

PNN ANALYSIS STATUS AND PROSPECTS

F. BRIZIOLI, <u>R. FIORENZA</u>, J. SWALLOW

renato.fiorenza@cern.ch

NA62 ITALIA 07/11/2024

Scuola Superiore Meridionale

STATUS OF 2021-2022 PAPER

- Draft v6 is on CDS: <u>https://cds.cern.ch/record/2915193/</u>
- Some comments already received and addressed
- Thanks in advance for submitting any more comments! Deadline: 20/11/2024

2021-2022 RESULT CHANGES SINCE PRELIMINARY RESULT

- Contamination from $K^+ \rightarrow \pi^+ \pi^0_D$ in normalization sample $(K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \gamma \gamma)$: 0.2% from MC studies
 - MC K_{2 π} (used for acceptance) is only $\pi^0 \rightarrow \gamma\gamma$; π^0_D is suppressed in normalization selection by multiplicity criteria
 - Subtract contamination with 100% relative syst uncertainty to $N_{\pi\pi}$
 - Effect on N(πνν): -0.2%, σ(N(πνν)): negligible
- Random veto correction: $\varepsilon_{RV} = \varepsilon_{RV,data} / \varepsilon_{RV,MC}$ (to account for events rejected by the μ^+ activity)
 - **Previously:** $\varepsilon_{RV} = \varepsilon_{RV,data} + (1 \varepsilon_{RV,MC})$
 - Correction now correctly takes into account coincidence of μ^+ activity and accidental activity
 - Effect on N($\pi\nu\nu$): -0.6%, σ (N($\pi\nu\nu$)): negligible
- Overall change on BR:

$$\mathsf{BR}_{2021-22} \quad (16.0^{+5.0}_{-4.5}) \times 10^{-11} = \left(16.0 \left(\begin{smallmatrix}+4.8\\-4.2\end{smallmatrix}\right)_{\mathsf{stat}} \left[\begin{smallmatrix}+1.4\\-1.3\end{smallmatrix}\right]_{\mathsf{syst}}\right) \times 10^{-11} \longrightarrow (16.2^{+5.1}_{-4.5}) \times 10^{-11} = \left(16.2 \begin{smallmatrix}+4.9\\-4.3\end{smallmatrix}\right)_{\mathsf{stat}} \left[\begin{smallmatrix}+1.4\\-1.4\end{smallmatrix}\right]_{\mathsf{syst}}\right) \times 10^{-11}$$

$$\mathsf{BR}_{2016-22} \quad (13.0^{+3.3}_{-2.9}) \times 10^{-11} = \left(13.0 \left(\begin{smallmatrix}+3.0\\-2.7\end{smallmatrix}\right)_{\mathsf{stat}} \left[\begin{smallmatrix}+1.3\\-1.2\end{smallmatrix}\right]_{\mathsf{syst}}\right) \times 10^{-11} \longrightarrow (13.0^{+3.3}_{-3.0}) \times 10^{-11} = \left(13.0 \left(\begin{smallmatrix}+3.0\\-2.7\end{smallmatrix}\right)_{\mathsf{stat}} \left[\begin{smallmatrix}+1.3\\-1.3\end{smallmatrix}\right]_{\mathsf{syst}}\right) \times 10^{-11}$$

$K^+ \rightarrow \pi^+ X$ REINTERPRETATION

Dedicated paper on limits on $K^+ \rightarrow \pi^+ X$ based on 2016-2018 data, including all interpretations:

- BC2: dark vector decaying to DM fermions (new)
- BCI0:ALP coupling to fermions (update from 2017 data)
- BCII:ALP coupling to gluons (existing in $K^+ \rightarrow \pi^+\gamma\gamma$ paper)
- BC4: dark scalar (existing in PNN paper)

90% C.L. exclusion in the $m_{A''} \in plane$

2023-2024 DATA

COPY-PASTING 2021-2022 ANALYSIS...

2023: v3.9.10, fully processed and reduced
 2024: prompt processing → inherently ±10~20% (v3.9.11 processing ongoing!)

NORMALIZATION SAMPLE

RANDOMVETO

- RV efficiency (uncorrected)
 - 2022: 63%
 - **2023: 67%**
 - **2024: 73%**
- Extra improvement of RV vs intensity GTK intensity estimator bias? Better beam? Better overall detector performance?

RANDOMVETO

- RV efficiency (uncorrected)
 - 2022: 63%
 - **2023: 67%**
 - **2024: 73%**
- Extra improvement of RV vs intensity GTK intensity estimator bias? Better beam? Better overall detector performance?

RANDOMVETO

- RV efficiency (uncorrected)
 - 2022: 63%
 - **2023: 67%**
 - **2024: 73%**
- Extra improvement of RV vs intensity GTK intensity estimator bias? Better beam? Better overall detector performance?

UPSTREAM BACKGROUND

BACKGROUND FROM K⁺ DECAYS

	2022	2023	2024
$K^+ \rightarrow \pi^+ \pi^0(\gamma)$, tot	0.83 ± 0.04	0.57 ± 0.05	0.62 ± 0.06
$K^+ \rightarrow \mu^+ \nu(\gamma)$, tot	I.7 ± 0.5	1.3 ± 0.4	I.7 ± 0.4
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03	0.10 ± 0.03	0.13 ± 0.04
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu$	0.9 ± 0.3	0.8 ± 0.3	1.0 ± 0.3
Other	< 0.1	< 0.1	< 0.1
Total	3.5 ± 0.6	2.8 ± 0.5	3.4 ± 0.5

- Absolute yields are ~stable between years
- Since "discovery" of K_{µ2γ}, the K⁺ → µ⁺ν(γ) line is the largest in the table
 Kµ2, Kµ2γ, K2π, Ke4 all contribute ~comparably
- Overall, K⁺ decays are kept under control

π^0 REJECTION

Not much dependence on intensity or year...

07/11/2024

MUON REJECTION

Calorimetric (+ MUV3)

RICH

SUMMARY

RUN2 DATASET SUMMARY

	2021	2022	2023	2024
$N_{\pi\pi} \times D / 400 \times 10^{-8}$	0.4	١.6	1.7	2.0
Trigger efficiency	84%	87%	86%	86%
Random Veto efficiency	63%	64%	68%	74%
$N(\pi\nu\nu)$ SM expected	~2	~8	~9	~
√(S+B) / S	0.94	0.37	0.35	0.32

- On target for 10 SM πνν per year
- 2024 looks like the best dataset so far
 - Largest yield per year
 - Better ε(RV)

- Best sensitivity
- 2023 2024 has similar yield as 2016 – 2022: next result is going to double the statistics again!
- Still improvements to be made!

IDEAS WE ARE EXPLORING, WORK IN PROGRESS...

Against the upstream background

- Improve BDT for upstream veto (XGBoost)
- Revise cuts on low-level STRAW reconstruction quality parameters: Δslope(before vs after fit), track quality
- Timing improvements: KTAG (likelihood-based timing), maybe apply same to RICH?

Better PID

- Finer RICH cut momentum dependence (maybe use machine learning?)
- Improve calorimetric ML-based PID, use CNN

Reconstruction

- Improve GTK reconstruction (ML, but not only)
- Account for LKr HV update in 2023

Include $K^+ \rightarrow \pi^+ \pi^0_D$ in MC for acceptance

Study upstream from simulations (in-time component)

Analysis improvements

- Improve LKr trigger efficiency measurement
- Shape analysis for better background subtraction
- Shape analysis to understand nature of our signal (see <u>loel's</u> presentation)