

High-precision muonic atom x-ray spectroscopy with a metallic magnetic calorimeter

Andreas Knecht for the QUARTET collaboration HPXM2025, Frascati 17. June 2025

Muonic Atoms

- 1. Stop muons in target material
- 2. Atomic capture in high principal quantum number n
- 3. Cascade down to the ground state via
 - → Auger electron emission (dominating at high n)
 - → and muonic x-ray emission (dominating at low n)
 - \rightarrow few keV to MeV range

Muonic Atoms

Replace electron by muon in simple hydrogen(-like) atom that can be calculated with high precision: $m_{\mu} \approx 200 \cdot m_{e}$

• Bohr energies:

 $E \propto \frac{Z^2}{n^2} \cdot m \longrightarrow \text{from eV to keV}$

• Bohr radii:

• Finite nuclear size effect: $\Delta E_{FNS}(n, l) = \frac{2}{3n^3} (Z\alpha)^4 m^3 r^2 \delta_{l0} \rightarrow \text{Enhanced by 107!}$

 $r \propto \frac{n^2}{Z} \cdot \frac{1}{m} \rightarrow 200$ times smaller

Idea: Form muonic atom and observe $2p \rightarrow 1s$ transition for nuclear charge radius measurement

What to do with charge radii?

Benchmarking ab-initio nuclear theory

Atomic Nuclei From Quantum Monte Carlo Calculations With Chiral EFT Interactions

Stefano Gandolfi 1*, Diego Lonardoni 1.2, Alessandro Lovato 3.4 and Maria Piarulli 5

Trends of Neutron Skins and Radii of Mirror Nuclei from First Principles

S. J. Novario⁽⁶⁾,¹ D. Lonardoni⁽⁶⁾,^{1,*} S. Gandolfi⁽⁶⁾,¹ and G. Hagen^{2,3}

Nuclear structure physics

Nuclear Charge Radii of ^{9,11}Li: The Influence of Halo Neutrons

 R. Sánchez,¹ W. Nörtershäuser,^{1,2} G. Ewald,¹ D. Albers,³ J. Behr,³ P. Bricault,³ B. A. Bushaw,⁴ A. Dax,^{1,*} J. Dilling,³
M. Dombsky,³ G. W. F. Drake,⁵ S. Götte,¹ R. Kirchner,¹ H. J. Kluge,¹ Th. Kühl,¹ J. Lassen,³ C. D. P. Levy,³ M. R. Pearson,³ E. J. Prime,³ V. Ryjkov,³ A. Wojtaszek,^{1,†} Z.-C. Yan,⁶ and C. Zimmermann²

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

Á. Koszorús¹¹⁷, X. F. Yang⁰¹², W. G. Jiang^{034,5}, S. J. Novario³⁴, S. W. Bai², J. Billowes⁶, C. L. Binnersley⁴, M. L. Bissell⁶, T. E. Cocolios⁰, B. S. Cooper⁴, R. P. de Groote²⁸, A. Ekström⁵, K. T. Flanagan⁶⁵, C. Forssén⁶⁵, S. Franchoo¹⁰, R. F. Garcia Ruiz⁰¹¹¹, F. P. Gustafsson⁰, G. Hagen⁰⁴, G. R. Jansen⁰⁴, A. Kanellakopoulos⁰¹, M. Kortelainen⁰⁷⁸, W. Nazarewicz⁰¹¹, G. Neyens⁰¹², T. Papenbrock⁰³⁴, P.-G. Reinhard⁰¹⁴, C. M. Ricketts⁰⁶, B. K. Sahoo⁰¹⁵, A. R. Vernon⁰¹⁶ and S. G. Wilkins⁰¹⁴

Precision QED tests in simple atomic systems X-ray measurements in helium-like atoms increased discrepancy between experiment and theoretical QED C T Chantler¹, A T Payne¹, J D Gillaspy², L T Hudson², L F Smale¹, A Henins², J A Kimpton³ and E Takacs⁴ r². Extracting fundamental constants via atomic spectroscopy The size of the proton New physics searches

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶†, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato³, Lucile Julien³, Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸†, Tobias Nebel¹, Paul Rabinowitz², Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

Atomic parity violation in a single trapped radium ion

O. O. Versolato · L. W. Wansbeek · G. S. Giri · J. E. van den Berg · D. J. van der Hoek · K. Jungmann · W. L. Kruithof · C. J. G. Onderwater · B. K. Sahoo · B. Santra · P. D. Shidling · R. G. E. Timmermans · L. Willmann · H. W. Wilschut

There is a lot to do...

Muonic x-ray spectroscopy experiments at the Paul-Scherrer-Institute

PSI

5

Low-Z Charge Radii

Lithium nuclear charge radii

From muonic atom spectroscopy

Radius uncertainty >100% from 1968 measurement:

Volume 20, Number 10		PHYSICAL	REVIEW LETTERS	6 4 March 1968
	ENERGY AND WII	DTH MEASUREME	NTS OF LOW-Z PIONIC	X-RAY TRANSITIONS*
		(necerv	(cu 15 Sanuary 1908)	
Element	Eex	(D	Radius (fm) - Equ	ivalent Uniform Charge
Element	E _{ex} This Work	p Other	Radius (fm) - Equ This Work	ivalent Uniform Charge
Element Li ⁶	E _{ex} This Work 18.64 <u>+</u> 0.07	0ther 18.1 +0.4 ^b	Radius (fm) – Equ This Work 4.96 <u>+</u> 6.0	ivalent Uniform Charge Electron Scattering 3.28 <u>+</u> 0.06 [@]

Metallic Magnetic Calorimeter (MMC)

 \rightarrow detection speed

Beamtime 2024 – Setup "maXs-30" MMC

- Operated at approx. 20 mK
- High efficiency: > 90% from 8 22 keV
- High resolution of ~10-20 eV at 18 keV
- 64 absorbers: each 500 μm x 500 μm x 20 μm
- max. rate per pixel ≤ 0.5 -1 Hz

Calculated detection efficiency for maXs-30 type detector

DOI: 10.1007/s10909-024-03141-x

Typical photon pulse shape

Beamtime 2024 – Setup

Beamtime 2024

e.g. lithium targets:

PSI

6 nat + Calibration with:

⁵⁵Fe sourceMo & Ag XRF

17

Analysis Procedure Development

Muonic Lithium Data 2024

Preliminary results

50 pixels, ~70 hours measurement time

Muonic Lithium Data 2024

Preliminary results

Muonic Lithium Data 2024

Preliminary results

Ø

✔ Lithium analysis nearly complete
→ thorough line shape analysis &

systematics study in progress

 Σ • Be, B work in progress

🔰 PSI

Summary & Outlook

🌔 PSI

First measurements of light muonic atoms using MMCs successfully conducted at PSI in 2024

Lithium results expected this year! Be & B following

Next beamtime at PSI granted for October this year – targeting ^{16,18}O & ^{12,13}C. Using new optimized MMCs for higher energies

Laboratoire Kastler Brossel Physique quantique et applications

Ĩ **TECHNION** Israel Institute of Technology

ETH zürich

PSI

Backup

Muonic Atoms Cascade

"maXs-30" MMC from Heidelberg

Detector design

Absorber pair wise coupled

- → Reduced sensitivity towards global temperature changes
- → (Reduced number of readout channels necessary)

Temperature sensitive design:

Data analysis workflow

PSI

Data analysis workflow

Background identification

Electron hits not only recognizable by pulse shape but also via coincidences between pixels

Spatial distribution of coincident triggers on the detector e.g.:

Michel electrons shoot through absorbers into silicon substrate and heat-up pixels "from the backside"

Data analysis workflow

Temperature correction

Temperature sensitive design:

Triggered with every event

Determine temperature sensitivity of gradiometric pixels and correct each event

Enabling the laser spectroscopy of monic Li/Be(?):

- Narrow 2S-2P wavelength search from 200 nm to 20 nm
- Similarly for Be/B

Input from Nuclear Theory

From theory, mainly <u>nuclear polarization</u>

- For Li-Ne $\leq (5 \text{ ppm})(E_{2P-1S})$
- For isotope shifts $\leq (3 \text{ ppm})(\Delta E_{2P-1S})$
- For non-S states, e.g. $\lesssim (1 \text{ ppm})(\Delta E_{3D-2P})$

From experiment, mainly <u>charge distributions</u> Motivation for modern electron scattering experiments: Li, Be, B, N, O, ...

Muonic lithium atoms: Nuclear structure corrections to the Lamb shift

Simone Salvatore Li Muli^{1*}, Anna Poggialini² and Sonia Bacca^{1†}

Not so light muonic atoms

Challenge for radioactive targets: stopping 30 MeV/c muons in µg-quantities

Muonic atom spectroscopy with microgram target material

A. Adamczak¹, A. Antognini^{2,3}, N. Berger^{4,5}, T. E. Cocolios⁶, N. Deokar^{4,5}, Ch. E. Düllmann^{5,7,8,9}, A. Eggenberger³, R. Eichler², M. Heines⁶, H. Hess¹⁰, P. Indelicato¹¹, K. Kirch^{2,3}, A. Knecht^{2,a}, J. J. Krauth^{5,12}, J. Nuber^{2,3}, A. Ouf¹², A. Papa^{2,13}, R. Pohl^{5,12}, E. Rapisarda², P. Reiter¹⁰, N. Ritjoho^{2,3}, S. Roccia¹⁴, M. Seidlitz¹⁰, N. Severijns⁶, K. von Schoeler³, A. Skawran^{2,3}, S. M. Vogiatzi^{2,3}, N. Warr¹⁰, F. Wauters^{4,5}

https://doi.org/10.1140/epja/s10050-023-00930-y

_ 5 μg vapor deposited Au

Not so light muonic atoms

Challenge for radioactive targets: stopping 30 MeV/c muons in µg-quantities

Muonic x-ray spectroscopy on implanted targets

Michael Heines ^{a,*}, Luke Antwis ^b, Silvia Bara ^a, Bart Caerts ^c, Thomas E. Cocolios ^a, Stefan Eisenwinder ^d, Julian Fletcher ^b, Tom Kieck ^e, Andreas Knecht ^f, Megumi Niikura ^g, Narongrit Ritjoho ^h, Lino M.C. Pereira ^c, Randolf Pohl ⁱ, André Vantomme ^c, Stergiani M. Vogiatzi ^{f,j}, Katharina von Schoeler ^{f,j}, Frederik Wauters ⁱ, Roger Webb ^b, Qiang Zhao ^c, Sami Zweidler ^j

https://doi.org/10.1016/j.nimb.2023.05.036

