

Giorgio Finocchiaro *on behalf of the PANDORA collaboration* Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud – Catania (Italy)

- Introduction: X-ray imaging on ECR plasmas
- Single-photon-counting technique on CCD detectors
- Energy calibration by XRF test-bench
- ECR plasma imaging at Atomki laboratory: Space and time resolved application

Laboratori Nazionali

The X-ray diagnostics is an insightful technique to monitor the self-emission of magnetically confined plasmas.

High emissivity in the soft X-ray energy range (0.5 - 30 keV): J ~ 10¹¹ cm⁻³s⁻¹

 \checkmark

High emissivity in the soft X-ray energy range (0.5 - 30 keV): J ~ 10¹¹ cm⁻³s⁻¹

G. Finocchiaro – INFN - LNS

Monitoring of plasma stability during long measurements

- Back-illuminated CCD sensors with >95% QE (~5 eV to 30 keV range)
- 2k x 2k formats; 13.5 micron pixels
- High frame rates with up to 4-port readout
- Cooling down to -90°C using liquid or air

Energy (keV)

X-ray tube

Sample

10

The sample emission induced by the X-ray source has been measured with both the CCD and the **SDD detector** as a **reference**, in the same optical conditions

Fluorescence emission table

lement	к а 1	К 	к β 1	L 0 1	L 0 2	L β 1	L β 2	L'n
2 Ti	4,510.84	4,504.86	4,931.81	452.2	452.2	458.4		
6 Fe	6,403.84	6,390.84	7,057.98	705.0	705.0	718.5		
9 Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8		
7 Ag	22,162.92	21,990.3	24,942.4	2,984.31	2,978.21	3,150.94	3,347.81	3,519.59
0 Sn	25,271.3	25,044.0	28,486.0	3,443.98	3,435.42	3,662.80	3,904.86	4,131.12

Та	Sn (
and the second	511	El
	Cu	22
🔒 Ag 🕗	Fo	26
		29
	I TORONO DO	47
Ti	AI	50
1	N.	

ement	к <i>а</i> 1	К 0 2	к β 1	L 0 1	L <i>0</i> 2	L β 1	L β 2	L'n
Ti	4,510.84	4,504.86	4,931.81	452.2	452.2	458.4		
Fe	6,403.84	6,390.84	7,057.98	705.0	705.0	718.5		
Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8		
Ag	22,162.92	21,990.3	24,942.4	2,984.31	2,978.21	3,150.94	3,347.81	3,519.59
Sn	25,271.3	25,044.0	28,486.0	3,443.98	3,435.42	3,662.80	3,904.86	4,131.12

The CCD energy calibration is challenging!

Channel [ADU]

A charge collection **artifact** is observed in the reconstruction of the energy information. The fluorescence is still resolved on a parametric 2D histogram.

Та		1
in the second se	Sn	Eleme
	Cu	22 Ti
🕻 Ag 💛	Fo	26 Fe
	I.C.	29 Cu
C.	- Repairing the second	🖌 47 Ag
Ti	AI	50 Sn
1	and and	de

ment	к а1	К 0 2	к β 1	L 0 1	L <i>0</i> 2	L β 1	L β 2	L'n
Ti	4,510.84	4,504.86	4,931.81	452.2	452.2	458.4		
Fe	6,403.84	6,390.84	7,057.98	705.0	705.0	718.5		
Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8		
Ag	22,162.92	21,990.3	24,942.4	2,984.31	2,978.21	3,150.94	3,347.81	3,519.59
Sn	25,271.3	25,044.0	28,486.0	3,443.98	3,435.42	3,662.80	3,904.86	4,131.12

The CCD energy calibration is challenging!

A charge collection **artifact** is observed in the reconstruction of the energy information. The fluorescence is still resolved on a parametric 2D histogram.

Multi-parameteric energy calibration

The energy calibration of the two classes is performed in different ways.

Multi-parameteric energy calibration

The energy calibration of the two classes is performed in different ways.

Big clusters \rightarrow multi-parametric energy calibration

It is possible to define the **effective efficiency of the SPhC algorithm**, intended as the probability P(E) for a detected event to be recognized and classified.

Moreover, such definition can be extended to the **subsamples** having specific features (namely, big and small cluster size).

It is possible to define the **effective efficiency of the SPhC algorithm**, intended as the probability P(E) for a detected event to be recognized and classified.

Moreover, such definition can be extended to the **subsamples** having specific features (namely, big and small cluster size).

Space and time resolved application

- Introduction: X-ray imaging on ECR plasmas
- Single-photon-counting technique on CCD detectors
- Energy calibration by XRF test-bench
- ECR plasma imaging at Atomki laboratory: Space and time resolved application

Experimental campaign November 3-16, 2024 at Atomki, Debrecen

ECR plasma physics investigation: gas mixing effects

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 013402 (2017)

Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

V. Mironov,^{*} S. Bogomolov, A. Bondarchenko, A. Efremov, and V. Loginov Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region 141980, Russia

FIG. 8. Ion pressure profiles along the source z axis: pressure of the oxygen ions (red line), pressure of the krypton ions at Kr = 95%, O = 5% (black line), and pressure of the krypton ions at Kr = 100% (blue line).

FIG. 11. Confinement times of krypton ions for the krypton plasma (black squares) and in the mix with oxygen (red circles) as a function of the ion charge state. Confinement times of oxygen ions in the mix are shown as the open blue squares. The Rognlien-Cutler fits are shown as the lines.

Mixing two gases in an electron cyclotron resonance ion source (ECRIS) is a **common technique** to **increase currents** of the highest charge states of a heavier element.

Gas mixing plasma imaging

Plasma imaging at Atomki lab: gas mixing

Al img

0.3

0.25

0.2

0.1

0.05

0.15 👸

Observation and Radiation for Archaeometry

Plasmas for Astrophysics

Nuclear Decay

The **morphology** of plasma confinement changes in the **gas-mixed** case

<mark>gas-mixed</mark> case

Energy spectrum Ar Xe 10² [cps] 10 1.49 keV 2.96 keV 4.11 keV 0 2 3 4 5 6 1 Energy (keV)

The **morphology** of plasma confinement changes in the **gas-mixed** case

ECR plasma physics investigation: Afterglow plasma decay

RF pulse period = 1s

atomki.

Plasma Phys. Control. Fusion 67 (2025) 035012 (10pp)

Ion confinement and temperature in minimum-B electron cyclotron resonance ion source plasmas

O Tarvainen^{1,*}⁽ⁱ⁾, V Toivanen²⁽ⁱ⁾, O Timonen²⁽ⁱ⁾, R Kronholm²⁽ⁱ⁾ and H Koivisto²

¹ UK Research and Innovation, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom

² Accelerator Laboratory, Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland

Figure 4. A representative example of Ar^{13+} afterglow peak measured with the JYFL 14 GHz ECRIS with 1 Hz microwave pulse repetition rate and 50% duty factor. The beam current is normalised to the steady-state average value at t < 0. The microwave power is switched off at t = 0. The predicted afterglow peak time is shown with a vertical dashed line.

The <mark>ion current</mark> extraction <mark>decays</mark> in the time scale of <mark>10 ms.</mark>

Conclusions

NFN

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali del Sud

Cu

Fe

Ag

1cm

Space resolution: 500 µm

36

Thanks for your attention

Thanks for your attention

