KOTO-II: Status, prospects, and synergies with HIKE

Matthew Moulson with slides stolen from Tadashi Nomura, Hajime Nanjo & Yu-Chen Tung

NA62 Italia Frascati, 08 November 2024

Latest results:

Results of the 2021 data analysis

We will submit the paper on this result soon.

Consideration of sensitivity in the near future

The accumulated POT will be $\times 10$ larger than 2021 in 4-5 years.

Assumption

- The beam power increases as 80→90→100kW.
- 60 days beam time / year.

 Much smoother beam structure than 2021, expected by new MR power supplies with smaller ripples (upgraded in 2021-22).

Single event sensitivity (SES) will reach the level better than 10⁻¹⁰.

- The achievable sensitivity will be $(5-8) \times 10^{-11}$.

Acceptance recovery with a smoother beam (×1.5) is taken in account.

Consideration of backgrounds

in future runs

Background level (BGL)=N_{BG}(2021)×SES(2021)

Source	N _{BG} in 2021 analysis	BGL based on 2021 results	BGL in future runs	
Upstream π ⁰	0.064	0.56×10 ⁻¹⁰	6	e
K _L →2π ⁰	0.060	0.52×10-10	By hardware	phal acceptanc
K±	0.043	0.37×10 ⁻¹⁰	and by software	
Scattered and	0.022	0.19×10 ⁻¹⁰	(tighter cuts, better	10% siç
halo K∟(→2γ)	0.018	0.16×10 ⁻¹⁰	we expect an	
Hadron cluster BG	0.024	0.21×10 ⁻¹⁰	two reduction.	Sacri
η production in CV	0.023	0.20×10 ⁻¹⁰		
Sum	0.255	2.21×10-10	► ~1.2×10 ⁻¹⁰	

- We will try to develop methods to reduce backgrounds further.
- At least, we will take more control data for more precise background estimation.

Summary

- KOTO concluded the 2021 data analysis
 - The single event sensitivity = 9.26×10^{-10} , the expected number of backgrounds = 0.253
 - No candidate events were observed inside the signal box and set new upper limit: BR(K_L→π⁰vv)<2.1×10⁻⁹ (90% C.L.)

Preliminary

- KOTO is making steady efforts to reduce backgrounds further.
- KOTO plans to continue taking data and will reach the sensitivity level better than 10⁻¹⁰ in 4-5 years.
 - To discuss KOTO's reach of the K_L→π⁰vv search, the background level in future runs is also discussed.

How to improve the sensitivity?

J-PARC Hadron Experimental Facility Extension

HEF-ex as of 2024

• Combination of Hadron physics and Particle physics

Strangeness hadron physics Neutron star ↔ Hyperon puzzle (too soft) 2 body force and 3 body force

CP violation and high energy reach

- Cost with price rise
 - Building+Primary beamline+K1.1, HIHR KL2=196 Oku-yen ~130 M\$
 - Building+Primary beamline + upstream of K1.1, HIHR, KL2 : 153 Oku-yen~100 M\$
- IPNS director :
 - Difficult for KEK to request all budget to the government
 - Strengthen the physics impact
 - More international collaboration is also important
 - More institution to request funding or Cost reduction for realization
 - 2027 may be good target to request budget because of the gap in other large budgets

More recent status of HEF-ex

- Ideas toward more aggressive cost reduction under discussion
 - Because the IPNS director suggests <100 oku-yen = 63 M\$ for Yen/\$ in Aug 2024)

Discussion with IPNS director

- IPNS director suggested to submit the proposal in the beginning of December.
- The official review at J-PARC PAC is important for the input of the discussion on the budget request to the government.
- Our primary goal is to obtain Stage-1 approval
 - Stage-1 status will be given by the IPNS director based on the recommendation of the PAC, if the scientific merit of the proposal is high and the experimental methods are sound.
 - (This status will help the proponents negotiate with funding agencies.)
 - \rightarrow Expand our collaboration and request funding.

Target of submission by early December 2024

KOTO II detector (tentative)

KOTO calorimeter

Acceptance of $K_I^0 \to \pi^0 e^+ e^-$

Charged Particle Tracker

- Two layers of charged tacker at
 - Z_{CsI} 30 cm, Z_{CsI} 50 cm
- Design requirements:
 - Spatial resolution: ~100 μ m
 - to provide better $\sigma(M_{\pi^0})$, $\sigma(M_{K_I})$
 - Timing resolution: ~300 ps
 - to separate charged hits from the backsplash
- Detector candidates:
 - Straw tracker, Scintillating fiber, or ?

Summary

- The measurement of $K_L \rightarrow \pi^0 e^+ e^-$ can be a potential by-product at KOTO II
- Assuming $\mathscr{B}(K_L \to \pi^0 e^+ e^-)$ aligns with the SM prediction,
 - expect to collect S/N~15/17 in parallel with the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ data-taking.
 - S/N = 0.88 \rightarrow 3.6 σ observation
 - $\delta \mathscr{B} / \mathscr{B} = 38 \%$
- The design for charged particle detector has not yet been finalized:
 - charged particle tracker before the calorimeter
 - μ^{\pm}/π^{\pm} identification beyond the calorimeter

Full Simulation for the calorimeter

Outer Veto : 20-cm \square ~50-cm long Shashlyk (1-mm lead / 5-mm scinti.)

Additional questions on KOTO-II calorimeter

- 1. What calorimeter performance is required in terms of:
 - Energy resolution?
 - Time resolution?
 - Radiation robustness? Has the radiation dose (ionizing and hadronic) been estimated?
- 2. Is the digitization frequency for the calorimeter readout sufficient to deliver the required time resolution? What are the implications for DAQ performance?
- 3. Would increasing the transverse segmentation of the calorimeter help in terms of
 - shower shape discrimination/angle of impact determination for photons?
 - n/γ separation?
- 4. What would be gained by longitudinal segmentation of the calorimeter? What segmentation would be needed for
 - decay π^0 identification by reconstructing shower direction?
 - n/γ separation?
- 5. Which aspects of scintillator performance are most critical for the KOTO-II calorimeter?
 - e.g., high light yield, fast emission time, radiation hardness...
- 6. Did you develop a simulation of the shashlyk design with optical transportation included? Have you thought about ways to reduce the computation time when dealing with scintillation photons transportation?

Particle	Enorgy rongo	Yield	On-spill rate
	Energy range	$(per \ 2 \times 10^{13} \text{ POT})$	(MHz)
K_L		$1.1 imes 10^7$	24
Photon	$>10 {\rm ~MeV}$	$5.3 imes10^7$	110
	$>100~{\rm MeV}$	$1.2 imes 10^7$	24
Neutron	$>0.1~{\rm GeV}$	$3.1 imes 10^8$	660
	$>1 { m GeV}$	$2.1 imes 10^8$	450

Table 4. Expected particle yields estimated by the simulations.

Table 5. Detector rate, veto width, and accidental loss.						
Detector	$\operatorname{Rate}(\operatorname{MHz})$	Veto width (ns)	Loss $(\%)$			
Central barrel	2.2	40	8.5			
Calorimeter + Charged veto	3.5	20	6.7			
Beam-hole charged-veto	2.9	30	8.3			
Beam-hole photon-veto	35	6	19			

. . . .

BHPV: The BHPV alone accounts for half of the accidental losses. An alternate technology for the BHPV, such as highly compact, ultra-fast calorimeter, for example, based on fast high-Z crystals, or a fine-sampling tungsten/silicon design, might be studied. It is important to accurately parameterize the required photon detection efficiency as a function of energy in order to evaluate these solutions. This will also help to understand what time resolution vs. energy would be required to reduce accidental BHPV losses by a factor of 3–4.

From CRILIN to the (ex HIKE) SAC

R14755 PMT

Custom divider:

1-layer prototype with 3x3 PWO-UF crystals of bigger size: 18 x 18 x 40 mm³ Alignable mechanics and single-board **PMT readout**

- Stackable planes, like CRILIN, with PCB photosensor plane
- Layer mechanics to allow alignment of crystal plane
- Crystals pre-aligned à la OREO
- From SiPM to PMT readout: Hamamatsu R14755 PMTs under test
- Custom divider implemented on sensor board
- PMT-crystal coupling will be tested with and without Winston cones

Summary and outlook

Meeting at J-PARC 27-29 July:

• Cristina, Evgueni, MM, Mattia, Ilaria, Rainer, Rado, Augusto, Hans

Biweekly meetings since August (Wed 14:00)

- Strong participation from Birmingham, Frascati
- Preparation of KOTO-II proposal for end of year

Strong interest from HIKE UK:

- Birmingham, Lancaster, Edinburgh. Liverpool, Manchester, Warwick
- BHCV and possibly Charged Veto/tracking system
- Significant interest in $K_L \rightarrow \pi^0 \ell^+ \ell^-$

Possible involvement for NA62 Italia:

- Shashlyk (main calorimeter)
- SAC as high-performance, fast BHPV