Status of MEC simulation

llaria Rosa

November 7th 2024

Geometry

Tiles

- Scintillator 1.5 mm
- Absorber 0.275 mm
- ➡ Tyvek 0.1 mm

Module Characteristics

- + 500 layers (A-T-S-T, $\sim 26 X_0$)
- +No spy tiles
- + Possibility to create a matrix of modules

Material

- Scintillator (Protvino, C₁₉H₂₁, BC408)
- Absorber Pb-Sb 96-4% (density 11.35 g/cm³)
- Tyvek CH₂ (density 0.96 g/cm³)

Geant4 simulation

Simulation strategy

Step 3

optical photons simulation (study of the material properties and surfaces properties)

energy resolution with optical photons

HowTo

G4 implementation

- XY dimensions of tiles 500 mm (minimised lateral leakage)
- ► 10⁴ events
- Sum of energy deposition in scintillator tiles for each event
- Energy scan (1 50) GeV
- **x2** fit with the MIGRAD algorithm

Total energy deposit in the scintillator, e = 5 GeV

Energy	Mean [MeV]	RMS [MeV]
1 GeV	367.3 ± 0.1	8.887 ± 0.066
2 GeV	735.7 ± 0.1	12.6 ± 0.1
3 GeV	1104 ± 0.2	15.3 ± 0.1
4 GeV	1473 ± 0.2	17.79 ± 0.12
5 GeV	1841 ± 0.2	20.17 ± 0.15
6 GeV	2209 ± 0.2	21.95 ± 0.16
10 GeV	3682 ± 0.3	28.65 ± 0.21
20 GeV	7364 ± 0.4	41.09 ± 0.31
30 GeV	$1.10{ imes}10^4$ \pm 0.5	50.07 ± 0.39
40 GeV	$1.47{ imes}10^4$ \pm 0.6	58.26 ± 0.47
50 GeV	$1.84{ imes}10^4$ \pm 0.7	$66.91{\pm}~0.53$

 $\frac{\sigma_E}{E} = \frac{2.415\%}{\sqrt{E}}$ \sqrt{E}

Results

0.8

Α

Μ

P 0.6

т U 0.4

0.2

0

350

D

Ε

Scintillator

PTP emits light in the range 320-400 nm which is absorbed by POPOP which then re-emits in blue wavelength.

Material properties

Fibers

Common Properties of Single-clad Fibers –		
Core material	Polystyrene	
Core refractive index	1.60	
Density	1.05	
Cladding material	Acrylic	
Cladding refractive index	1.49	
Trapping efficiency, round fibers	3.44% minimum	

Y-7, Y-8, Y-11

Surfaces definition

Step 4 Energy resolution with optical photons

G4 implementation

Matrix of 5x5 modules

Sum of optical photons collected by PD for each event

- Energy scan (1 40) GeV
- **x2** fit with the MIGRAD algorithm

5x5 matrix (40 mm tile XY dimension) black painted fibre

4.352 % σ_N N \sqrt{E}

Results

Main characteristics

- ► $120 \times 120 \times 1000 \ mm^3 = 2R_M \times 27X_0$
- ► Cell size $40 mm \times 40 mm$
- ► Alternation of 0.3 mm of lead and 1.6 mm of Protvino scintillator
- ► TiO₂ coating (reduced thickness)
- Gaussian beam

TB module implementation

Energy deposition in the scintillator

Step 5

DETEC Prototype + PS Beam 3x3 matrix (40 mm tile XY dimension) mirrored fibers

TB module implementation

DETEC Prototype + PS Beam (only energy) 3x3 matrix (40 mm tile XY dimension) mirrored fibers

TB module implementation

Step 5

DETEC Prototype + Monoenergetic Beam 3x3 matrix (40 mm tile XY dimension) mirrored fibers

FIT)	_
= 0.6	

TB module implementation

Step 5

DETEC Prototype + PS Beam (only energy) 5x5 matrix (40 mm tile XY dimension) mirrored fibers

TB module implementation

Technological solution

• Fine-sampling shashlyk design with alternating layers of conventional scintillator (polystyrene matrix + fluors) and lead

Current status

- 2024: construct one full-size shashlyk cell and validate performance with beam test:
 - cell size 120x120x1000 mm³ = 2 R_M x 27 X₀, module ready delivered in sep 2024
 - 9 readout channels with full digitization at 1/5 GHz
 - PS TB performed in sept-oct 2024

Future plans

- 2025: minor improvements on the calorimeter (fibers, readout) and new test at the end of 2025
 - Adding the PD response in the simulation
 - Tune the geometry and the optical properties

Future plans

PRIN HetCal

Thank you for the attention!

HIKE project: high-intensity beam and kaon decay measurements at a new level of precision

 \rightarrow An integrated programme with multiple phases: K⁺ and K_L beams + beam dump mode exploiting high intensity Kaon beam in CERN NA after LS3

Phase 1

BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) at 5% of precision

Phase 2

BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) at 20% of precision

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ $K^+ \rightarrow \pi^+ \ell^+ \ell^ K^+ \to \pi^- \ell^+ \ell^+, K^+ \to \pi$ Semileptonic K^+ decays $R_K = \mathcal{B}(K^+ \to e^+ \nu) / \mathcal{B}$ Ancillary K^+ decays (e.g. $K^+ \rightarrow \pi^+ \gamma \gamma, K^+ K_L \rightarrow \pi^0 \ell^+ \ell^-$

 $K_L \rightarrow \mu^+ \mu^ K_L \rightarrow \pi^0(\pi^0) \mu^{\pm} e^{\mp}$ Semileptonic K_L decays Ancillary K_L decays (e.g. $K_L \rightarrow \gamma \gamma, K_L \rightarrow \pi$

Challenges: 20-40 ps time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.

	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 5\%$	BSM physics, LFUV
	Sub-% precision on form-factors	LFUV
μe	Sensitivity $O(10^{-13})$	LFV/LNV
	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 0.1\%$	V_{us} , CKM unitarity
$(K^+ \to \mu^+ \nu)$	$\sigma(R_K)/R_K \sim O(0.1\%)$	LFUV
	% - %	Chiral parameters (LECs)
$\rightarrow \pi^+ \pi^0 e^+ e^-)$		
	$\sigma_{\mathcal{B}}/\mathcal{B} < 20\%$	$\text{Im}\lambda_t$ to 20% precision,
		BSM physics, LFUV
	$\sigma_{\mathcal{B}}/\mathcal{B}\sim 1\%$	Ancillary for $K \rightarrow \mu \mu$ physics
	Sensitivity $O(10^{-12})$	LFV
•	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 0.1\%$	V_{us} , CKM unitarity
	% - %	Chiral parameters (LECs),
$\pi^0 \gamma \gamma$)		SM $K_L \to \mu \mu, K_L \to \pi^0 \ell^+ \ell^-$ r

Why not keeping the LKr?

The energy, position, and time resolution of the LKr calorimeter

$$\frac{\sigma_E}{E} = 0.0042 \oplus \frac{0.032}{\sqrt{E(GeV)}} \oplus \frac{0.09}{E(GeV)},$$
$$\sigma_{x,y} = 0.06 \, cm \oplus \frac{0.42 \, cm}{\sqrt{E(GeV)}},$$
$$\sigma_t = \frac{2.5 \, ns}{\sqrt{E(GeV)}}$$

Energy resolution

Egap [MeV]

Energy resolution

Validation test with lead only

MEC like simulation (lead only)

- ⇒ 200 × 200 mm² module
- ➡ 1 GeV e-
- cylindrical mesh r = 100 mm dr = 1 mm
- \Rightarrow R_M(Lead) = 1.602 cm

Geant4 EMcalo example

- Cylindrical geometry
- Radial segmentation set by the user
- Cumulative radial energy vs. radius (in X₀ unit)
- X₀(Lead) = 0.5612 cm

Cumul radial energy dep (% of E inc) TestEm2

Step 2 Comparison with previous estimations

Sergey Kholodenko report 27-04-2024

Test beam study of the PANDA shashlyk calorimeter prototype

Shashlyk prototype construction

Shashlyk prototype design:

- * 3x3 channel matrix with cell size 4x4 cm
- * 500 layers of scintillator + lead. All edges tiles and both lead tiles sides coated with reflective paint.
- * Lead layer: 120x120x0.3 mm, scintillator layer: 40x40x1.5 mm
- * WLS fibers BCF-92XL with 1.2mm diameter, mirrored at one side

Prototype developed in collaboration with the DETEC company

Shashlyk prototype construction

Switch between two possible PD

1. SiPM solution: Hamamtsu S13360-6050/25CS

2. **PMT solution:** Hamamtsu R7600U-300 extended green

Shashlik calorimeter

Calorimeter	Pb/Scint [mm]	Energy resolution	Sampling fraction
ALICE EMCal	1.44/1.76	$10\%/\sqrt{E} \oplus 5\%$	16%
LHCb ECAL	2.0/4.0	$8\%/\sqrt{E}\oplus 1\%$	24%
PANDA/KOPIO	0.275/1.5	$2.8 \% / \sqrt{E} \oplus 1.3 \%$	47%

- Fine-sampling Shashlyk based on PANDA forward calorimeter produced at Protvino (0.275 mm Pb +1.5 mm scintillator)
- time resolution of 100 ps or better for the reconstruction of $\pi^{0'}$ s with energies of a few GeV
- Longitudinal shower information from spy tiles: PID
- Neutron rejection ~10³

Use of nanocomposite scintillators under investigation in collaboration with AIDAinnova project NanoCal: Perovskite (CsPbX3, X=Br, Cl...) nanocrystals cast into polymer matrix

HIKE MEC design

See Matt's talk tomorrow

A closer look at the design

Abso/Scint Tiles

- traditional design
- matrix of fibers
- 1SiPM for channel

Spy Tiles

- necessity to be optically isolated
- romanshka design

Alternatives

- On-board SiPMs to read the Spy tiles
- Two-sides front/back readout
- Explicit segmentation

Shashlyk prototype design

Two available ADCs identified (1 GHz and 14 bit)

Full chain implemented with the Texas one and Xilinx Kintex Ultrascale+ : successful read out of SiPM dark noise signals 6mm x 6mm Hamamatsu SiPM with 75 μm spad (using a Transimpedence preamplifier)

Shashlyk prototype readout

Shashlyk prototype readout

- The HIKE proposal included ~3000 channels all equipped with ADCs, so feature extraction and data reduction is key.

With SiPM readout, falling time will be defined by detector capacitance: pole-zero filter used to remove the tail and improve pileup identification. Algorithms tested on a in Xilinx Kintex Ultrascale+ using CAEN DT5810 and Agilent 33250 waveform generators.

Energy resolution

Energy resolution

Scintillator	1.5 mm
Absorber	0.275 mm
Tyvek	0.1 mm
Paint	0.1 mm
Fiber	1.2 mm (diameter)

- Sensitive detector to count optical photons *
- Possibility to choose a mirrored or a black painted fiber *

Geometry implementation

Abs and a Sci Tile with the fiber segment as daughter (Sci Tiles are painted with TiO2)

2.5

1.5

1.51

1.48

Cladding 1

2

Photon energy, eV

Core

WLS optical properties

Time and energy distribution (1 GeV photon)

Arrival time on Photon Detector (black paint)

- Compatibility with the WLS emission spectrum
- ~50% reduction of the photons in the PD

Molière radius R_M

Average lateral deflection of electrons at the critical energy after traversing 1X₀

$$R_M (g/cm^2) \simeq 21 MeV \frac{X_0}{\epsilon_C (MeV)}$$

On average, about 90% of the shower energy is contained in a cylinder of radius ~1R_M

$$\frac{1}{R_M} \approx \frac{1}{21 \, MeV} \sum_j \frac{w_j \epsilon_{Cj}}{X_{0j}}$$

Procedure

Geant4 implementation

- XY module segmentation
- Numerical integration (cumulative curves)
- Shower profile in homogeneous media and MEC
- Optimisation of the transverse module dimensions

 $E_{e} = 30 \text{ GeV}, 12 \times 12 \text{ cm}^2 \text{ module} (~27 \text{ X}_0)$

Method 1

Deposited energy spectrum for a cylinder with a radius of 1R_M (~6 cm) of the KOPIO calorimeter sampling structure fitted with a Crystal ball function [ISSN 1562-6016. BAHT. 2021. No 3(133)]

Results

Method 2

~87% of the incident particles energy is deposited in a cylinder of radius R_M (nominal value)

Luxium Solutions manufactures a variety of plastic scintillating, wavelength-shifting and lighttransmitting fibers used for research and industry.

Starting in 2023, Luxium Solutions introduced the BCF-XL series of scintillating and wavelength shifting fibers with improved, market-leading attenuation length for optimal, reliable performance for a variety of different applications.

Specific Properties of BCF-XL Series Formulations						
Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	# of Photons per MeV*	Attenuation Length (m)**	Characteristics / Applications
BCF-10XL	blue	432	2.7	~8000	>4	General purpose; optimized for diameters >250µm
BCF-12XL	blue	435	3.2	~8000	>4	Improved transmission for use in long lengths
BCF-20XL	green	492	2.7	~8000	>4	Fast green scintillator
BCF-60XL	green	530	7	~7100	>4	3HF formulation for increased hardness
BCF-91AXL	green	494	12	n/a	>4	Shifts blue to green
BCF-92XL	green	492	2.7	n/a	>4	Fast blue to green shifter
BCF-9929AXL	green	492	2.7	n/a	>4	Blue to green shifter. Pairs well when exciting wavelengths are >425nm (e.g. injection- molded and extruded scintillators)
BCF-9995XL	blue	450	2.7	n/a	>4	UV to blue shifter
BCF-98XL	n/a	n/a	n/a	n/a	Not available	Clear Waveguide

*For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity

** For 1mm diameter fiber, measured using silicon photodiode

Time and energy distribution (1 GeV photon with Protvino)

Scintillator

Step 3

Protvino8000 photons/MeV3.3 ns (time constant)BC408104 photons/MeV2.1 ns (time constant)

Fibers

BCF922.7 ns (time constant)Y117.9 ns (time constant)

