

Configurazione di SLURM in ambiente HPC

+ esperienza al CNAF

26 Novembre 2024 [17:00 - 18:30] Speaker: Alessandro Pascolini

nanziato **Jnione europea**

In collaborazione co

Overview

1. Introduzione

- Termini utili
- Calcolo HPC
- SLURM Overview
- 2. <u>Setup Cluster HPC con SLURM</u>
 - Step preliminari
 - Configurazione di base
- 3. <u>Gestione cluster</u>
 - Comandi base di SLURM
 - Accounting & QoS
- 4. <u>Esempi di Sottomissione locale</u>
- 5. <u>Esempio Cluster HPC@CNAF</u>
- 6. <u>Configurazione per accesso GRID</u>

Introduzione

Finanziato dall'Unione europea extGenerationEU

In collaborazione con

Termini utili

 \rightarrow processi, solitamente di sistema, eseguiti in background. Demoni No interazione da parte dell'utente. Di solito i nomi finiscono per «d» (e.g. sshd)

Batch System \rightarrow software che gestisce un insieme di macchine per l'esecuzione di interattivi (batch)

- \rightarrow processo tipicamente non interattivo (batch) che l'utente finale vuole **Batch Job**
- \rightarrow hardware specifico, migliora le prestazioni per specifici use-case Acceleratori (e.g. GPU, FPGA, ecc.)

<u>Worker-Node</u> → macchina che esegue i Job dell'utente. Può montare solo CPU o anche

processi non

eseguire

acceleratori

Calcolo HPC

HPC – High Performance Computing

- Calcolo parallelo, distribuito su più nodi
- Necessita di hardware ad alte prestazioni:
 - Connessione a **bassa latenza** e **ampia banda** (e.g. infiniband)
 - Acceleratori (e.g. GPU, FPGA)
- Solitamente i nodi di calcolo **condividono il filesystem**, in modo da sfruttare al massimo la parallelizzazione dei workflow

SLURM workload manager

Introduzione

Slurm is an **open source**, **fault-tolerant**, and **highly scalable** cluster management and **job scheduling system** for large and small Linux clusters. Slurm requires no kernel modifications for its operation and is relatively self-contained.

Da documentazione di SLURM^[1]

SIJCM workload manager

SLURM workload manager

Caratteristiche

- Batch System ottimizzato per calcolo HPC
 - Multi-nodo (mpi)
 - Utilizzo di acceleratori (e.g. GPU)
- Modulare
 - Ampio ecosistema di plugin per la gestione di utenti e gruppi
- Semplice
 - Pochi demoni
 - Tool per la configurazione

SIJCM workload manager

SLURM workload manager

Architettura

slurmctld •

- \rightarrow controller del cluster,
- \rightarrow possibile configurazione in HA
- slurmd
 - \rightarrow gestisce l'esecuzione dei job
- slurmdbd
 - \rightarrow demone che si occupa di accounting
 - \rightarrow non necessario <u>ma raccomandato</u>

Slurm workload manager

SLURM components from SLURM documentation https://slurm.schedmd.com/overview.html#architecture

Setup cluster HPC con SLURM

inanziato dall'Unione europea GenerationEU

In collaborazione con

Cluster SLURM

Configurazione di un semplice cluster

- **Obiettivo:** setup di un semplice cluster con:
 - 1 controller
 - N worker-nodes (anche supporto GPU NVIDIA)

SLURM components from SLURM documentation <u>https://slurm.schedmd.com/overview.html#architecture</u>

SIJCM workload manager

Step Preliminari

Lasciati al gentile lettore :)

- Configurazione (pacchetti, kernel, OS) più possibile allineata tra i nodi 1.
- Utenti e gruppi devono essere sincronizzati tra tutte le macchine del cluster (e.g. LDAP) 2.
- **MUNGE** (per autenticazione tra nodi) 3.
- 4. DIVER
 - Nel caso di nodi con acceleratori sarà necessario installare i driver necessari ad interagire con l'hardware del nodo •
 - Ad esempio: GPU NVIDIA Tesla H100 \rightarrow da installare i driver nvidia
- 5. SLURM
 - Buildare rpm su uno dei nodi del cluster (permette a SLURM di essere ottimizzato per la specifica configurazione)
 - Preparare i file di configurazione per il cluster

ATTENZIONE

La procedura che mostrata è riferita ad un cluster EL9, in base al Sistema Operativo alcuni passaggi potrebbero variare

MUNGE^[2]

UserID (UID) e GroupID (GID)

SETUP:

- 1. Installazione del pacchetto dnf install munge
- 2. Creare il file /etc/munge/munge.key
 - Almeno 32B
 - Owner: munge
 - Permessi: 600
- Distribuire la chiave in tutti i nodi del cluster 3.
- 4. Avviare munged systemctl enable --now munged

Permette l'autenticazione dei processi tra un nodo e l'altro tramite

MUNGE Uid 'N' Gid Emporium

[2] https://dun.github.io/munge/

DRIVER NVIDIA*

Procedura piuttosto complessa, due possibili strade:

- Download dell'eseguibile per installare i driver 1)
- 2) Via RPM, complessa ma automatizzabile

*GPU NVIDIA Tesla H100 sono le più comuni nel nostro use-case

DRIVER NVIDIA 1) Download eseguibile generico

- Selezionare Linux 64-bit nella pagina di ricerca dei driver • https://www.nvidia.com/en-us/drivers/
- Si scaricherà un eseguibile da eseguire sul nodo (NVIDIA-Linux-x86_64-*.run)

Manual Driver Search		
Search by product, product type or series	Q	
Data Center / Tesla	•	í
H-Series	•	
NVIDIA H100 PCIe	-	
Linux 64-bit	•	
Any CUDA Toolkit Version	-	
English (US)	•	

		I
١	C	I
7		1

DRIVER NVIDIA 2) Via RPM

- Selezionare Linux 64-bit <+ os-version> nella pagina di ricerca dei \bullet driver
- Scaricare l'RPM
- Da seguire le istruzioni che riporta il sito

Piccola aggiunta personale

iv) sudo dracut --regenerate-all --force v) sudo systemctl reboot

Se

Dat

H-S

NV

Lin

An

End

Manual Driver Search

arch by product, product type or series	Q	
ta Center / Tesla	•	í
Series	•	
IDIA H100 PCIe	•	
ux 64-bit RHEL 9	•	
y CUDA Toolkit Version	•	_
glish (US)	•	
nd		

DRIVER NVIDIA

Anyway....

L'importante è riuscire a comunicare con la GPU

[almalinux@slurm-worker-gp Tue Nov 19 20:10:29 2024	」∼]\$ nvidia-smi		
NVIDIA-SMI 550.127.08	Driver	Version: 550.127.08	CUDA Version: 12.4
GPU Name Fan Temp Perf 	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Bus-Id Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.
=====================================	3 0ff 36W / 300W	+=====================================	+=====================================
+			+
Processes: GPU GI CI PI ID ID) Type Proce	ss name	GPU Memory Usage
<pre>No running processes fo +</pre>	und		 +

SLURM Build RPM^[3]

- Download SLURM^[4]
- Build RPM su una <u>macchina del cluster</u>* rpmbuild -ta slurm-*.tar.bz2
- Una volta finito il build, gli rpm saranno in \$HOME/rpmbuild/RPMS/x86_64/ da lì basterà un: yum install –y \$HOME/rpmbuild/RPMS/x86_64/*

- munge-deve
 (da crb → `d
- pam-devel
- perl
- readline-dev
- automake
- autoconf
- mariadb-dev
 → per accou
- dbus-devel → per cgrou

*è importante che kernel, librerie e pacchetti siano uguali a quelli disponibili poi sulle machine

[3] <u>https://slurm.schedmd.com/quickstart_admin.html#rpmbuild</u>[4] <u>https://www.schedmd.com/download-slurm/</u>

Prerequisiti

el Inf config-managerset-enabled crb`)	
<i>r</i> el	
/el Inting	
ips	

SLURM

File di configurazione

- Tool per una configurazione di base^[5]
- Path di default per la conf: /etc/slurm/
- Produce il file **slurm.conf**^[6] con la descrizione della conf di tutto il cluster
- File da diffondere su tutte le macchine del cluster*
- Contiene:
 - Hostname dei Controller
 - Lista di Worker-Nodes con risorse disponibili
 - Configurazione di Accounting
 - Gestione processi
 - Scheduling

Slurm Version 24.05 Configuration Tool

This form can be used to create a Slurm configuration file with you controlling many of the important configuration parameters.

This is the full version of the Slurm configuration tool. This version has all the configuration options to create a Slurm configuration file. There is a simplified version of the Slurm configuration tool available at configurator.easy.html.

This tool supports Slurm version 24.05 only. Configuration files for other versions of Slurm should be built using the tool distributed with it in doc/html/ configurator.html. Some parameters will be set to default values, but you can manually edit the resulting slurm.conf as desired for greater flexibility. See man slurm.conf for more details about the configuration parameters.

Note the while Slurm daemons create log files and other files as needed, it treats the lack of parent directories as a fatal error. This prevents the daemons from running if critical file systems are not mounted and will minimize the risk of cold-starting (starting without preserving jobs).

Note that this configuration file must be installed on all nodes in your cluster.

Save the file in text for

Cluster Name #

cluster to record information

Control Mach

Define the hostname domain name (e.g. #Epilog= linux0 #FirstJobId=1 Compute Mae #GresTypes= Define the machines the possible paramete will print its physical #JobRequeue=1 into a single partition Manually edit the slue #JobSubmitPlugins=lua linux[1-32] debug INFINITE The following parar #MpiDefault= resources: ThreadsPerCore.

Sockets: Number of physical processor sockets/chips on the node. If Sockets is omitted, it will be inferred from: CPUs, CoresPerSocket, and ThreadsPerCore.

After you have filled in the fields of interest, use the "Submit" button on the bottom of the page to build the slurm confile. It will appear on your web browser

slurm.conf file generated by configurator.html. For more information # Put this file on all nodes of your cluster. # See the slurm.conf man page for more information.

> ClusterName=cluster SlurmctldHost=linux0 #SlurmctldHost= #DisableRootJobs=NO #EnforcePartLimits=NO #EpilogSlurmctld= #MaxJobId=67043328 #GroupUpdateForce=0 #GroupUpdateTime=600 #JobFileAppend=0 #KillOnBadExit=0 #LaunchType=launch/slurm #Licenses=foo*4,bar #MailProg=/bin/mail #MaxJobCount=10000 #MaxStepCount=40000 #MaxTasksPerNode=512 #MpiParams=ports=#-#

SLURM

Partizioni

• Partizione

 \rightarrow insieme di nodi con caratteristiche comuni

- Ogni nodo può appartenere a una o più partizioni
- Con l'accounting è possibile riservare partizioni a specifici utenti o workflow

###

slurm.conf per nodi e partizioni
###

COMPUTE NODES

NodeName=slurm-worker-gpu NodeAddr=192.168.0.114 CPUs=8 State=UNKNOWN Gres=gpu:tesla:1

PartitionName=debug Nodes=ALL Default=YES MaxTime=INFINITE State=UP

sla:1

SLURM

File di configurazione

- Altri file:
 - gres.conf^[7]

→ file in cui sono listate le Generic RESources (GRES) dei nodi

SIJCM workload manager

Esempio di gres.conf

SLURM

File di configurazione

Altri file:

• gres.conf^[7]

 \rightarrow file in cui sono listate le Generic RESources (GRES) dei nodi

• cgroup.conf^[8]

 \rightarrow definisce i parametri che verranno usati dal plugin di

cgroup

###

slurm.conf per abilitare cgroups ### ProctrackType=proctrack/cgroup TaskPlugin=task/cgroup,task/affinity JobAcctGatherType=jobacct_gather/cgroup #optional for gathering metrics PrologFlags=Contain #X11 flag is also suggested

cgroup.conf usual config ### ConstrainCores=yes ConstrainDevices=yes ConstrainRAMSpace=yes ConstrainSwapSpace=yes

SLURM

Avvio Cluster

- Assicurarsi che esista lo <u>SlurmUser</u>
 - \rightarrow definito in **slurm.conf**
 - \rightarrow default: slurm
- Files/directories definiti in slurm.conf non vengono creati da SLURM
 → assicurarsi che <u>esistano</u> e <u>siano accessibili</u> all'utente **slurm**
- Avviare i demoni nel cluster:
 - slurmctld \rightarrow controller
 - slurmd \rightarrow workers
- Controllare che i nodi siano visibili al cluster

[almalinux@	slurm-l	ogin
NODELIST	NOD) ES I
slurm-worke	er-gpu	1

~]\$ sinfo -N PARTITION STATE debug* idle

Gestione SLURM

Finanziato dall'Unione europea xtGenerationEU

In collaborazione con

Comandi SLURM^[9]

Sottomissione/Gestione Job

- sbatch^[10] •
 - \rightarrow sottomissione di batch jobs a slurm
- squeue^[11]

 \rightarrow lista i job presenti in coda

(by default di tutti gli utenti)

- scancel^[12]
 - \rightarrow rimuove job dalla coda

[almalinux@slurm-login tests]\$ sbatch test.sub Submitted batch job 9

[almalinux@slurm-login tests]\$ squeue --me JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 9 debug test.sub almalinu R 0:10 1 slurm-worker-gpu

[almalinux@slurm-login tests]\$ scancel 9

[almalinux@slurm-login tests]\$ squeue --me JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON) 9 debug test.sub almalinu CG 0:27 1 slurm-worker-gpu

[almalinux@slurm-login tests]\$ squeue --me JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

Slurm workload manager

^[9] https://slurm.schedmd.com/pdfs/summary.pdf

^[10] https://slurm.schedmd.com/sbatch.html

^[11] https://slurm.schedmd.com/squeue.html

^[12] https://slurm.schedmd.com/scancel.html

Comandi SLURM^[9]

Interazione con SLURM-Workers

sinfo^[13]

- \rightarrow lista i nodi appartenenti al cluster
- \rightarrow info su risorse, stato e disponibilità dei nodi
- scontrol^[14]
 - \rightarrow modifica dello stato dei nodi/job
 - \rightarrow la maggior parte delle opzioni sono limitate a utente

root o amministratore

[almalinux@slurm-login tests]\$ sinfo -N NODES PARTITION STATE NODELIST slurm-worker-gpu 1 debug* idle

slurm update error: Invalid user id

[almalinux@slurm-login tests]\$ sudo !! sudo scontrol update NodeName=slurm-worker-gpu State=drain Reason=«Test»

[almalinux@slurm-login tests]\$ sinfo -N NODELIST NODES PARTITION STATE slurm-worker-gpu 1 debug* drain

[almalinux@slurm-login tests]\$ scontrol update NodeName=slurm-worker-gpu State=drain Reason="Test"

^[9] https://slurm.schedmd.com/pdfs/summary.pdf

^[13] https://slurm.schedmd.com/sinfo.html

^[14] https://slurm.schedmd.com/scontrol.html

Accounting^[15] SlurmDBD

- Demone di SLURM per la gestione dell'accounting
- Gestisce:
 - Salvataggio di dati di accounting su DB/file di testo
 - AuthN/Z per accesso a dati di accounting da parte degli utenti
- Ottimizzato e ben integrato con gli altri demoni

→ Altamente consigliato

Accounting^[15] Setup

In slurm.conf

- AccountingStorageType
 → indica come salvare i dati
- AccountingStorageEnforce
 - \rightarrow specifica su cosa basare l'accounting

SlurmDBD ha un suo file di configurazione: slurmdbd.conf^[16]

slurm.conf

Accounting^[15]

Database

- L'accounting SLURM può essere salvato in:
 - File di testo
 - Database MySQL/MariaDB (richiesto mysql/mariadb-devel)
- Per MySQL/MariaDB è necessario:
 - Creare l'utente **<StorageUser>** nel DB
 - Creare il DB <StorageLoc> e dare accesso all'utente
 <StorageUser>

slurmdbd.conf

StorageType=accounting_storage/mysql # sets accounting to a mysql/mariadb database

StorageHost=<database-host> StoragePort=3306 #default port StorageUser=slurm StoragePass=<password> StorageLoc=<db_name> # default slurm_acct_db

mysql> create user 'slurm'@'slurmdbd-host' identified by 'password';

mysql> grant all on slurm_acct_db.* TO 'slurm'@'localhost';

Accounting^[15] Comandi

• sacct^[17]

 \rightarrow per ottenere informazioni riguardo a job running o completati

• sacctmgr^[18]

 \rightarrow per la modifica delle entries nel DB, utile per gestire utenti, account, QoSs etc.

- \rightarrow comando per admin!
- sreport^[19]
 - \rightarrow genera report sull'utilizzo del cluster

[18] <u>https://slurm.schedmd.com/sacctmgr.html</u>

^[15] https://slurm.schedmd.com/accounting.html

^{[17] &}lt;u>https://slurm.schedmd.com/sacct.html</u>

^[19] https://slurm.schedmd.com/sreport.html

Gestione Utenti e Gruppi

Cluster

 \rightarrow gruppo di macchine che fanno capo a uno slurmctld

- Account
 - \rightarrow gruppo di utenti a cui sono assegnate delle risorse
- User
 - \rightarrow singolo utente UNIX che può appartenere a più di un account

add new cluster to accounting
[root@slurm-login ~]# sacctmgr add cluster test-cluster

add «test» account to «test-cluster»
[root@slurm-login ~]# sacctmgr add account test Cluster=test-cluster

add user «almalinux» to «test» account [root@slurm-login ~]# sacctmgr add user almalinux Account=test

QoS & resource limits

- QoS (Quality of Service)^[20]

 → di una partizione (in slurm.conf)
 → di un utente/account

 I limiti possono essere essere su:
 - → risorse (e.g. num. cpus, num. gpus)
 - \rightarrow cputime
 - \rightarrow priority & preemption
 - \rightarrow tanto altro

_			
	# listare qc \$ sacctmgr Name	os show qo Priority	s format=
	normal	0	
	# aggiunge \$ sacctmgr Adding QC Settings	ere una qo add qos DS(s) zebra Descrip	os zebra otion = O
	\$ sacctmgr	show qo	s format=
	\$ sacctmgr Modified o zebra \$ sacctmgr Name	modify o qos show qo Priority	norr zeb gos zebra s s format= GrpTRI
	normal zebra	0 10	 cpu=24

[20] https://slurm.schedmd.com/qos.html

SIJCM workload manager

name, priority

QOS Name

name,priority Name Priority

nal 0 ra 0 set GrpTRES=cpu=24

name,priority,GrpTRES ES

Esempi di sottomissione

Finanziato dall'Unione europea NextGenerationEU

In collaborazione con

Submit File

Struttura

#!/bin/bash

#SBATCH -o job.out #SBATCH -e job.err

export PATH=\$HOME/.local/bin:\$PATH

srun sleep 1000

- shebang •
- **Direttive SLURM** •
- setup environment
- comando da eseguire •

 \rightarrow caratteristiche e requirements del job

 \rightarrow setta variabili d'ambiente utili per l'esecuzione

SBATCH options

•	#SBATCHpartition= <name></name>	###
	ightarrow specifica la partizione in cui sottomettere	# test
•	#SBATCHnodelist= <nodes></nodes>	###
	ightarrow specifica una lista di nodi (comma separated o "regexp")	#!/bii
•	#SBATCHnodes= <int></int>	
	→ numero di nodi su cui eseguire il/i job	#SBA #SBA
•	#SBATCHntasks= <int></int>	#SBA
	→ numero di CPU da utilizzare	#SBA
•	#SBATCHntasks-per-node= <int></int>	
	→ numero di CPU per nodo	srun
•	#SBATCHgres= <gres>:<#GRES></gres>	

 \rightarrow tipologia e numero di GRES

st-gpu.sub

in/bash

ATCH --job-name=v100 ATCH --nodes=1

ATCH --ntasks=8

ATCH --gres=gpu:4

script>

/virt-install.sh

26 / 11 / 2024 – INFN Pisa

Submit File

May get a bit complex

[a07cna00@login01 CNAF-VM-new]\$ cat cnaf.job #!/bin/bash #SBATCH --qos=qos_cnaf #SBATCH --constraint=kvmcpu #SBATCH --requeue #SBATCH --open-mode=append #SBATCH --output="%x-%j.out" #SBATCH -A CNAF4 WLCG #SBATCH -p dcgp_usr_prod #SBATCH -n 112 #SBATCH --mem=480g #SBATCH -t 00:00:00 #SBATCH --gres=tmpfs:3T repodir="/leonardo/home/usera07cna/a07cna00/CNAF-VM-new" jobnameprefix="cn-leo-" vm_root_disk="wn-leo-v1.5.qcow2" vm_map_file="\$repodir/vm_addresses_map_file.txt" if [! -r "\$vm_map_file"]; then echo "ERROR: \$vm_map_file not found or not readable" exit 1 elif [! -r "\$repodir/\$vm_root_disk"]; then echo "ERROR: \$repodir/\$vm_root_disk not found or not readable" exit 1

Slurm workload manager

Parte del submit file che usiamo al CNAF per creare WN HTCondor su Leonardo

Finanziato dall'Unione europea ktGenerationEU

In collaborazione con

HPC@CNAF

Struttura cluster

- Cluster con architetture miste:
 - \rightarrow nodi CPU
 - ightarrow nodi GPU
 - \rightarrow NVIDIA Tesla k40
 - \rightarrow NVIDIA Tesla V100
- Filesystem condiviso (GPFS) per:
 - \rightarrow /home
 - \rightarrow scratch dir
- Connessione tra nodi:
 - → infiniband (General purpose)
 - \rightarrow omnipath (CERN)

HPC@CNAF Conf SLURM

- **slurmcltld** in HA su 2 login nodes:
 - \rightarrow ui-hpc
 - \rightarrow ui-hpc2
- slurmdbd su ui-hpc con backup su ui-hpc2 •
- Cluster diviso in 2 partizioni •
 - Generale
 - \rightarrow accessibile a TUTTI gli utenti
 - CERN
 - → nodi riservati a solo utenti CERN
- DB Accounting su cluster Percona
- **Probe prometheus**^[21] per monitoraggio

[21] https://github.com/vpenso/prometheus-slurm-exporter

nf	109	120
nt	109	120
hort	109	120
	53.0	32
асс	576	304
gpuV100	9.93	8

	Name	Iviean	
	 slurmHPC_CE 	31.2	
	- slurmHPC_inf	319	
	 slurmHPC_int 	319	
2 K	slurmHPC_short	319	
	slurm_GPU	62.4	
	 slurm_hpc_acc 	1.82 K	
	 slurm_hpc_acc_gpuV100 	40	
╶╶┼╘┙┙╴╌╴╴┉╴┠┙╴┉╴╻╴╴╸	 slurm_hpc_gpuV100 	75.8	
<u> </u>			

HPC@CNAF

Partizioni

- slurmHPC_int
 - \rightarrow partizione di default
 - \rightarrow MaxTime allowed for computation = 79h
- slurm_GPU
 - \rightarrow partizione che include i nodi con Tesla k40
- slurm_hpc_gpuV100
 - \rightarrow partizione con nodi con GPU Tesla V100
- slurm_hpc_acc
 - \rightarrow nodi dedicati a utenti CERN
- slurm_hpc_acc_gpuV100
 → nodi GPU dedicati a utenti CERN

Accesso Interattivo

L'accesso via ssh da rete CNAF è garantito su tutti i nodi Utenti del cluster GENERAL non possono accedere ai nodi CERN

Accounting & QoS

Non prevediamo enforcement di nessun tipo nel cluster Tranne limiti di tempo, non ci sono limiti di risorse per gli utenti

HPC@CNAF Software

- Distribuito tramite Environment Modules^[22]

 → ampiamente utilizzati in ambito HPC
 → alcune applicazioni per calcolo HPC vengono con un loro modulo (e.g. CUDA)
- Flessibilità e semplicità di utilizzo
- È possibile per un utente creare un proprio modulo

a	pascolir	nihpc@
\$	module	e avail

... compilers/gcc-11_sl7 compilers/gcc-12.3_sl7 compilers/gcc-4.6.4 compilers/gcc-4.7.3 ...

apascolinihpc@ui-hpc ~ \$ gcc --version gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)

apascolinihpc@ui-hpc ~ \$ module load compilers/gcc-12.3_sl7

apascolinihpc@ui-hpc ~ \$ gcc --version gcc (GCC) 12.3.0

@ui-hpc ~

---- /shared/software/modulefiles/ ---

Configurazione per accesso GRID

inanziato all'Unione europea tGenerationEU

In collaborazione con

HTCondor-CE^[23]

HTCondor-CE (**Compute Entrypoint**) è un software per **accesso GRID**

- AuthN/Z (SCITOKEN o SSL)
- Sottomissione a un cluster remoto
 → non è necessario accedere a un nodo del cluster SLURM

HTCondor-CE è un demone che **viene eseguito su un login node SLURM** \rightarrow interagisce con SLURM per sottomettere job

WIP@CNAF

Stiamo ancora testando l'integrazione con HTCondor-CE. La procedura descritta è ancora preliminare.

HTCondor-CE^[23]

Installazione & Configurazione

- Installazione di HTCondor-CE per SLURM dnf install htcondor-ce-slurm
- Configurazione mapping SCITOKENS \rightarrow in /etc/condor-ce/mapfiles.d/ SCITOKENS /<TOKEN ISSUER>,<TOKEN SUBJECT>/ <USERNAME>
- Setup certificati HTCondor-CE

[23] https://htcondor.com/htcondor-ce/

WIP@CNAF

Stiamo ancora testando l'integrazione con HTCondor-CE. La procedura descritta è ancora preliminare.

/etc/condor-ce/mapfiles.d/01-scitokens.conf

SCITOKENS / https:///cms-auth(\.web)?\.cern\.ch\/,08ca855e-d715-410e-a6ff-ad77306e1763/ cmssgm SCITOKENS / https:///cms-auth(\.web)?\.cern\.ch//,490a9a36-0268-4070-8813-65af031be5a3/ pilcms SCITOKENS / https:///cms-auth(\.web)?\.cern\.ch//,bad55f4e-602c-4e8d-a5c5-bd8ffb762113/ cmsprd

/etc/condor-ce/config.d/01-ce-auth.conf

AUTH_SSL_SERVER_CERTFILE = /etc/grid-security/hostcert.pem AUTH_SSL_SERVER_KEYFILE = /etc/grid-security/hostkey.pem AUTH_SSL_SERVER_CADIR = /etc/grid-security/certificates AUTH SSL SERVER CAFILE = AUTH_SSL_CLIENT_CERTFILE = /etc/grid-security/hostcert.pem AUTH_SSL_CLIENT_KEYFILE = /etc/grid-security/hostkey.pem AUTH_SSL_CLIENT_CADIR = /etc/grid-security/certificates AUTH SSL CLIENT CAFILE =

inanziato dall'Unione europea tGenerationEU

Grazie per l'attenzione!

In collaborazione con