

Tadashi Hashimoto (RIKEN PRI/RNC) for the HEATES collaboration Precision X-ray Measure RIKEN

High Precision X-ray Measurements 2025, Frascati, Italy, June. 16–20, 2025

X-ray spectroscopy of exotic atoms

Transition-Edge-Sensor microcalorimeters

Excellent energy resolution as an energy dispersive detector Variety of applications dependent on the detector parameters

✓ 1 pixel : <u>300 x 320 um² (~ 0.1 mm²)</u> ✓ Mo-Cu bilayer TES ✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

Φ~1 cm

✓ 240 pixels ✓ 23 mm² eff. area

HEATES project High-resolution Exotic Atom x-ray spectroscopy with TES

X-rays

negative charged

- µ⁻ : Muon
- π^- : Pion
- K-: Kaon
- \bar{p} : anti-proton ...

named after microcalorimeter being a heat measuring device

TES microcalorimeter (Cryogenic detector) having high resolution

Precision X-ray spectroscpy provides various physics cases

History of HEATES project

Feasibility study *PTEP(2016)*

Strong force study PRL(2022)

Study of BSQED PRL(2023) Cascade dynamics *PRL(2021)*

Study for µCF

Study of BSQED

1st gen. TES < 20 keV

2nd gen.

TES

< 150 keV

H. Tatsuno

T. Hashimoto

T. Okumura

Y. Toyama

T. Saito

Sea of Japan

easpring-8 x4 from 2019 Kobe Osaka 神戸 大阪 Hiroshima Takamatsu 広島 高松 ,Shikoku , 四国 -Fukuoka 福岡 Nagasaki Kyushu 九州 長崎 Miyazaki 宮崎 Kagoshima 鹿児島

的

NIST-TES system HPD102 + TDM system

"Portability" is essential for our use case. ~1 week setup time.

HPD107K2 system on a 4t track

J-PARC Japan Proton Accelerator Research Complex

World's highest intensity proton driver \rightarrow high-intensity secondary K/µ beam

Highlighted results

- Kaonic Helium $3d \rightarrow 2p$: Strong ineraction Ι.
- Muonic Neon 5g \rightarrow 4f: QED at Strong E-field 2.
- Muonic Fe/Ar: Cascade 3.
- Preliminary results with high-E TES system 4.

1. K-3/4He atom X-rays

PHYSICAL REVIEW LETTERS 128, 112503 (2022)

Measurements of Strong-Interaction Effects in Kaonic-Helium Isotopes at Sub-eV **Precision with X-Ray Microcalorimeters**

T. Hashimoto,^{1,2,*} S. Aikawa,³ T. Akaishi,⁴ H. Asano,² M. Bazzi,⁵ D. A. Bennett,⁶ M. Berger,⁷ D. Bosnar,⁸ A. D. Butt,⁹ C. Curceanu,⁵ W. B. Doriese,⁶ M. S. Durkin,⁶ Y. Ezoe,¹⁰ J. W. Fowler,⁶ H. Fujioka,³ J. D. Gard,⁶ C. Guaraldo,⁵ F. P. Gustafsson,⁷ C. Han,² R. Hayakawa,¹⁰ R. S. Hayano,¹¹ T. Hayashi,¹² J. P. Hays-Wehle,⁶ G. C. Hilton,⁶ T. Hiraiwa,¹³ M. Hiromoto,⁴ Y. Ichinohe,¹⁴ M. Iio,¹⁵ Y. Iizawa,³ M. Iliescu,⁵ S. Ishimoto,¹⁵ Y. Ishisaki,¹⁰ K. Itahashi,² M. Iwasaki,² Y. Ma,² T. Murakami,¹¹ R. Nagatomi,⁴ T. Nishi,¹⁶ H. Noda,¹⁷ H. Noumi,¹³ K. Nunomura,¹⁰ G. C. O'Neil,⁶ T. Ohashi,¹⁰ H. Ohnishi,¹⁸ S. Okada,^{19,2,†} H. Outa,² K. Piscicchia,⁵ C. D. Reintsema,⁶ Y. Sada,¹⁸ F. Sakuma,² M. Sato,¹⁵ D. R. Schmidt,⁶ A. Scordo,⁵ M. Sekimoto,¹⁵ H. Shi,⁷ K. Shirotori,¹³ D. Sirghi,⁵ F. Sirghi,⁵ K. Suzuki,⁷ D. S. Swetz,⁶ A. Takamine,² K. Tanida,¹ H. Tatsuno,¹⁰ C. Trippl,⁷ J. Uhlig,²⁰ J. N. Ullom,⁶ S. Yamada,¹⁴ T. Yamaga,² T. Yamazaki,¹¹ and J. Zmeskal⁷

(J-PARC E62 Collaboration)

Hadoron physicists + TES experts + Astro physicists

Alternative to a low-E scattering experiment

(SIDDHARTA/E57) High sensitivity

Excellent resolution K-He 2p (E62)

Ultra high resolution

J-PARC provides higher intensity K⁻ — advantage with liquid target.

K-	thin Mylar ~500 μm	gas target	
~127 MeV/c Δp/p = 0.1%		$\epsilon_{stop K^-} \sim \mathcal{O}(10^{-1})$	

K1.8BR in HEF

T1 target

K1.8BR

K1.8BR suitable for low-energy K- beam below 1 GeV/c

E62 setup @J-PARC K1.8BR

Liq. Helium Target Cryostat

~1.5 m

X-ray generator

dE counter & MWDC

He target Cryostat

 $\left(\right)$

K

0

X-ray generator

16

eterioration

Pb shields

TES

system

K- beam

SDD Liq. He system

X-ray tube

4

1 min

Cu degrader

Performance in the K⁻ atom experiment

Response function

Detector response is well described by a gaussian and a low-energy exponential tail

After all the analysis optimization (mainly reduction of charge-particle effects)

Resolution geometrical map

Resolution at CoKa no box : doesn't work at all (12 pixel)

- •

 No difference in the primary pulses between X-rays and charged particles If we look at neighboring pixels, we can reject half of the charged particles

- Beamline data was offline synchronized based on timestamp
- Time resolution ~ 500 ns FWHM is comparable to SDDs

TES (E62) ~6 eV (FWHM) PRL128, 112503 (2022)

SDD (SIDDHARTA) ~150 eV (FWHM) PLB714(2012)40

Simple potential parameters constrained with the 4 observables well reproduce the global features of the kaonic-atom data

2. µNe 5g-4f: BSQED

PHYSICAL REVIEW LETTERS 130, 173001 (2023)

Proof-of-Principle Experiment for Testing Strong-Field Quantum Electrodynamics with Exotic Atoms: High Precision X-Ray Spectroscopy of Muonic Neon

T. Okumura^{(1,*,†} T. Azuma^(1,*) D. A. Bennett,² I. Chiu,³ W. B. Doriese^(0,2) M. S. Durkin,² J. W. Fowler,² J. D. Gard,² T. Hashimoto,⁴ R. Hayakawa^(0,5) G. C. Hilton,² Y. Ichinohe^(0,6) P. Indelicato^(0,7) T. Isobe^(0,8) S. Kanda,⁹ M. Katsuragawa,¹⁰ N. Kawamura^(0,9) Y. Kino^(0,11) K. Mine,¹⁰ Y. Miyake,⁹ K. M. Morgan^(0,2,12) K. Ninomiya^(0,3) H. Noda^(0,13) G. C. O'Neil^(0,2) S. Okada^(0,14,1) K. Okutsu,¹¹ N. Paul^(0,7) C. D. Reintsema,² D. R. Schmidt,² K. Shimomura,⁹ P. Strasser^(0,9) H. Suda,⁵ D. S. Swetz^(0,2) T. Takahashi,¹⁰ S. Takeda,¹⁰ S. Takeshita^(0,9) M. Tampo,⁹ H. Tatsuno^(0,5) Y. Ueno,¹ J. N. Ullom,² S. Watanabe,¹⁵ and S. Yamada^(0,6)

Pb U Larger n=1 for μ atoms/ions P. Indelicato **Nuclear** size n=2 effect n=3 n=4 Smaller Schwinger Limit : 1.32 x 10¹⁸ [V/m]

Transition	transition energy with QED (eV)	QED contribution (eV)	QED as a fraction of trans. ener. (%)	Nucl. Size Error (eV)
$5f_{5/2} \rightarrow 4d_{3/2}$	6304.340	5.204	0.08%	0.000
$5f_{5/2} \rightarrow 4d_{5/2}$	6300.435	5.181	0.08%	0.000
$5f_{7/2} \rightarrow 4d_{5/2}$	6301.432	5.185	0.08%	0.000
5g _{7/2} →4f _{5/2}	6298.611	2.365	0.04%	0.000
5g _{7/2} →4f _{7/2}	6296.664	2.357	0.04%	0.000
$5g_{9/2} \rightarrow 4f_{7/2}$	6297.261	2.359	0.04%	0.000

Photos @ Muon D2

Systematic errors

Phys. Rev. Lett. 130, 173001 (2023)

		$5g_{9/2} - 4f_{7/2}$
Transition energy and uncertainties (eV)	0.1 atm	0.4 atm
Measured energy	6297.13	6297.06
Statistical error	0.07	0.06
Systematic error: Total	0.13	0.13
(1) Calibration	0.07	0.07
(2) Low-energy tail	0.01	0.02
(3) Thermal crosstalk	0.11	0.11

cf. quasi-DC beam in K⁻ experiment

25 Hz pulse beam

40 ms (40,000 µs)

Systematic errors

Phys. Rev. Lett. 130, 173001 (2023)

		$5g_{9/2} - 4f_{7/2}$
Transition energy and uncertainties (eV)	0.1 atm	0.4 atm
Measured energy Statistical error Systematic error: Total	6297.13 0.07 0.13	6297.06 0.06 0.13
(1) Calibration	0.07	0.07
(2) Low-energy tail(3) Thermal crosstalk	0.01 0.11	0.02 0.11

3. Muonic atom cascade So far, we assumed all electrons are stripped out. Is it true?

PHYSICAL REVIEW LETTERS 127, 053001 (2021)

Editors' Suggestion

Deexcitation Dynamics of Muonic Atoms Revealed by High-Precision Spectroscopy of Electronic *K* X rays

T. Okumura^(D),^{1,*} T. Azuma^(D),^{1,†} D. A. Bennett,² P. Caradonna,³ I. Chiu,⁴ W. B. Doriese^(D),² M. S. Durkin,² J. W. Fowler,² J. D. Gard,² T. Hashimoto,⁵ R. Hayakawa,⁶ G. C. Hilton,² Y. Ichinohe[®],⁷ P. Indelicato[®],⁸ T. Isobe[®],⁹ S. Kanda,¹⁰ D. Kato^[],¹¹ M. Katsuragawa,³ N. Kawamura^[],¹⁰ Y. Kino^[],¹² M. K. Kubo,¹³ K. Mine,³ Y. Miyake,¹⁰ K. M. Morgan,² K. Ninomiya^(D),⁴ H. Noda,¹⁴ G. C. O'Neil^(D),² S. Okada^(D),^{1,‡} K. Okutsu,¹² T. Osawa,¹⁵ N. Paul^(D),⁸ C. D. Reintsema,² D. R. Schmidt,² K. Shimomura,¹⁰ P. Strasser,¹⁰ H. Suda,⁶ D. S. Swetz,² T. Takahashi,³ S. Takeda,³ S. Takeshita,¹⁰ M. Tampo,¹⁰ H. Tatsuno[®],⁶ X. M. Tong[®],¹⁶ Y. Ueno,¹ J. N. Ullom,² S. Watanabe,¹⁷ and S. Yamada[®]

EDITORS' SUGGESTION

Few-Electron Highly Charged Muonic Ar Atoms Verified by Electronic K X Rays

T. Okumura ^{1,*}, T. Azuma ^{2,3,†}, D. A. Bennett ⁴, W. B. Doriese ⁴, M. S. Durkin⁵, J. W. Fowler⁴, J. D. Gard ⁶⁵, T. Hashimoto ^{6,7}, <u>R. Hayakawa</u> ⁶³ et al.

Show more V

Phys. Rev. Lett. 134, 243001 - Published 16 June, 2025

DOI: https://doi.org/10.1103/PhysRevLett.134.243001

Data taken with Fe metal foil Serendipity to confirm calibration accuracy at the beam pulse timing

Phys. Rev. Lett. 127, 053001 (2021)

What happens with a gas target? Phys. Rev. Lett. 134, 243001 (2025)

μ Ne: Is there electron screening?

Initial	Final	Transition energy (eV)				
state	state	Total	Vacuum polarization	FNS		
$5g_{9/2}$	$4f_{7/2}$	6297.26191	2.33803	0.00031		
$5g_{7/2}$	$4f_{7/2}$	6296.66427	2.33775	0.00031		
$5g_{7/2}$	$4f_{5/2}$	6298.61192	2.34051	0.00031		
$7h_{11/2}$	$5g_{9/2}$	5481.26622	0.39899	0.00003		
$7h_{9/2}$	$5g_{9/2}$	5481.12106	0.39896	0.00003		
$7h_{9/2}$	$5g_{7/2}$	5481.71870	0.39924	0.00003		

We can estimate the number of K-shell electrons from the energy shift of 7-5 transition

fraction of μ Ne with one K-shell electron $f_{1e} = 0.00^{+0.08}_{-0.00}$ ~ -0.00

Electrons are fully stripped off !

4. Preliminary results with high-E TES system

Candidate lines for BSQED study

[eV]	transition	Energy	QED effect	QED/ transition	FNS	Screening 2e	remaining electron	
	5→4	6,297	-2.4	0.04%	0	2.32	←	— (
μ-Ne	4→3	13,616	-14.6	0.11%	0	1.23	~0	
	3→2	38,976	-105.8	0.27%	0.23	0.52		
	5→4	20,482	-22.6	0.11%	-0.01	5.05		
μ-Ar	4→3	44,315	-99	0.22%	-0.05	2.71	~0	
	3→2	126,963	-543.3	-0.43%	14.18	1.16		
	7→6	26,880	-24.9	0.09%	-0.01	29.01		
μ-Kr	6→5	44,624	-70	0.16%	-0.03	20.11	~5	
	5→4	82,278	-210.1	0.26%	-0.17	12.64		
	8→7	39,302	-42.5	0.11%	-0.02	69.88		
μ-Xe	7→6	60,618	-100.5	0.17%	-0.07	53.36	many	
	6→5	100,691	-249	0.25%	-0.25	37.95		

TES detectors from NIST

	10 keV TES	20 keV TES	50 keV TES	100 keV TES
Saturation energy	10 keV	20 keV	70 keV	150 keV
Readout system	TDM	TDM	microwave	microwave
Absorber thickness (material)	0.965 µm (Au)	4.1 µm (Bi)	1.85 µm (Au) & 20 µm (Bi)	0.5 mm (Sn)
Absorber area	0.34 x 0.34 mm ²	0.320 x 0.305 mm ²	0.73 x 0.73 mm ²	1.3 x 1.3 mm ²
Absorber collimated area	0.28 x 0.28 mm ²	0.305 x 0.290 mm ²	0.67 x 0.67 mm ²	(no collimator)
Number of pixel	192	240	96	96
Total collection area	15.1 mm ²	21.2 mm ²	43.1 mm ²	162 mm ²
ΔE (FWHM)	5 eV @ 6 keV	5 eV @ 6 keV	20 eV @ 40 keV	80 eV @ 100 keV

new since 2024

Preliminary spectra

Preliminary spectra ~ 1 day data-taking for each data set

Precision goal: 1eV for 44 keV line→ Validate QED effect at 1% level

Summary

- atom X-ray spectroscopy
 - Strong interaction study
 - Strong E-field QED
 - Cascade dynamics

• We explored the TES application in the charged-particle beam lines, and demonstrated that microcalorimeter is a powerful tool for exotic-

Excellent resolution + collection area broad energy range

Thank you for your attention !

