

Development and application of flexible a-Si:H detectors for advanced X-ray beam characterization

Keida Kanxheri on behalf of HASPIDE collaboration

HIGH PRECISION X-RAY MEASUREMENTS 2025

OUTLINE

- > Introduction and Motivation
- Detector Fabrication
- > Prototype Overview
- > Experimental Characterization
 - **Clinical LINAC measurements**
 - Synchrotron radiation measurements
- > Future Applications

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITY OF WOLLONGONG AUSTRALIA

1506 UNIVERSITÀ DEGLI STUDI **DI URBINO** CARLO BO

DISPEA DIPARTIMENTO DI SCIENZE PURE E APPLICATE

HASPIDE PROJECT

INFN CSN5 call

Started in 2022 3 years duration

8 institutions: 6 INFN Sections (FI, LE, LNS, MI, PG, TO) University of Wollongong (Aus) EPFL Neuchatel (Switzerland)

~ 50 researchers

15

LNS

Australia

UoW.

HYDROGENATED AMORPHOUS SILICON

<u>1969</u>

<u> 1976</u>

 Synthesized for the first time by Plasma
Enhanced Vapor
Deposition (PE-CVD) OF
SiH₄

Development of transistors, solar cells and memories.

FROM MID '80 ON

Direct detection of ionizing radiation based on diode structures

WHY a-Si:H?

> It is intrinsically radiation resistant

> It can be deposited in thin layers (~ 0.4 - 100 um)

> It can be deposited on different substrates, even flexible ones like mylar and kapton

> It has a band gap value slightly higher than c-Si: 1.7-1.9 eV

> Material deposition process can be done on wide areas

> Hydrogen incorporation during deposition passivates structural defects

Amorphous silicon

Crystalline silicon

DEPOSITION TECHNIQUES

PECVD (Plasma Enhanced Chemical Vapor Deposition) [EPFL + ROMA] In the process is used a mixture of silane (SiH4) and hydrogen, with working temperature between 160°C and 300°C

 \triangleright

Radiofrequency PECVD (RF or VHF PECVD), at various frequencies.

A NEW PROCEDURE IS UNDER DEVELOPMENT IN THE HASPIDE PROJECT: → REACTIVE SPUTTERING FOR THE SUBSTRATE [LECCE] → PULSED LASER DEPOSITION FOR CONTACTS [LECCE]

HASPIDE GOALS

FABRICATION OF THIN a-Si:H (0.4 - 10 um) IONIZING RADIATION DETECTORS **DEPOSITED OVER THIN FLEXIBLE SUPPORTS TO BE USED FOR:**

Detection of radiation bursts in space, for example solar

energetic particles events;

Neutron detection via ¹⁰B deposition over an a-Si:Η layer to detect α produced by neutron conversion.

Beam monitoring of linacs and other types of accelerators

PIN/NIP STRUCTURE

- > 1.5 mm pixel with 28 nm ITO top contact
- > PIN stack deposited via PECVD intrinsic layer: $2.5 \mu m SiH_4 + H_2$
- \succ Doping gases: PH₃/H₂ (n), TMB/H₂ (p)
- > Cr–Al–Cr back contact
- > Substrate: flexible kapton (25 um)
- > SF₆/O₂ dry etch for pixel isolation

CSC STRUCTURE

CSC concept: two ultra-thin metal oxide layers isolate the intrinsic a-Si:H

ETL (Electron Transport Layer): TiO₂ (or ZnO)

> HTL (Hole Transport Layer): MoOx Layer thickness: < 30 nm</p>

> Active layer: intrinsic a-Si:H (0.4 – 10 µm)

> Thanks to the presence of chargeselective contacts, these detectors can operate even without an external bias ITO -

Al+Cr -

Kapton 🖊

NIP + CSC STRUCTURE

> Based on a standard n-i-p stack with added MoOx CSC

> 20 nm MoOx sputtered over the pdoped a-Si:H

 \succ Final top contact: ITO (28 nm), followed by dry etching

PROTOTYPES

Previous Detectors

- Sensitive area: 4 × 4 mm²
- Intrinsic a-Si:H thickness: 1 µm
- Substrate: thick rigid silicon
- Back contact: silver-based conductive paint

- Sensitive area: 2 × 2 mm² and 5 × 5 mm²
- Structure: p-i-n
- Intrinsic a-Si:H thickness:
- **2.5 µm**
- Substrate: 25 µm polyimide

- Sensitive area: 2 × 2 mm²
- Structure: linear array of 5 × 6 p-i-n sensors

11

Intrinsic a-Si:H thickness:
0.4 µm

Substrate: 30 µm and 60 µm polyimide

CUSTOM-DESIGNED PRINTED CIRCUIT PIGTAILS

CLINICAL X-RAY BEAM SETUP (LINAC)

Reference conditions:

Varian LINAC @ Shoalhaven Cancer Care Centre (Australia)

> Beam: 6 MV X-rays

Field size: 10 × 10 cm²

SSD: 100 cm, depth: 1.5 cm (D_{max}) with 10 cm backscatter

DOSE PER PULSE

> At very low DPP (4.3 × 10⁻⁵ Gy/pulse), an over-response of +51% is observed

> The over-response is likely due to an unstable internal electric field, influenced by empty deep traps in the a-Si:H layer.

Similar behaviour seen in previous rigid detectors on glass substrates

> Over-response is significantly mitigated after pre-irradiation (>10 kGy)

> The transfer of a-Si:H architecture to kapton preserves dosimetric response

DOSE LINEARITY

-	
	15

ensitivity at 0 V C/cGy)	Sensitivity at 3 V (pC/cGy)
580 ± 0.002	1.981 ± 0.021
943 ± 0.015	13.56 ± 0.02
0.36 ± 0.10	_

ANGULAR DEPENDENCE

Excellent angular stability: <5% variation across 0°-180°

Ideal for applications with rotating beams or gantry motion

16

BENDING RADIUS TESTS FOR IN VIVO APPLICATIONS 17

- Bending radii from 152.38 mm 7.98 mm
- A custom "push-to-flex" setup was used to bend the a-Si:H detectors in a controlled way
- The response was measured under 615 nm visible laser illumination during deformation

BENDING RADIUS TESTS

Sensitivity degradation
< 5% under maximum curvature

Response returns to (99.1 ± 0.5)% after bending

Enables conformal dosimetry for curved anatomy (e.G., Breast, head & neck).

ANSTO AUSTRALIAN SYNCHROTRON

19

Beam filtration	Weighted average energy (keV) ^a	Delivered dose (Gy) ^b	Dose-rate (Gy s ⁻¹)	
Mo-Mo	124	1.207 ± 0.045	22.12 ± 0.82	
Cu–Cu	95.1	9.78 ± 0.36	179.1 ± 6.6	
Cu–Al	82.9	25.08 ± 0.93	460 ± 17	
Al–Al	55.0	219.8 ± 8.1	4027 ± 150	

SYNCHROTRON

Beam modes:
broad beam (20 × 20 mm²)
microbeam (50 µm slits via collimator)

 Measurements performed in two detector configurations:
face-on for broad beam
edge-on for MRT
microbeams

> Dose rates: 22–4027 Gy/s

STEM EFFECT

Signal induced in the kapton tail during beam exposure

Comparison with bare tail shows a 3.6% contribution to the total detector response

Main source: direct irradiation of the solder pads

SENSITIVITY MEASUREMENTS

- 2.5 μ m intrinsic a-Si:H layer, pixels with a sensitive area of 1.5 × 1.5 mm²
- Excellent linearity: R² between 0.9997 and 1.0000
- Highest sensitivity: 10.4 ± 0.03 pC/cGy with Cu–AI beam, 1 V bias, no pre-irradiation
- At 0 kGy: +180% sensitivity gain with 1 V bias
- At 40 kGy: even larger gain, up to +234%
- Even after heavy irradiation, applying bias recovers much of the lost performance

		Sensitivity under 3T Beam Filtrations (<u>pC/cGy</u>)			
Pre- Irradiation	Detector Bias	Mo-Mo	Cu-Cu	Cu-Al	Al-Al
0 <u>kGy</u>	0 V	2.96 ± 0.01	4.57 ± 0.01	4.51 ± 0.02	8.64 ± 0.01
	1 V	5.50 ± 0.10	7.76 ± 0.01	10.4 ± 0.03	_
40 kGy	0 V	1.38 ± 0.01	2.33 ± 0.01	3.35 ± 0.01	5.92 ± 0.01
	1 V	3.71 ± 0.12	4.94 ± 0.01	7.39 ± 0.01	_

22

RADIATION TOLERANCE

Long-term exposure with AI-AI filtration

NIP+CSC retains >66% of original response after 40 kGy

> NIP architecture shows better tolerance (only ~17% degradation) but lower sensitivity

>The difference is likely due to charge trapping at the additional CSC interface

MICROBEAM PROFILING

- Achieved spatial resolution: 2.5 µm (limited by the intrinsic layer thickness)
- FWHM of microbeam measured: 51 ± 1 μm
- Ideal for MRT field reconstruction and quality assurance

23

CHARGE COLLECTION MAP (XBIC)

- A single 50 × 50 µm microbeam was raster-scanned across the detector surface in 50 µm steps
- Bottom-right: stem effect from X-rays hitting Cu wire •Top-left: Low-signal area, no epoxy \rightarrow no signal enhancement from fluorescence • No signal enhancement from carbon paint: confirms its low-Z composition avoids parasitic currents

24

FUTURE APPLICATIONS

POSSIBLE CLINICAL USE CASES:

- **SINGLE PIXEL DEVICES**
 - Skin surface dosimetry
 - In-vivo monitoring during total body irradiation (TBI)

SMALL LINEAR ARRAYS (3-5 PIXELS):

- Skin dose mapping in 3D-conformal breast treatments (e.g. steep dose gradients on the skin surface)
- Localized monitoring in soft tissue sarcoma treatments

LARGE LINEAR ARRAYS (12+ PIXELS):

- Real-time beam profiling with 2 mm resolution - Beam monitoring in ultra-high dose rate treatments, such as synchrotron microbeams and FLASH therapy

TRANSMISSION DEVICES

INSTRUMENTED ACCELERATOR'S EXIT WINDOW

Device with 2x2 mm² PIN diodes on flexible substrate, 2.5 um thick total thickness ~ 100 um

Thank you

Keida Kanxheri on behalf of HASPIDE collaboration

HIGH PRECISION X-RAY **MEASUREMENTS 2025**