

DarkSide-20k sensitivity to light dark matter particles

Marie van Uffelen (marie.vanuffelen@physics.ox.ac.uk) University of Oxford, UK

On behalf of the DarkSide-20k collaboration

Light Dark Matter @ Accelerators 2025

The DarkSide-20k experiment 1/2

Currently under construction
Should start data taking in 2027

> 400 people

 \mathbf{O}

В

13.5 m

.5 m

TPC: 50 t Underground **argon** (UAr)

Inner veto (neutron veto): 32 t UAr

Outer veto (muon veto): 650 t Atmospheric argon

TPC photo-electronics 2x10.5 m² SiPMs arrays 2112 readout channels

The DarkSide-20k experiment 2/2

The DarkSide-20k experiment 2/2

DarkSide-50 recent results

DarkSide-50

3

DarkSide-50 recent results DarkSide-50 Phys.Rev.D 107 (2023), 063001 day) A MALE MARKED × Ъğ 10-2 × Ne 25 Top PMT array 10-31 0 L'U' LAr feed PMT mount and reflector Diving bell Boiler for gas pocket ITO anod en 10-4 Extraction grid ⁸⁵Kr ĠJ Field cage rings 0.25 L+. 0.00 PTFE reflecto ³⁹Ar -0.25 10 20 30 ITO cathoo Cathode window Bottom PMT array

DarkSide-50 recent results DarkSide-50 Phys.Rev.D 107 (2023), 063001 day) With the state of × Ъğ 10-2 × Ne ഹ 2 Top PMT array 10-3 o L'U' LAr feed PMT mount and reflector Diving bell Boiler for gas pocket ITO anod L0-Extraction grid ⁸⁵Kr Field cage rings 0.25 PTFE reflecto . 00 ³⁹Ar -0.25 20 30 10 ITO cathod Cathode window Bottom PMT array

DarkSide-50 low mass analyses

From DarkSide-50 to DarkSide-20k

Dominant at high Ne

PMTs

Use SiPMs **Reduced radio-activity** wrt PMTs

5 cm

85Kr

Dominant at low Ne

URANIA UAr Extraction facility →reduced contamination

Less ER background \rightarrow benefitting to the low mass analysis

Background sources in DarkSide-20k

Building the background model

- Consider all sources of non-DM interactions that look like one
- **DM-like: single interaction in the TPC** ("single scatter")

Background sources in DarkSide-20k

Building the background model

- Consider all sources of non-DM interactions that look like one
- DM-like: single interaction in the TPC ("single scatter")

Single interaction => In the background model

Several interactions ("multiple scatter") => rejected

Pile up

- Expect 80 Hz from β , X and γ backgrounds
- Select isolated S2, with other S2 occurring at times greater than one maximum drift time (3.7 ms)

51% of effective livetime

Fiducialization

Radial: 30 cm fiducialization from the walls Drift direction: no fiducialization 69% of signal acceptance

DS-20k inner detector

Exposure = 17.4 ton.year

for 1 year of data taking

DarkSide-20k low mass background model

DarkSide-20k low mass background model

Simulated with a GEANT-4 based Simulation tool

8

• $\approx 2.5 \text{x}$ reduced bkg contamination per surface area wrt DS-50

SS vessel
21
8.8
62
33
1.0
5.0
13
49

9 DarkSide-20k low mass background model

SE 18x lower than ³⁹Ar at $N_{\rho} = 4$

2 fit scenarii:

- Conservative (almost indep. of SE modelling): Fit from $N_{\rho} = 4$
- (DS-50 strategy)
- **Ultimate**: Fit from $N_{\rho} = 2$ assuming good control of rate and spectral shape of SE in DS-20k

⁽¹⁾ DarkSide-20k low mass background model

- Mostly from solar neutrinos $\frac{150}{150}$ non (⁷Be, ¹⁵O, pep, ⁸B, hep)
- Include radiative corrections in $CE\nu NS$

JHEP 05, 271

Include accurate o parametrization **p** of the nucleus मि structure

> Phys.Rev.D 102 (2020) <u>015030</u>

Signal models

WIMP

	Source uncertainty	Affected
		components
Amplitude	5% on the exposure	All
	15% on 39 Ar activity	³⁹ Ar
	15% on 85 Kr activity	⁸⁵ Kr
	20% on SE normalization	SE +
	10% on activity from PDMs	PDMs
	10% on activity from the vessel	Vessel
	10% on activity from the TPC	TPC
	10% on neutrinos normalization	Neutrinos
Shape	atomic exchange and screening	³⁹ Ar
	atomic exchange and screening	⁸⁵ Kr
	1% on the ³⁹ Ar-decay Q-value	³⁹ Ar
	0.4% on the 85 Kr-decay Q -value	⁸⁵ Kr
	SE modelling	SE
	ER ionization response \checkmark	All backgrounds
		but $CE\nu NS$, SE
	NR ionization response	WIMP, $CE\nu NS$

Systematic uncertainties

Main bkg components and **ER** ionization yield → Dominant systematic uncertainties & constrained by the fit

DarkSide-20k sensitivity to low mass WIMPs 90% C.L. limits

Assuming 1 live-year of data taking

(13)

- More than one order of magnitude of uncharted theory parameter space will be probed
- Stable against detector model assumptions

DarkSide-20k will lead the low mass WIMP search below $m_{\gamma} \approx 5 \text{ GeV}/c^2$ after only one year of data collection

- Migdal effect = possible atomic effect
- Electron released in NR
 - Lower the detection threshold
- With Migdal effect: best limits from 40 MeV/c² to 5 GeV/c²
- Expect > 1 order of magnitude improvement wrt to current experiments in **1y** only

Including Migdal effect

Light dark matter (LDM)

electrons

- LDM = Sub GeV fermion or scalar boson

Elastic scatter of Light Dark Matter (LDM) off bound

Expect > 1 order of magnitude improvement wrt to current experiments in **1y** only

Mediator can be light ($\rightarrow F \sim 1/q^2$) or heavy ($\rightarrow F \sim 1$)

ALP and dark photon (DP)

Absorption of ALP/DP by bound electrons \rightarrow mono-energetic signal

- ALP = pseudo scalar particle
- Coupling ALP electrons $\rightarrow g_{Ae}$

Expect ≈**5**x improvement wrt to current experiments in **1**y only

- DP = vector boson particle
- Kinetic mixing between DP and SM photons \rightarrow strength κ

Sterile neutrino ν_s

- Inelastic scatter of sterile ν_s off bound • electrons
- Possible mixing with active neutrinos \rightarrow PMNS-like matrix element $|U_{e4}|^2$

DS-20k - 1 year $N_e^- \ge 2$ DS-20k - 1 year $N_e^- \ge 4$ DS-50 2023 ⁶³Ni β Spectrum ¹⁷⁷Lu $\boldsymbol{\beta}$ Spectrum ³⁵S β Spectrum Excluded region Assuming 1 live-year of data taking 30 25 35

Best direct limits (1 liveyear) but phase space already rejected by NuSTAR indirect measurements

Conclusions

- First assessment of DarkSide-20k sensitivity to low mass dark matter particles
- Further strengthens the physics reach of DarkSide-20k with a leading role below 5 GeV/c^2
- Expect to probe > 1 order to magnitude of un-charted theory parameter space within 1 live-year only for a variety of dark matter particles
- For WIMPs:
 - Probe $\sigma_{SI} < 10^{-42} \text{ cm}^2$ above $m_{\gamma} = 800 \text{ MeV/c}^2$
 - Reach the neutrino fog at 5 GeV/c² after 10 years

90% C.L. limits

Thank you!

(20)

Back up