Studies of the absorption parameter $3\gamma/2\gamma$ in positronium decays

Kamila Kasperska on behalf of the J-PET collaboration Under the supervision of dr hab. Magdalena Skurzok HPXM Workshop Frascati, 19.06.2025

J-PET detector

Talk by Magdalena Skurzok, Monday 15:50

- Positron Emission Tomography detector based on plastic scintillators
- Cost-efficient
- Multi-photon detection
- Medical imaging:
 - Total body PET
 - Positronium Imaging
- Fundamental physics:
 - Quantum entanglement
 - Discrete symmetries

P. Moskal et al. Positronium image of the human brain in vivo, Science Advances 10 (2024)

- J-PET: CT-based attenuation correction for two-gamma imaging
- Standard attenuation maps not sufficient for three-gamma imaging

M. Das et al. Development of correction techniques for the J-PET Scanner Bio-Algorithms and Med-Systems vol. 20 (2024)

Simulation of pPs decay

Para-positronium – singlet state ${}^{1}S_{0}$

Isotropic decay into 2 back-to-back photons with energies of 511 keV

Decay simulation:

- 1. Randomizing the direction of $\overrightarrow{p_1}$
- 2. Assigning the energy of 511 keV
- 3. Determining the momentum $\overrightarrow{p_2} = -\overrightarrow{p_1}$

Simulation of oPs decay

Ortho-positronium – triplet state ${}^{3}S_{1}$

Decay into 3 photons described with the matrix element $M_{oPs \rightarrow 3\gamma}$:

$$M_{oPs \to 3\gamma} = \left(\frac{m_e - E_1}{E_2 E_3}\right)^2 + \left(\frac{m_e - E_2}{E_1 E_3}\right)^2 + \left(\frac{m_e - E_3}{E_1 E_2}\right)^2,$$

where m_e - electron mass, E_1 , E_2 , E_3 - energies of gamma quanta.

Absorption of gamma quanta in matter

Probability that a photon with energy E_i is **not** absorbed:

Total probability that **none** of the photons are absorbed:

$$P_{tot} = \prod_{i} P_i$$

Simplified phantom models

Absorption map – head model

- Percentage of gamma quanta pairs or triplets, from which at least one of the photons reacted with the model
- Specific to the annihilation point
- 10⁷ events

p-Ps
$$\rightarrow 2\gamma$$

Surviving photon multiplets within the whole model

	Тоу МС	GATE
pPs	30.156 ± 0.017%	30.052 ± 0.017%
oPs	11.879 ± 0.011%	11.919 ± 0.011%
$3\gamma/2\gamma$	0.39392 ± 0.00043	0.39392 ± 0.00043
$o - Ps \rightarrow 3v$		

GATE

0

Toy MC

GATE

Toy MC

Dependence of the percentage of **surviving** photon multiplets on the distance from the center of the head (d)

XCAT human phantom

- Mesh-based XCAT phantom (mesh50_XCAT) developed and maintained by Auer Benjamin
- Highly detailed male anatomy for subject in 50th percentile
- Source voxelized version of the phantom
- Head Only model (computational limitations)

B. Auer et al. <u>Mesh Modelling of system geometry and anatomy phantoms for realistic GATE simulations and reconstruction</u>, Physics in Medicine & Biology 68.7 (2023)

XCAT Phantom absorption maps – p-Ps (10⁷ events, 24.922 ± 0.016% pairs not absorbed) Projection

Coronal

12

100

oPs source

XCAT Phantom absorption maps – 0-Ps (4.435 · 10⁷ events, 10.256 ± 0.010% triplets not absorbed)

Transverse

X [cm]

X [cm]

Summary and perspectives

Study of gamma absorption from p-Ps $\rightarrow 2\gamma$ and o-Ps $\rightarrow 3\gamma$ decays in different phantoms – a foundation for developing attenuation maps required for tomographic image correction

Used custom-developed toy MC simulation and the GATE simulation toolkit to create emission-point-specific absorption maps

According to expectations – absorption of photon triplets significantly higher than that of photon pairs due to their lower energies

What's next?

Simulations using whole-body XCAT human phantom

> Introducting detector acceptance into the simulation

> > Simulation using a phantom created based on the patient's CT scan

Thank you for your attention!

Linear attenuation coefficients for toy MC simulation

NIST Standard Reference Database 126

Absorption map – water sphere

• 10⁷ events

Surviving photon multiplets within the whole model

	Toy MC	GATE
pPs	37.836 ± 0.019%	37.878 ± 0.019%
oPs	18.119 ± 0.013%	18.152 ± 0.013%

 $p-Ps \rightarrow 2\gamma$

18

Absorption map – water cylinder – XY plane

• 10⁷ events

Surviving photon multiplets within the whole model

	Тоу МС	GATE
pPs	$7.6063 \pm 0.0087\%$	7.6176 ± 0.0087%
oPs	$1.6403 \pm 0.0041\%$	$1.6462 \pm 0.0041\%$

Toy MC

Toy MC

19

Absorption map – water cylinder – XZ plane

• 10⁷ events

Surviving photon multiplets within the whole model

	Тоу МС	GATE
pPs	$7.6063 \pm 0.0087\%$	7.6176 ± 0.0087%
oPs	$1.6403 \pm 0.0041\%$	1.6462 ± 0.0041%

Simulation of oPs decay

1. Randomizing the energy of photons 1, 2 from the range (0, 511 keV) and assigning: $E_3 = M_{Ps} - E_1 - E_2$,

where $M_{Ps} = 1022$ keV - positronium mass.

2. Determination of the angles between momentum vectors in plane:

$$\begin{split} \theta_{12} &= \arccos\left(\frac{p_3^2 - p_1^2 - p_2^2}{2p_1p_2}\right),\\ \theta_{23} &= \arccos\left(\frac{p_1^2 - p_2^2 - p_3^2}{2p_2p_3}\right),\\ \theta_{31} &= \arccos\left(\frac{p_2^2 - p_1^2 - p_3^2}{2p_1p_3}\right). \end{split}$$

J. Chhokar, Simulation of Positronium Decays in View of Charge Conjugation Symmetry Test with the J-PET Detector

Simulation of oPs decay

3. Determination of the decay plane:

- Rotating $\overrightarrow{p_1}$, $\overrightarrow{p_2}$, $\overrightarrow{p_3}$ at random angle φ relative to the X axis
- Rotating the decay plane using random rotation matrix (*M*)

4. Monte Carlo hit and miss simulation with the weight specified by the matrix element:

$$M_{oPS \to 3\gamma} = \left(\frac{m_e - E_1}{E_2 E_3}\right)^2 + \left(\frac{m_e - E_2}{E_1 E_3}\right)^2 + \left(\frac{m_e - E_3}{E_1 E_2}\right)^2$$

Determination of the decay plane:

Generating random rotation matrix using a method based on uniform sampling of unit quaternions:

- Generating three random variables: u_1, u_2, u_3 from a uniform distribution in range (0, 1).
- Constructing a unit quaternion q = (x, y, z, w) using:

 $x = \sqrt{1 - u_1} \cdot \sin(2\pi u_2),$

$$y = \sqrt{1 - u_1} \cdot \cos(2\pi u_2),$$

$$z = \sqrt{u_1} \cdot \sin(2\pi u_3),$$

$$w = \sqrt{u_1} \cdot \cos(2\pi u_3).$$

- Defining the rotation matrix M:

$$M = \begin{bmatrix} x^2 - y^2 - z^2 + w^2 & 2(xy - zw) & 2(xz + yw) \\ 2(xy + zw) & -x^2 + y^2 - z^2 + w^2 & 2(yz - xw) \\ 2(xz - yw) & 2(yz + xw) & -x^2 - y^2 + z^2 + w^2 \end{bmatrix}$$

