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3D sketch of the plasma chamber

» Experimental Set-up
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Data Test Matrix 1024x1024

> State of the Art Single Photon Counting Algorithm

Each pixel becomes an indipendent spectrally-sensitive detector:
pixel-by-pixel

— Decoupling of photon number versus energy
 very short exposure-time (@ 50-500ms)
* thousands of SPhC frames

- Minimize the pile-up probability

= Cluster Size Filtering:
* Large size (> 5 pixels): multi-photons
e Smallsize (< 5 pixels): single-photon
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» Purposes and Goals

Employing a Machine Learning Algorithm allows to: Furthermore, it will push towards different goals,
% Improve the energy resolution such as:

% Improve the signal to noise ratio Identification of specific patterns

** Minimize the spurious effect contribution Online Analysis Options

We decided to use an

Previous Algorithm Un-supervised Model Supervised Model
4 N . . N )
Bwconncomp: Clustering Algorithms: Neural Net:
State of the art tool for Al tool for clustering used Supervised model that works
image analysis for pattern recognition, and with labelled data to learn
labelling identity and classify events

N S AN /
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1° step

Area Distribution

Connettivity based tool for imaging recognition. 7t ] MATLAB
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|2° > Clustering Algorithm: K-means RE——

095

K-means is used to group features based on similarities. g oo
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Neural Network



=2 Neural Network

1°step: bwconncomp

Are specific algortthm, such as the neural networks, both linear

' : : and convolutional, that has to be train to work as classifier with
St || || the help of a Labeled dataset.

ey 0 S,
=/ Y 2
P

They learn how to make the wanted classification based on
the dataset using the label as feedback for the training.
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»  Data Preparation and Labelling
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> Data Prepar ation and Labe]ling ﬁ Careful evaluation of the distribution

Normalization needed - i
0.8
Normalization function optimized for the neural network called g 07}
mapminmax. -l
o5l
‘_§ 041
z 03
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Max Features
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»  Data Preparation and Labelling

Normalization needed

Normalization function optimized for the neural network called
mapminmax.

Dataset Labels

. - K-means
sl Of Local | Clustersize | Eccentricity

IDX

N
Events
—
“——
We made it Ranging
into a binary from 0 to 1
values

Balanced Dataset

A binary variable was created, employing
the results coming from the k-means
output, i.e. the cluster index

Class Distribution

N Spurious
] vaiid

46%

54 %
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»  Data Organization

Datasetl

Number
Of Local | Clustersize | Eccentricity
Max

N ... TRAINING
Events

—
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Labelsl

K-means
IDX

Used to train the net, updating
the weight between the layers
based on these data

Used after training to evaluate

the net performances: on new
data.



»  Data Organization

Datasetl
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Allows for a more efficient
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procedure to  obtain a
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» Net Development

Inpui

o[ ] Feed-Forward Net [PATTERNET], which is the simplest neural net,
easy to built and to train with specific charcateristic:

b
4 Hidden

. . * It flows in one single direction, without any cycle or feedback connection

* Neuron Layers Connected via algorithm-evaluated weights

®

== ) TYPICAL STRUCTURE
o | 0/ ) R
SR Output ) Input Layer
W b \_ J
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\_ J
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. A 4 Output Layer
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» Net Development
Feed-Forward Net [PATTERNET], which is the simplest neural net,

Inpui

easy to built and to train with specific charcateristic:
é Hidden
[ | : * It flows in one single direction, without any cycle or feedback connection
@ * Neuron Layers Connected via algorithm-evaluated weights
= TYPICAL STRUCTURE
- ] 10) The hidden neurons layers act on the data weighting
[ [ ) them based on specific activation function
(] oot LFTPITIR 1Ly depending upon the training algorithm, modulating
v ° ; < non linear relationship between data
@ Hidden Layers q The non-linearity of the model is introduced by
\ J two parameter the weight W _and the bias
— - ~ Wityy = Wi + At * Py
- o Output Layer bitr1} = be + Ar * pe
| output N J Where A 1s the adaptive step, and p the conjugate

’ |:| direction
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Inpui
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* Neuron Layers Connected via algorithm-evaluated weights
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= TYPICAL STRUCTURE
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( )
'd .t L‘.hutpnu-l-""| Input Layer
" b \_ J
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@ Hidden Layers
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p y g
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»Net Training

|4 Meural Network Training (28-May-2025 12:48:51) = O X
Input
3 | | [ Netwaork Diagram
i B Parameters Value
Training Results
' v Hidden Training finished: Reached minimum gradient & Neurons in the Hidden 10
i g Training Progress Layef
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»Net Training
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»Net Training

Input

Training Confusion Matrix Validation Confusion Matrix
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» First Results

Input i Al | Net evaluated events spectrum Comparison ; Net evaluated events spectrum Comparison
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» Conclusions & Perspectives

ACHIEVEMENTS <@/7

Validation of the AI based
unsupervised Algorithm K-
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Development and Training of a
Feed-Forward Neural Network

First Results on the data
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experimental Campaign

Net evaluated events spectrum Comparison

Spe
\ i —Label 0 Spectrum
'\’\ — Total Events Spectrum
0% V

Counts(log scale)

0 500 1000 1500 2000 2500 3000
Cluster Sum

TO DO LIST

N/
%®Test of the Methods performances on a new

dataset

N/
%* Further training of the Net on different dataset

¢
%% Test of the Net Performance on simulated data

Simulated events

I Measured
_ Simulated

500

-
o
w

1000

-
o

10"

1500

-
o
o

500 1000 1500 2000 1 000 2000 3000 4000

MC Simulations

2000

High Precision X-ray Measurement 2025 - Conclusions & Perspectives




Thanks for the Attention

HIGH PRECISION X-RAY MEASUREMENTS 2025
JUN 16 - 20, 2025
LABORATORI NAZIONALI DI FRASCATI INFN

Plasmas for
Astrophysics
Nuclear

Decay

SAPTIENZA INFN Observaron anc

UNIVERSITA DI ROMA Archaeometry
LNS




Back-up Slides



» Thermodynamic Parameters & Emissivity models

Soft X-ray spectrum can be converted into X-ray ..
o e e . . e ’I\T, © Jexplhv)
emissivity density J(hv) by calculating the emissivity I A N N JineolhV)
volume [}, and geometrical efficiency £2, i nB—sas— |
*h & s Z(Tli'f:g)l(?)grienthg.az
Warm Electron
: population (0.5-30 keV)
5 10 15 20 25 00 7 ) ’
energy, through photons of energy hv hv [keV]

The plasma X-ray spectrum can be decomposed into continuous bremsstrahlung and discrete line Emls SlVlty MOdel
emission, so de emissivity density: Jumeo(hv) = Jecobrem(hv) +Jineoline(hv)

Jtheo,prem (hV) @Zh) (\/4“—>3\/;hv/

hl/ /
Fai st = nl—)nl@"nl—ml’/ Onl, zon )UE(E)f(E)dE
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» Full-field Energy Spectrum: Gas Mixing

3D sketch of the plasma chamber
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» Validation of the Method

‘ S<5, N Loc=1, Ecc Spectrum

K-means Clustering on Area Distribution
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» Results of K-means on New Data Set

" Cluster Size <=5, n loc max=1 Spectrum S<=7, Ecc, n loc max=1 Spectrum
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» Net Development

Among the Feed-Forward Nets in MATLAB we choose the already optimized net for
structured data in classification problems: PATTERNET

Input

L]

Parameters Definition

(| ) * Neurons in the hidden layer: we need to esperimentally determine the number trying 5,
- 10(default), 15 and 20
©) * Loss Function used: 1t measures the distance between the net prediction and the reality.
We want to minimizing it. The CrossEntropy Function is the optimized one for binary
E s .
. — . classification so evaluated: L = — ), ylog(p) + (1 — y)log(1 — p)
{ | ¢ INumber of Epochs: it represents the number of time the data are read by the net, also to
i ) be test esperimentally (200-500)
- 5 * Minimum Gradient: to measure the gradient and if no usefull adjustment were made it
® kills the train (no time waste) 1 e-6
— * Maximum Failure: maximum number of iteration without change generally 6-10 (avoid
\ Y overfitting)
ou * Training Algorithm: Scale Conjugated Gradient (SCG) is optimized for fast
nlj convergence, empolying an adattive step learning rate.
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»1st Attempt to Train

Input

III All Confusion Matrix
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Let’s explore the confusion Matrix:

We have the in rows, and
the Real Class in the coloumns. So we can
easily highlight the

True Positive(True predicted Correclty),
False Positive(True predicted Wrong),
True Negative(False predicted Correctly)
and

False Negative(False predicted Wrong)

class.
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> Data Check

Datasetl
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In this case we’re working with a binary feature (box plot not so informative): as we can see there’s

a significant imbalance. If the neural net has an hard time recognizing the zero pattern, the dataset

can be balanced by different techniques:

* Oversampling, simply repeating the events multiple time to match the order of magnitude of
the 1 class

¢ Class Weighting, setting different weights on the two classes, without modifing the dataset

* A combination of the two techniques

Of course we need to compare the performance of the neural net with and without the balancing

processes.
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> Data Check

Datasetl %108 Eccentricity Distribution BoxPlot of the single Features
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This feature is indeed better distributed, in fact it shows a wide box, with the
median closer to the higher value, meaning more than half of the data 1s distributed

on higher value.
More over it’s not necessary to balance it, and it also show a smaller correlation to

the output in respect to the other two features, as expected.
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>  Data Check

Datasetl 10 Cluster Size Distribution BoxPlot of the single Features
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The box is really narrow and it’s easy to tell that the distribution is peaked on small value.

It shows a great number of higher value outliers. This means that the distribution 1s not

balanced at all, but its correlation to the output 1s significant, we do have to modity it:

* Cut off the outliers brutally and make a new normalization

* Make alog-transform in order to make the model more sensible in the lower part of
the distribution

* Make it into a categorical feature with a new binning
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» Validation Check 1: Number of Local Max

As expected the Confusion Matrix shows that we have a 100% accuracy, so all the prediction were correct,

Inp furthermore the Loss Function was minimize sharply, with a strong coherence in behaviour between train,
I:I validation and test. Lastly the training stopped due to the gradient stop condition.
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»Validation Check 2: Eccentricity

The Confusion Matrix shows that we have a 100% accuracy, so all the prediction were correct, furthermore the

Loss Function was minimize, with a strong coherence in behaviour between train, validation and test. Lastly the
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3| | training stopped due to the gradient stop condition.
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> Validation Check 2.1: Cluster Size

Normalized dataset
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> Validation Check 2.2 : Cluster Size

Non-normalized dataset

Input
o]
SR Hidden )
Best Validation Performance is 0.13614 at epoch 300
w b
oL
10 Train
Validation
@ i Test
=
(=}
o
e k=
10 E
. | o) 7
(=]
| .
1 [ ]
4 Dutput ) —
w b EF
(.
]
=
w
® 2
7]
o
(.
Q
f
_ 1/ 4
1D - i i i i i
Cutput
Ij 1] 50 100 150 200 250
1
300 Epochs

300

o

Output Class

Output Class

Training Confusion Matrix

6848310 0 100%
50.9% 0.0% 0.0%
0 6603360 100%
0.0% 49.1% 0.0%
10 100% 100%
0.0 0.0 0.0%
Q N
Target Class
Test Confusion Matrix
1467988 0 100%
50.9% 0.0% 0.0%
0 1413269 100%
0.0% 49.1% 0.0%
| 100% 100%
0.0 0.0% 0.0%
Q N

Target Class

o

Output Class

Output Class

-

Validation Confusion Matrix

1467154 0 100°
50.9% 0.0% 0.0%

0 1416974 100%
0.0% 49.1% 0.0%
100% 100% 100%
0.0% 0.0% 0.0%

Q N

Target Class
All Confusion Matrix
9783452 0 100%
50.9% 0.0% 0.0%
0 9433603 100%
0.0% 49.1% 0.0%
10C 10 100%
0.0 0.0¢ 0.0%
Q N

Target Class

High Precision X-ray Measurement 2025 - Back-up Slides




» Validation Check 2.3.1 : Cluster Size

Normalized Cut dataset (@50)
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»Validation Check 2.3.2 : Cluster Size

Normalized Cut dataset (@30)
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»Validation Check 2.3 : Cluster Size

Let’s compare different BoxPlot graph, obtained with ' '

e the whole dataset, the cutted one at 50 and at 30. Median
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