

The INFN Frascati facility for X-Ray dosimetry (@ LEMRAP laboratory)

On behalf of the LEMRAP Laboratory Dr. Abner Iván Castro Campoy

ivan.castro@lnf.infn.it

Frascati (RM) Italy

June 2025

The LEMRAP X ray Facility

1

The X-ray unit & cabinet

- Bunker 2 mm Pb 2 x 2 x 2 m3
- door 2 mm Pb
- Interlocked
- Cables in/out

General Electric Stenoscop 9000

- W anode
- Constant potential
- Filtration 1,5 mm Al + added
- Anode 1,8x1,8 / 0,5x0,5 mm²
- 40 to 110 kV
- 0.1 to 3 mA

Monitor & filtration module: monitor ion chamber

MONITOR CHAMBER

- "Nearly transparent" free-in-air ion chamber allows monitoring the tube output
- Works at +400 V
- Ionisation current amplified through a ultra-low noise amplifier (custom design)
- Linearity range from tens fA up to tens nA ionisation current
- Readout with commercial digitiser up to 250 kS/s

Monitor & filtration module: added filtration

- 3.3 mm Al = inherent filtration
- 0.7 mm Al added to meet ISO recommendations (4 mm Al)
- Additional filters are added through the module

Imaging capability

2 Maray 2 Metrology for radiation protection dosimetry

X-ray metrology

Achieving "reference" photon fields

lf

- \checkmark kV well-known and constant
- ✓ Application of standard filters (ISO 4037)
- ✓ Tube output:
 - Continuously monitored with a transmission free-air ionisation chamber
 - Measured at reference distance in terms of Air kerma (*) with a calibrated ionisation chamber

Then

The energy distribution of the photon field is known The field intensity is known

Air kerma (*) = kinetic energy released by primary photons to secondary electrons per unit mass of air

X-ray metrology

ISO Series "Narrow spectrum" (N)

Beam code	kV	filtration	<e> (keV)</e>	dK/dt (mGy/h) 1 mA, 40 cm	dF/dt cm ⁻² s ⁻¹ 1 mA, 40 cm
N60	60	4 Al + 0.6 Cu	47.9	33	3×10 ⁷
N80	80	4 Al + 2 Cu	65.0	18	2×10 ⁷
N100	100	4 Al + 5 Cu	83.1	9	8×10 ⁶

By operating on distance (20 cm to 60 cm) and current (0.1 to 3 mA) the field intensity can be varied **from ÷20 to ×200**

X-ray metrology ISO Series "Narrow spectrum" (N)

3

Characterising the LEMRAP X-ray unit

The reference spherical ion chamber

- Custom design
- Isotropic response
- Ionisation current amplified through an embedded ultra-low noise amplifier (custom design)

• Noise and interference **REDUCED** with respect to state-of-art design

Calibrating the reference spherical ion chamber

Secondary Standard Dosimetry Laboratory @ ENEA Bologna, Italy

Using the reference chamber to measure the air kerma @ LEMRAP unit

Reference chamber at the working distances of 40 cm, 55 cm, and 75 cm

Reproducibility of the Ion Chamber

Reproducibility of the Ion Chamber on the X-ray tube

Dose rate capabilities

Delivered Dose rate depending on X-ray Qualities (left) and per distance (right) of the Spherical Ion Chamber

Secondary Standard Dosimetry Laboratory @ ENEA Bologna, Italy

4

Lab activities and Potential applications

Lab activities and potential apps

Testing new sensors for clinical dosimetry or nuclear physics

5

Conclusions

- The LEMRAP X-ray facility produces X-ray fields with know energy distribution and air kerma
- Various activities within collaborations with Institutions and private companies
 - Developing active and passive sensors for X-ray dosimetry
 - Calibrating X-ray dosemeters
 - Evaluating the X-ray sensitivity of sensors used in nuclear physics

Thank you for your attention