 4000 4500 5000

1000

1500

Parameters

 read out 1 amplifier per CCD • binning: 1 pixel x 100 pixel (col x row) • temperature: ~130 K

Performance

 reduced dark current: ~10⁻⁴ e-/pixel/day (previous 50x) background: ~15 dru with shield partly open • readout noise = 0.16e- with 500 skips data set exposure: 1.3 kg-day (previous 85 g-day)

Image masking – 95% of data are kept

 hot regions in CCDs (large 1e- rate) • clusters of high-charge pixels (\geq 6e-) clusters in CCDs of same module (cross-talk) charge-correlated pixels in CCDs of same module 100 pixels above + row of pixel with >100 e- (charge traps)

Pattern analysis

Blind analysis

- Data set 1 (D1): selection sample (130 g-day)
- Data set 2 (D2): blinded analysis set (1.3 kg-day)

Candidate selection

- look for horizontal for consecutive pixels with 2, 3, or 4 e-: $\{11\}, \{21\}, \{111\}, \{31\}, \{22\}, \{211\}$
- exclude isolated pixels with $\geq 2e^{-1}$

Efficiency

 calculate probability to obtain pattern from ionization events with initial charge N_e (includes charge diffusion and noise)

Backgrounds

- estimate radiogenic background by scaling measured high energy events (2.5 to 7.5 keV) with Geant4
- random coincidences of uncorrelated pixels next to each other evaluated toy MC

	Pattern p								
	{11}	{21}	{111}						
D_p	144	0	0						
$B_p^{ m rc}$	141.4	0.111	0.042						
B_p^{rad}	0.039	0.039	0.016						
	{31}	$\{22\}$	{211}						
D_p	1	0	0						
$B_p^{ m rc}$	0.019	$2.5 \cdot 10^{-5}$	$5.8\cdot 10^{-5}$						
B_p^{rad}	0.052	0.011	0.035						

TABLE I. The number of candidates D_p in the D2 data set, and the number expected from backgrounds due to random coincidences, $B_p^{\rm rc}$, and to radioactive decays, $B_p^{\rm rad}$.

{31} candidate

-0.15	0.11	0.10	-0.14	-0.05	0.24	0.07	0.11	0.03	-0.06	-0.11	0.16
0.08	-0.29	-0.15	0.02	0.21	0.21	-0.09	0.01	0.01	-0.03	0.13	-0.14
-0.09	0.01	-0.15	-0.02	-0.02	0.26	0.13	0.09	0.23	0.18	-0.17	0.33
0.10	0.42	-0.10	0.10	0.11	0.08	0.26	0.21	0.29	0.14	0.06	0.35
-0.17	-0.13	-0.17	0.26	0.14	0.33	-0.21	0.11	0.02	-0.15	0.07	-0.14
0.24	0.06	-0.13	0.12	0.29	2.99	1.36	0.12	-0.04	0.03	0.07	0.18
0.08	-0.12	0.09	-0.10	0.10	0.24	0.21	0.13	0.09	0.08	0.07	0.15
-0.22	-0.30	0.05	0.17	-0.23	-0.18	0.17	-0.36	-0.37	-0.33	-0.31	-0.19
0.08	-0.13	-0.02	0.02	-0.29	-0.05	-0.16	0.10	0.09	0.27	0.08	0.08
0.14	0.19	0.08	-0.12	0.20	0.21	-0.03	0.42	-0.10	-0.16	0.30	-0.03
0.01	0.08	-0.13	-0.09	-0.36	-0.18	-0.18	0.16	0.26	0.19	-0.11	0.10

row

column

DM-e exclusion limits

DAMIC-M probes benchmark hidden-sector dark-matter models!

DAMIC-M Status

- Tested 188 CCDs at UW in Q3 2024.
- 28 CCD modules fabricated, shipped to LSM in their shielded container.
- LBC relocated to second clean room at LSM.
- Reconditioning clean rooms for CCD array assembly and detector installation.
- Copper machining ongoing, lead and poly being prepared for shipment.
- Custom electronics under procurement and testing.
- Detector installation in second-half 2025, commissioning by end of 2025.
- ent and testing. 025,

Low-background

- Transport in shielded container.
- Shielded, Rn-free storage.
- Clean room operations.
- Low-radioactivity flexes. NIMA959(2020)163573
- Copper electroformed underground.
- Light-tight infrared shield.

DANIC-M Forecast

23

- The range of DM particle masses searched for by direct detection has expanded greatly in recent years.
- DM-e⁻ scattering is a powerful probe for sub-GeV DM particles.
- Charge-coupled device (CCD) experiments lead the sub-GeV mass window.
- DAMIC pioneered the use of CCDs to search for dark matter.
- Steadfast progress by skipper-CCD experiments SENSEI and DAMIC-M in the last 8 years.
- DAMIC-M's LBC now excludes several hidden-sector benchmark models.
- Progress should continue for at least one more detector generation with DAMIC-M.

Conclusions

Three-body final state:

Bosonic DM absorption:

- An additional e⁻ or y in the final state.
- Migdal effect (atomic e^{-}) or Bremsstrahlung (γ).
- E and p can be conserved even when e⁻ or y take most of the WIMP kinetic energy.
- Probability of e^{-1} or γ emission <10⁻⁶. Rare.
- Never observed for recoils with keV energies. Uncalibrated.
- DM particle is a boson that couples to the electron, e.g., a "dark" or "hidden" photon.
- DM is absorbed by the target electron and its rest energy released as electronic recoil K.E.

Electronic recoil result could also be interpreted as limit on DM-N scattering (Migdal) or DM absorption I will use DM-e scattering parameter space as benchmark

Other e-recoils

Other exclusion limits

All limits available as text on linked Github.

DAMIC-M also sets stringent constraints on absorption of relic hidden photon by atomic electron on silicon and **DM-nuclear scattering via Migdal** effect (see End Matter arXiv:2503.14617).

- Although "large," these σ had never been probed for ~1 MeV DM.

Daily modulation

• At large enough σ , DM scatterings in the Earth cause a daily modulation of the flux in the lab.

- Currently updating daily modulation analysis with latest data set.

Daily modulation

• Previous daily modulation analysis x100 more sensitive than spectral analysis for $m_x \sim 1$ MeV.

- Compton scattering: PRD106(2022)092001
- "Steps" at the binding energies of the atomic shells in silicon.

- Spectral features not wellreproduced by Geant4.
- Spectrum down to 23 eV_{ee} reproduced with *FEFF* code, which performs full atomic physics treatment.

Spectroscopy

Calibrations to confirm CCDs can measure spectral features near threshold.

Precision measurement with a skipper CCD of electronic recoil spectrum from

