

~ **0**(10 mK)

Direct-detection of sub-GeV dark matter with cryogenic detectors

Margarita Kaznacheeva Technical University of Munich

Dark Matter candidates

Sub-GeV DM

DM scattering

DM-nucleus scattering

Perturbation of the electron cloud \rightarrow energy transfer e⁻'s BUT: suppressed signal rates

DM scattering

DM-nucleus scattering

DM-electron scattering

Perturbation of the electron cloud \rightarrow energy transfer e⁻'s BUT: suppressed signal rates

5

08.04.2025 | LDMA Genova

DM scattering

DM-nucleus scattering

DM-electron scattering

X

Migdal effect

Perturbation of the electron cloud \rightarrow energy transfer e⁻'s BUT: suppressed signal rates

6

08.04.2025 | LDMA Genova

DM-nucleus scattering

Elastic DM-nucleus scattering

Light materials are beneficial for light DM

Lighter target materials \rightarrow higher recoil energy

DM-nucleus scattering

Elastic DM-nucleus scattering

Lighter DM particle \rightarrow smaller recoil energy

Main advantage: performance

With cryogenic detectors eV-scale energy thresholds are available!

08.04.2025 | LDMA Genova

Detection signals

Primary signal: - Heat / phonons

Secondary signals:

- Ionization
- Scintillation

Phonons: precise measurement of (almost) full deposited energy

Available only at cryogenic temperatures

→ Operation at mKtemperatures

Cryogenic phonon detectors

08.04.2025 | LDMA Genova

Background discrimination: scintillation & ionization

Phys. Rev. D **100**, 102002

(e.g. Si, Ge)

Phonon + charge

DM-nucleus scattering results

Cryogenic Detectors:

- CRESST-III CaWO₄ 2019
- CRESST-III Si 2023
- CRESST-surf Al₂O₃ 2017
- ---- SuperCDMS-CPD Si 2020
- SuperCDMS Ge 2014
- ---- CDMSLite Ge 2019
- EDELWEISS-surf Ge 2019
- COSINUS Nal 2023

Other technologies:

- ---- DEAP-3600 LAr 2019
- PandaX-4T LXe 2021
- ---- LUX-ZEPLIN LXe 2023
- XENONnT LXe 2023
- ----- XENON1T S2 LXe 2019
- ----- DarkSide-50 S2 LAr 2023
- CDEX-10 Ge 2018
- DAMIC Si 2020
- ----- NEWS-G Ne 2018
- ---- PICO-60 C₃F₈ 2019
 - Collar H 2018
- ---- COSINE-100 Nal 2021
 - DAMA/LIBRA 3 or Nal 2009

Shäffne

Science

DM-nucleus scattering results

10 DM-nucleon cross-section σ_n^{SI} (pb) 10 See talk by M. van Uffelen Ogenic detector. 10 (LAr, Tue) 10⁻² \gtrsim 1 GeV 10⁻⁵ ~levent/t-year Liquid noble 10⁻⁸ gas detectors - exposures are pushing the 10⁻¹¹ sensitivity Coherent neutrino scattering on CaWO₄ 10^{-1} 10^{0} 10^{3} 10^{2} 10¹ - liquid nobles gas detectors DM particle mass m_{χ} (GeV/c²)

$\lesssim 1 \, \text{GeV}$

~levent/kg-day

- thresholds are pushing the sensitivity

cryogenic detectors
% new technologies

08.04.2025 | LDMA Genova

MK,

Main challenge: <u>Low-Energy Excess</u> (LEE)

Rise in the measured energy spectra below ~100s eV well above the expected backgrounds

 \rightarrow Strong ROI pollution

Observed in **ALL** solidstate cryogenic detectors below 100 eV

LEE impact on DM sensitivity

In the LEE presence the DM sensitivity is worsened by orders of magnitude!

LEE impact on DM sensitivity

Exposure increase does not help in the sub-GeV DM regime

In the LEE presence the DM sensitivity is worsened by orders of magnitude!

Overview of the cryogenic DM experiments

CRESST-III @ LNGS

Average depth of rock 1400 m or 3600 m.w.e.

Gran Sasso National Laboratory (Italy)

Current status: Data taking with novel detector designs is currently on-hold – to be resumed in summer 2025.

Two modes: 1. $E_R \gtrsim 1$ keV: phonons + scintillation \rightarrow particle identification 2. $E_R \lesssim 1$ keV: phonons-only, low $E_{thr} \rightarrow$ **sub-GeV DM with NR** \leftarrow primary goal

CRESST-III @ LNGS

W-TES

CaWO₄: 23.6 g E_{th}= 30.1 eV_{NR}

Si wafer: 0.35 g E_{th}= 10.0 eV_{NR}

Large variety of target materials: $CaWO_4$, Si, Al_2O_3

LiAlO₂ \rightarrow enables spin-dependent interaction probes <u>PRD 106, 092008</u> C - under development <u>EPJ C 84, 324 (2024)</u>

08.04.2025 | LDMA Genova

Si-on-Al₂O₃ wafer: 0.6 g E_{th}= 6.7 eV_{NR}

Future upgrade: O(100) detectors

optimized to sub-GeV DM

 $CRESSTIII CaWO_4 79$ $10^{-1} 10^{0}$ DM particle mass m_{χ} (GeV/c²)

SCDM-CPD Si '20

CRESSIII 505 12*

Best limits for sub-GeV DMnucleus scattering from ~90 MeV to ~1 GeV

SuperCDMS: installation @ SNOLAB

Goal: DM NR and ER

Maximum use of complementary detector technology.

2 km

SuperCDMS Experiment

<image>

Current status:

- Detector has been tested
- Installation is ongoing

Margarita Kaznacheeva | DM w/ Cryo Detectors

iZIP detectors: Phonons + ionization E_{thr} ~ 150 eV_{nr} bkg discrimination

> W-TES Ge (1.4 kg) Si (0.6 kg)

HV detectors: Phonon only E_{thr} ~ 60 eV_{nr} Amplifies phonon signal Low thresholds

08.04.2025 | LDMA Genova

SNOLAB facility (Deep UG mine)

SuperCDMS: low-threshold efforts

Goal: searching for the future upgrade options.

CPD: OV detector Si wafer of 10.6 g E_{thr} = 16.3 eV_{pr} <u>Phys. Rev. Lett. 127, 061801</u>

HVeV: Si wafer (1cm² x 4 mm) 1 g eV scale thresholds Phys. Rev. D 111, 012006

Light-tight copper housings Attempt to reduce IR bkg Avoid scintillating materials

Tests at surface, NEXUS@Fermilab & CUTE@SNOLAB

08.04.2025 | LDMA Genova

W-TES + E field

- 0VeV (this work)
- Sys. uncertainty
- SuperCDMS-CPD
 - EDELWEISS
- CRESST Surf

- --- CRESST-III
- --- CDMSlite R2
- --- DAMIC
- --- NEWS-G
- --- Collar 2018

TESSERACT @ surface

Broad R&D program

Goals:

- Light DM probes via various channels
- Sub-eV thresholds
- Diverse target materials
- Complementary approaches for LEE

08.04.2025 | LDMA Genova

TESSERACT @ surface

Broad R&D program

Goals:

- Light DM probes via various channels
- Sub-eV thresholds
- Diverse target materials
- Complementary approaches for LEE

08.04.2025 | LDMA Genova

BULLKID

- Monolithic array \rightarrow Phonon leakage is used to identify the dice with interaction
- Fully multiplexed = single readout line

a

- **Next:** BULLKID-DM @ LNGS (2027)
- Scalability:
- 800 g of Si
- 2300 detector dice

Background:

- fully active
- fiducialization (600 g)

LNGS

08.04.2025 | LDMA Genova

COSINUS @ LNGS

DAMA/LIBRA's claim: positive evidence for the presence of DM particles in the galactic halo via DM annual modulation

Goal of COSINUS: model-

independent test of DAMA with:

- same material
- signal-to-background discrimination

NIMA 1045, 167532

remoTES readout (W-TES on Al_2O_3 -wafer) Nal 3.7 g, 1 cm³ Si beaker as a light detector $\sigma_{BL} = 0.441$ keV +Muon veto water tank

Neutron calibration

 $- \gamma$ band

150

125

Energy (keV)

expected to start

within 2025

First data taking is

175

200

I inelastic

I band

Na band

2.0

1.5

-0.5

25

Light yield

Margarita Kaznacheeva | DM w/ Cryo Detectors

New setup at LNGS

Low-Energy Excess Investigations

LEE rate decays with time at cold

LEE rate decays with time at cold

No particle background

arXiv:2503.08859

Possible LEE origin: stress... from holding structures

Stress from the holding can induce excess signals BUT: holding alone is probably insufficient to explain all LEE events

TESSERACT

Glued = high stress

Hanging = low stress

Mitigation strategies:

arXiv:2503.08859

- 1. Reduce external stress from the holders (CRESST, TESSERACT)
- 2. Instrumented holders (CRESST)

08.04.2025 | LDMA Genova

Margarita Kaznacheeva | DM w/ Cryo Detectors

31

Vat Commun 15

(2024

Possible LEE origin: stress... from the sensors

Observation of single (one TES) and shared (two TESs) excess events

<u>MK, PhD Thesis, TUM</u>

DoubleTES approach to reject singles: CRESST TESSERACT NUCLEUS

<u>arXiv:2503.08859</u>

\rightarrow LEE has (at least) two components

Phonon excess is not ionizing

No particle background

EDELWEISS, Ricochet expertise

TESSERACT: push LEE discrimination threshold down to phonon threshold

Edelweiss CRYOSEL:

- 40 g Ge HV detectors (200 V)
- \rightarrow NTD for heat signal

→ identify athermal phonons from phonon heat-only events using the NbSi TES <u>Phys. Rev. D 108, 022006</u>

08.04.2025 | LDMA Genova

S

Hertel @ UCLA DM 2025

EXCESS Workshop Initiative

Publicly available data repository

<u>Jun. 2021 (online)</u> <u>Feb. 2022 (online)</u> <u>Jul. 2022 (@IDM, Vienna)</u> <u>Aug. 2023 (@TAUP, Vienna)</u> Jul. 2024 (@IDM, Rome)

Soon: Registration is open!

Jun. 2025 (@LTD, Santa Fe)

2022: Joint status report paper from 11 collaborations <u>SciPost Phys. Proc (2022).</u>

2025: Review accepted for publication in Volume 75 of the Annual Review of Nuclear and Particle Science <u>arXiv:2503.08859v1</u>

Phonon LEE: status

Remarkable similarities between experiments in energy scales and rate time-evolution.

LEE does not have a particle origin and is not ionizing.

LEE has multiple components.

Stress from holders and from the sensors seem to contribute to the LEE.

LEE investigation is currently the main driver of the cryogenic detectors detector development.

Broad R&D programs for: - identifying LEE origins - mitigating the LEE rates

Conclusions

eV-scale detector thresholds

already enable:

- tens of MeV DM search with NR

- MeV-scale DM with ER

Cryogenic DM detectors gave a start to **coherent** elastic neutrino-nucleus scattering experiments:

- CRESST → NUCLEUS
- EDELWEISS → Ricochet

Input to the neutrino fog background.

Realizing full potential requires mitigation of low-energy backgrounds!

...

Broad detector development programs:

- new detector designs
- new sensors
- new materials
- new interactions
- Investigation of the detector response in the eV-range

Conclusions

eV-scale detector thresholds

already enable:

- tens of MeV DM search with NR

- MeV-scale DM with ER

Cryogenic DM detectors gave a start to **coherent** elastic neutrino-nucleus scattering experiments:

- CRESST → NUCLEUS
- EDELWEISS → Ricochet

Input to the neutrino fog background.

Realizing full potential requires mitigation of low-energy backgrounds!

...

Broad detector development programs:

- new detector designs
- new sensors
- new materials
- new interactions
- Investigation of the detector response in the eV-range

