

Novel CZT Detectors for Kaonic Atoms Spectroscopy Francesco Artibani

Outline

1. CZT Detector

- a. Why CZT?
- b. CZT Properties
- c. New CZT Detector at DAFNE

2. Kaonic Atoms Research

- a. Formation and Cascade
- b. Motivations
- c. Intermediate Mass Kaonic Atoms

3. New Measurement with CZT Detector

- a. DAFNE Collider
- b. Requirements in a Collider
- c. First Results

Why Cadmium Zinc Telluride?

• Silicon represents the best semiconductors in terms of availability, efficiency and resolution, to build a compact X-ray detectors, but his efficiency falls down fast after tens of keV energies.

(See F. Clozza talk for progress in 1mm SDDs)

Pennicard, D. et al. Semiconductor materials for x-ray detectors. MRS Bulletin 42, 445–450 (2017). https://doi.org/10.1557/mrs.2017.95

Why Cadmium Zinc Telluride?

- Silicon represents the best semiconductors in terms of availability, efficiency and resolution, to build a compact X-ray detectors, but his efficiency falls down fast to tens of keV energies.
- **Germanium** is a natural semiconductor, which is a great advantage for producing high-quality crystals for detectors. However, HPGe detectors **cannot be operated at room temperature**, and need invasive setups.

Pennicard, D. et al. Semiconductor materials for x-ray detectors. MRS Bulletin 42, 445–450 (2017). https://doi.org/10.1557/mrs.2017.95

CZT Detectors: Properties

- **Compound semiconductor** (interesting because of the possibility to grow materials with many physical properties making them **suitable to almost any application**)
- Good spectroscopy performances at room temperature, from tens to hundreds keV. Ideal to build compact systems without the need of cooling.
- Intense studies to upgrade the quality of the crystals and electronics in last decades can lead to a **further improvement in terms of resolution, efficiency, especially at high rate**. In recent years successful applications in the field of medical imaging and astrophysics.

More details on A.Zappettini and A. Buttacavoli talks

CZT Detector at DAFNE Collider

- Use of quasi-hemispherical CZT crystals grown by REDLEN (Canada) and IMEM-CNR (Parma) (A. Zappettini talk)
- Expertise of the **UniPa DiFC** group (A. Buttacavoli, L. Abbene, F. Principato) for the custom electronics.
- First tests and Data Analysis done in **Frascati National** Laboratories (LNF)
- ★ GOAL: Measure Intermediate Mass Kaonic Atoms.

Kaonic Atoms: Formation

Kaonic Atoms: Cascade

The de-excitation cascade in its last part is radiative and in the X-ray region.

Kaonic Atoms: Cascade

The de-excitation cascade in its last part is radiative and in the X-ray region.

Kaonic Atoms: Importance for Strong Interactions

Kaonic Atoms: Importance

 Strong Interaction studies (Prof. Wycech talk)

• Cascade model studies

• High precision QED measurements

More details in F. Sgaramella Talk

Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)
He	3→2	-0.04 ± 0.03	-	_	-
		-0.035 ± 0.012	0.03 ± 0.03	_	_
Li	3→2	0.002 ± 0.026	0.055 ± 0.029	0.95 ± 0.30	-
Be	$3 \rightarrow 2$	-0.079 ± 0.021	0.172 ± 0.58	0.25 ± 0.09	0.04 ± 0.02
¹⁰ B	$3 \rightarrow 2$	-0.208 ± 0.035	0.810 ± 0.100	-	-
¹¹ B	$3 \rightarrow 2$	-0.167 ± 0.035	0.700 ± 0.080	-	_
С	$3 \rightarrow 2$	-0.590 ± 0.080	1.730 ± 0.150	0.07 ± 0.013	0.99 ± 0.20
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-	-
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03
Al	4 → 3	-0.130 ± 0.050	0.490 ± 0.160	-	-
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04
Si	4 → 3	-0.240 ± 0.050	0.810 ± 0.120	_	_
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06
P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36
		-0.43 ± 0.12	2.310 ± 0.170	-	
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 ± 0.5
Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ± 1.7
		-0.94 ± 0.40	3.92 ± 0.99	-	-
		-1.08 ± 0.22	2.79 ± 0.25	-	-
Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25	-	_
Ni	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 ± 2.3
		-0.246 ± 0.052	1.23 ± 0.14	-	_
Cu	$5 \rightarrow 4$	-0.240 ± 0.220	1.650 ± 0.72	0.29 ± 0.11	7.0 + 3.8
		-0.377 ± 0.048	1.35 ± 0.17	0.36 ± 0.05	5.1 + 1.1
Ag	$6 \rightarrow 5$	-0.18 ± 0.12	1.54 ± 0.58	0.51 ± 0.16	7.3 + 4.7
Cd	$6 \rightarrow 5$	-0.40 ± 0.10	2.01 ± 0.44	0.57 ± 0.11	6.2 + 2.8
In	$6 \rightarrow 5$	-0.53 ± 0.15	2.38 ± 0.57	0.44 ± 0.08	11.4 + 3.7
Sn	$6 \rightarrow 5$	-0.41 ± 0.18	3.18 ± 0.64	0.39 ± 0.07	15.1 + 4.4
Ho	$7 \rightarrow 6$	-0.30 ± 0.13	2.14 ± 0.31		-
Yb	7→6	-0.12 ± 0.10	2.39 ± 0.30	-	_
Та	$7 \rightarrow 6$	-0.27 ± 0.50	3.76 ± 1.15	-	-
Pb	$8 \rightarrow 7$	-	0.37 ± 0.15	0.79 ± 0.08	4.1 + 2.0
000000004	anteria del Rés	-0.020 ± 0.012	-	~	-
U	$8 \rightarrow 7$	-0.26 ± 0.4	1.50 ± 0.75	0.35 ± 0.12	45 ± 24

Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)
He	3→2	-0.04 ± 0.03	~	-	-
		-0.035 ± 0.012	0.03 ± 0.03	_	_
Li	$3 \rightarrow 2$	0.002 ± 0.026	0.055 ± 0.029	0.95 ± 0.30	-
Be	$3 \rightarrow 2$	-0.079 ± 0.021	0.172 ± 0.58	0.25 ± 0.09	0.04 ± 0.02
¹⁰ B	$3 \rightarrow 2$	-0.208 ± 0.035	0.810 ± 0.100	<u></u>	-
¹¹ B	$3 \rightarrow 2$	-0.167 ± 0.035	0.700 ± 0.080	-	-
С	3→2	-0.590 ± 0.080	1.730 ± 0.150	0.07 ± 0.013	0.99 ± 0.20
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-	-
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03
Al	$4 \rightarrow 3$	-0.130 ± 0.050	0.490 ± 0.160	-	-
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04
Si	$4 \rightarrow 3$	-0.240 ± 0.050	0.810 ± 0.120	-	-
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06
Р	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36
		-0.43 ± 0.12	2.310 ± 0.170	-	-
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 ± 0.5
Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ± 1.7
		-0.94 ± 0.40	3.92 ± 0.99	-	-
		-1.08 ± 0.22	2.79 ± 0.25	-	-
Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25	-	-
Ni	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 ± 2.3
		-0.246 ± 0.052	1.23 ± 0.14	-	-
Cu	$5 \rightarrow 4$	-0.240 ± 0.220	1.650 ± 0.72	0.29 ± 0.11	7.0 ± 3.8
		-0.377 ± 0.048	1.35 ± 0.17	0.36 ± 0.05	5.1 ± 1.1
Ag	$6 \rightarrow 5$	-0.18 ± 0.12	1.54 ± 0.58	0.51 ± 0.16	7.3 ± 4.7
Cd	$6 \rightarrow 5$	-0.40 ± 0.10	2.01 ± 0.44	0.57 ± 0.11	6.2 ± 2.8
In	$6 \rightarrow 5$	-0.53 ± 0.15	2.38 ± 0.57	0.44 ± 0.08	11.4 ± 3.7
Sn	$6 \rightarrow 5$	-0.41 ± 0.18	3.18 ± 0.64	0.39 ± 0.07	15.1 ± 4.4
Ho	$7 \rightarrow 6$	-0.30 ± 0.13	2.14 ± 0.31		-
Yb	$7 \rightarrow 6$	-0.12 ± 0.10	2.39 ± 0.30	-	-
Та	$7 \rightarrow 6$	-0.27 ± 0.50	3.76 ± 1.15	-	-
Pb	8 → 7	-	0.37 ± 0.15	0.79 ± 0.08	4.1 ± 2.0
		-0.020 ± 0.012	-	~	_
U	$8 \rightarrow 7$	-0.26 ± 0.4	1.50 ± 0.75	0.35 ± 0.12	45 ± 24

CZT Detection system Range

Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)
с	$3 \rightarrow 2$	-0.590 ± 0.080	1.730 ± 0.150	0.07±0.013	0.99 ± 0.20
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-	
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03
Al	$4 \rightarrow 3$	-0.130 ± 0.050	0.490 ± 0.160	-	-
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04
Si	4 → 3	-0.240 ± 0.050	0.810 ± 0.120	-	
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06
P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36
		-0.43 ± 0.12	2.310 ± 0.170	-	-
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 ± 0.5
C1	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ±1.7
		-0.94 ± 0.40	3.92 ± 0.99	-	-
		-1.08 ± 0.22	2.79 ± 0.25	-	-
Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25	12	-
Ni	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 ± 2.3
		-0.246 ± 0.052	1.23 ± 0.14		-
Cu	$5 \rightarrow 4$	-0.240 ± 0.220	1.650 ± 0.72	0.29 ± 0.11	7.0 ± 3.8
		-0.377 ± 0.048	1.35 ± 0.17	0.36 ± 0.05	5.1 ± 1.1

• Incompatible measurements

Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)
с	3→2	-0.590 ± 0.080	1.730 ± 0.150	0.07±0.013	0.99±0.20
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-	-
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03
Al	$4 \rightarrow 3$	-0.130 ± 0.050	0.490 ± 0.160	-	-
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04
Si	4 → 3	-0.240 ± 0.050	0.810 ± 0.120	-	
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06
P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36
		-0.43 ± 0.12	2.310 ± 0.170	-	-
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 + 0.5
C1	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 +1.7
		-0.94 ± 0.40	3.92 ± 0.99	-	-
		-1.08 ± 0.22	2.79 ± 0.25	-	-
Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25		_
Ni	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 + 2.3
		-0.246 ± 0.052	1.23 ± 0.14	_	-
Cu	$5 \rightarrow 4$	-0.240 ± 0.220	1.650 ± 0.72	0.29 ± 0.11	7.0 + 3.8
		-0.377 ± 0.048	1.35 ± 0.17	0.36 ± 0.05	5.1 + 1.1
				100 T 0100	2 T

• Incompatible measurements

• Measurement with wide errors

Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)
с	$3 \rightarrow 2$	-0.590 ± 0.080	1.730 ± 0.150	0.07±0.013	0.99 ± 0.20
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-	
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03
Al	$4 \rightarrow 3$	-0.130 ± 0.050	0.490 ± 0.160	-	-
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04
Si	$4 \rightarrow 3$	-0.240 ± 0.050	0.810 ± 0.120	-	-
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06
P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36
		-0.43 ± 0.12	2.310 ± 0.170	-	-
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 ± 0.5
Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ±1.7
		-0.94 ± 0.40	3.92 ± 0.99	-	-
		-1.08 ± 0.22	2.79 ± 0.25	-	-
Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25		-
Ni	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 ± 2.3
		-0.246 ± 0.052	1.23 ± 0.14	-	-
Cu	$5 \rightarrow 4$	-0.240 ± 0.220	1.650 ± 0.72	0.29 ± 0.11	7.0 ± 3.8
		-0.377 ± 0.048	1.35 ± 0.17	0.36 ± 0.05	5.1 ± 1.1

• Incompatible measurements

• Measurement with wide errors

• Uncerainties on relative yields

Nucleus	Transition	e (keV)	Γ (keV)	Y	Γ_{μ} (eV)
с	3→2	-0.590 ± 0.080	1.730 ± 0.150	0.07±0.013	0.99±0.20
0	4 → 3	-0.025 ± 0.018	0.017 ± 0.014	-	-
Mg	$4 \rightarrow 3$	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03
Al	$4 \rightarrow 3$	-0.130 ± 0.050	0.490 ± 0.160	-	-
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04
Si	$4 \rightarrow 3$	-0.240 ± 0.050	0.810 ± 0.120	_	_
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06
Р	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36
		-0.43 ± 0.12	2.310 ± 0.170	-	-
		-0.462 ± 0.054	1.96 ± 0.17	0.23 ± 0.03	2.9 ± 0.5
Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ± 1.7
		-0.94 ± 0.40	3.92 ± 0.99	-	-
		-1.08 ± 0.22	2.79 ± 0.25	-	-
Co	$5 \rightarrow 4$	-0.099 ± 0.106	0.64 ± 0.25	-	-
Ni	$5 \rightarrow 4$	-0.180 ± 0.070	0.59 ± 0.21	0.30 ± 0.08	5.9 ±2.3
		-0.246 ± 0.052	1.23 ± 0.14	-	-
Cu	$5 \rightarrow 4$	-0.240 ± 0.220	1.650 ± 0.72	0.29 ± 0.11	7.0 ± 3.8
		-0.377 ± 0.048	1.35 ± 0.17	0.36 ± 0.05	5.1 ± 1.1
		이 이야 한 것 같은 사람들이 많은 것이 같이 많다.	영양이 상품을 다 감독하는 것이 있다.		

• Incompatible measurements

• Measurement with wide errors

• Uncerainties on relative yields

• Total yields almost unknown

The DAΦNE Collider

- double ring lepton collider working at the c.m. energy of Φ resonance (Φ-factory) (m_Φ= 1.02 GeV)
- Φ decays in a couple of charged kaons with a BR(Φ → K⁺K⁻) = 48%
- The kaons are produced almost at rest (m_K = 493 MeV ⇒ p_K =127 MeV, β~0.26) with a small boost through the center of the rings.
- The Ks' momentum spread is almost null (Δp/p < 0.1%)

The Setup in DAFNE Collider

2 modules with four 13 mm x 15 mm x 5 mm CZT detectors, enclosed in an Aluminum box with the electronics.

To perform measurements in DAFNE, an X-ray detector needs

- A good energy resolution → to resolve shifts and widths in months of data-taking.
- A compact setup to be as closer as possible to beam-pipe compatibly with other systems.
- High resistance to radiation damage and stability over the months of data-taking.
- A good timing for **background rejection capability**.

To perform measurements in DAFNE, an X-ray detector needs

A good energy resolution \rightarrow to resolve shifts and widths in months of data-taking.

- A compact setup to be as closer as possible to beam-pipe compatibly with other systems.
- High resistance to radiation damage and stability over the months of data-taking.

• A good timing for **background rejection capability.**

To perform measurements in DAFNE, an X-ray detector needs

A good energy resolution \rightarrow to resolve shifts and widths in months of data-taking.

- A compact setup to be as closer as possible to beam-pipe compatibly with other systems.
- High resistance to radiation damage and stability over the months of data-taking.

To perform measurements in DAFNE, an X-ray detector needs

A good energy resolution \rightarrow to resolve shifts and widths in months of data-taking.

- A compact setup to be as closer as possible to beam-pipe compatibly with other systems.
- High resistance to radiation damage and stability over the months of data-taking.

To perform measurements in DAFNE, an X-ray detector needs

A good energy resolution \rightarrow to resolve shifts and widths in months of data-taking.

A compact setup to be as closer as possible to beam-pipe compatibly with other systems.

- High resistance to radiation damage and stability over the months of data-taking.
- A good timing for **background rejection capability**.

~ 20 cm from IP

To perform measurements in DAFNE, an X-ray detector needs

A good energy resolution \rightarrow to resolve shifts and widths in months of data-taking.

A compact setup to be as closer as possible to beam-pipe compatibly with other systems.

High resistance to radiation damage and stability during data-taking.

• A good timing for **background rejection capability**. 24

To perform measurements in DAFNE, an X-ray detector needs

A good energy resolution \rightarrow to resolve shifts and widths in months of data-taking.

A compact setup to be as closer as possible to beam-pipe compatibly with other systems.

High resistance to radiation damage and stability over the months of data-taking.

Time difference between trigger and signal ~10-100 ns

ood timing for **background rejection capability.**

Analysis: Calibration

$$f_{peak}(x) = N \times \exp\left(-\frac{x-\mu}{2\sigma^2}\right) +$$
Gaussian
+
$$K \times \exp\left(\frac{x-\mu}{\beta\sigma}\right) \times \operatorname{erfc}\left(\frac{x-\mu}{\sqrt{2}\sigma} + \frac{1}{\sqrt{2}\beta}\right)$$
Tail

Energy (keV)	Intensity (%)	Туре	Origin	ID ¹
40.1186 (-)	37.7 (5)	Χ Κ _{α1}	Sm	Eu1
121.7817 (3)	28.41 (13)	γ	¹⁵² Sm	Eu3
344.2785 (12)	26.59 (12)	γ	¹⁵² Gd	Eu5
39.5229 (-)	20.8 (3)	Χ Κ _{α2}	Sm	Eu1
45.4777 (-)	11.78 (19)	$X K_{\beta 1}$	Sm	Eu2
244.6974 (8)	7.55 (4)	γ	¹⁵² Sm	Eu4
46.6977 (-)	3.04 (8)	Χ Κ _{β2}	Sm	Eu2

Analysis: Calibration and Stability

All Relative Differences respect to Nominal Value (RDNV) are 1‰ or below, from 40 keV to 344 keV

Analysis: Time of Flight + Delta t Cuts

Analysis: Time of Flight + Delta t Cuts

Kaon reconstruction through Signal selection through a cut on the time time-of-flight cut with LUMI scints difference between trigger and event on CZT 120000 170 ns window 200 -100000 - 70 Counts in LUMIboost 80000 150 Delta t (ns) - 50 6 60000 40000 20000 1400 1500 1600 1700 1800 1900 2000 TAC Signal (ADC) 50 100 200 Energy (keV)

Firsts Results

26 days run with Al Target (>100 pb-1 delivered)

18 days run with Teflon (C2F4) Target (~70 pb-1 delivered)

Firsts Results

26 days run with Al Target (>100 pb-1 delivered)

18 days run with Teflon (C2F4) Target (~70 pb-1 delivered)

First Results

Transition	Energy (keV)	Th. Energy (keV)
KAI 4-3	106.48 ± 0.16	106.57
KAI 5-4	49.049 ± 0.068	49.23
KAI 6-5	26.67 ± 0.10	26.707
ΣΑΙ 6-5	62.73 ± 0.50	63.2

Transition	Energy (keV)	Th. Energy (keV)
KF 4-3	50.58 ± 0.29	50.59
KF 5-4	23.60 ± 0.15	23.4

work in progress:

Analyzing data with different targets

evaluating the impact of the results on fundamental physics

Conclusions

- CDZnTe is a promising semiconductor to build compact X-ray detection systems at room temperature in the range from tens to hundreds keV.
- The SIDDHARTA-2 collaboration managed to first apply this new technology in a high background environment as the DAFNE collider, for fundamental physics research linked to kaonic atoms.
- The last data taking at DAFNE collider is promising and already led to first observations of intermediate mass kaonic atoms transitions with the new detection system.
- These results represent a solid basis for the future EXCALIBUR project at DAFNE, and for future applications in other accelerators (JPARC).

THANK YOU FOR YOUR ATTENTION

Why Cadmium Zinc Telluride?

- Silicon represents the best semiconductors in terms of availability, efficiency and resolution, to build a compact X-ray detectors, but his efficiency falls down fast to tens of keV energies.
- **Germanium** is a natural semiconductor, which is a great advantage for producing high-quality crystals for detectors. However, HPGe detectors **cannot be operated at room temperature**, and need invasive setups.

36

Pennicard, D. et al. Semiconductor materials for x-ray detectors. MRS Bulletin 42, 445–450 (2017). https://doi.org/10.1557/mrs.2017.95

Fit without Sigmonic line shows a clear excess

Kaonic Atoms: K-N Interaction

In the last level of the atom kaon interact with nucleus also by strong interaction, and then **interact at threshold with nucleons and** is absorbed.

The time to reach the last level is 1e-9s - 1e-12s, while τ_{k} =1e-8s

