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Technology tracking at INFN Ferrara

Performance analysis and benchmarking of novel architectures

Intel CPUs and many-core processors (e.g., Xeon and Xeon Phi);

NVIDIA high-end and embedded GPUs (e.g., Tesla and Tegra);

AMD GPUs (e.g., FirePro and Instinct);

Arm CPUs (e.g., ThunderX2 and Grace);

AMD-Xilinx FPGAs (i.e., Alveo).
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EuroEXA EU H2020 FET-HPC Project

EuroEXA: Co-designed innovation and system for resilient exascale computing in
Europe: from application to silicon

A Co-design HPC Project featuring:

use of FPGAs as accelerators;

use of FPGAs to implement custom interconnects;

co-design a balanced architecture for both compute and data-intensive
applications;

programmable using high-level languages.
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First EuroEXA Prototype at scale

EuroEXA Architecture:

16 CRDBs in a Blade.

32 EuroEXA Blades in one
Rack.

hierarchical network with
hybrid topology: all-to-all at
Blade level and torus for
inter-Blade level.
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EuroEXA Prototype Architecture

Sketch of the Single CRDB board.
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EuroEXA Prototype Architecture

Co-design Recommended Daughter Board (CRDB):

Zinq UltraScale+ ZU9 for interconnect and
compute.

Virtex UltraScale+ VU9 as a compute accelerator.

Liquid cooled board.

We needed to:

estimate applications
expected performance for
co-design and evaluation.
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What is limiting the performance?

FLOP/s

Byte/s

Manufacturing/s

Load&Store/s
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Arithmetic/computational Intensity
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Roofline Model

The Roofline Model is used to provide performance estimates of a given compute
kernel running on a given architecture.

Williams, S., Waterman, A., & Patterson, D. (2009) “Roofline: an insightful visual performance model for multicore architectures”
Communications of the ACM, 52(4), 65-76.

Peak Bandwidth and Performance could be theoretical ones, or empirically measured...

Not trivial on FPGAs.
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Field Programmable Gate Arrays (FPGAs)

Generic overview of FPGA Architectures

Bunch of hardware resources
to be configured

Some generic resources and
some more specialized ones

Same operation can be
implemented in different ways

Max clock frequency depends
on the path lengths, on the
used resources, etc.
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The FPGA Empirical Roofline (FER)

Empirical Roofline Tool (ERT)
Berkeley Lab

Empirically find the max FLOPs
and Bandwidth

Kernel with tunable arithmetic
complexity

Targeting CPUs/GPUs
(OpenCL kernel can target also FPGAs)

https://crd.lbl.gov/departments/

computer-science/PAR/research/roofline/software/ert/

FPGA Empirical Roofline (FER)
INFN & Univ. of Ferrara

Based on the same principles of
ERT

Written using HLS directives

Targeting FPGA devices

E. Calore and S. F. Schifano, “FER: A Benchmark for the Roofline
Analysis of FPGA Based HPC Accelerators” in IEEE Access, vol.
10, pp. 94220-94234, 2022. doi: 10.1109/ACCESS.2022.3203566

https://baltig.infn.it/EuroEXA/FER
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FPGA performance model

To estimate the peak performance C of an FPGA in terms of op/s, we can assume
that to implement a hardware core performing op, are required Rop hardware resources.
If an FPGA contains Rav of these resources, the maximum number of implementable
hardware cores Hc is:

Hc =
Rav

Rop

If each core operates at a maximum clock frequency fop, and starts a new operation
every clock cycle, the theoretical performance C is:

C = fop × Hc

= fop

(
Rav

Rop

)
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FPGA performance model

Given that on FPGAs are commonly available Riav different i types of resources, one of
them will limit the number of cores:

C = fop ×min
i

(
Riav
Riop

)
Such theoretical models, have already been used by FPGA manufacturers to publicize
peak performance, but actual applications could be able to reach much lower values.

Intel says:

“For FPGAs lacking hard floating-point circuits, using the vendor-calculated theoretical GFLOPS numbers is
quite unreliable. Any FPGA floating-point claims based on a logic implementation at over 500 GFLOPS should
be viewed with a high level of skepticism. In this case, a representative benchmark design implementation is
essential to make a comparative judgment.”

Intel White Paper: Understanding Peak Floating-Point Performance Claims (2017)

Enrico Calore FPGAs Accelerators

https://www.intel.co.uk/content/dam/www/programmable/us/en/pdfs/literature /wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf


Too optimistic theoretical estimations

It is actually too optimistic:

to assume to be able to exploit all of the available resources of one specific type;

to assume to reach the maximum clock frequency declared for a single op core,
when a large fraction of resources is used.

Need for empirical parameters: fimp and uRi

C = fimp ×min
i

(
Riav
Riop

× uRi

)
, uRi < 1
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Main FER C/HLS kernel function

Implements a task level pipeline (dataflow):

reading elements from an input array, applying to each a given op, for Oe times, and
storing the result in an output array.

1 void fer( const data_v *input ,

2 data_v *output ) {

3
4 hls::stream <data_v > inFifo;

5 hls::stream <data_v > outFifo;

6
7 #pragma HLS dataflow

8
9 readInput(input , inFifo );

10 compute(inFifo , outFifo );

11 writeOutput(output , outFifo );

12 }
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FER compute() function

FER tuning knobs:

C = f × V×Oe
IIc

IIc : Initiation Interval

V : SIMD vector width

Oe : Ops per element

Hardware limit:
V×Oe
IIc

< mini

(
Riav
Riop

× uRi

)

1 void compute(hls::stream <data_v > &inFifo ,

2 hls::stream <data_v > &outFifo ){

3
4 for (i = 0; i < DIM; i++) {

5 #pragma HLS pipeline II=IIc

6
7 data_v in = inFifo.read ();

8
9 for (e = 0; e < V; e++) {

10 #pragma HLS unroll

11 data_t elem = in.elem[e];

12 for (o = 0; o < Oe; o++) {

13 #pragma HLS unroll

14 elem = op(elem);

15 }

16 out.elem[v] = elem;

17 }

18
19 outFifo.write(out);

20
21 }
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Pipeline and Unroll

Image credits:

Yang, Xu & Zhuang, Chen & Feng, Wenquan & Yang, Zhe & Wang, Qiang. (2023). FPGA Implementation of a Deep Learning Acceleration Core
Architecture for Image Target Detection. Applied Sciences. 13. 4144. 10.3390/app13074144.
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Xilinx Alveo U250

Xilinx Alveo U250 Data Center Accelerator Card
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Results for a Xilinx Alveo U250

We use as op a double-precision floating-point FMA, to allow for cross-architectural
comparison, with other HPC processors.

Best performance using 4 Compute Units (CUs), one for each SLR.Enrico Calore FPGAs Accelerators



U250 theoretical performance

The theoretical performance of this FPGA should be:

C = 694MHz×min

(
1.380 · 106

616 + 172
LUT,

11508

8 + 3
DSP

)
= 726 · 109 FMA/s

= 1.45 TFLOP/s
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Max empirically reachable fimp and C

Synthesized and run FER for different Hc , keeping the arithmetic intensity in the
compute-bound region.
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A more realistic estimation for Alveos

In the Xilinx documentation realistic fimp and uRi values to be used for performance
estimation, could be selected as:

default clock frequency of 300MHz (provided in the Alveo Platforms
documentation);

suggested maximum resources utilization (published in the Vitis Unified Software
Platform Documentation as “Timing closure considerations”): i.e., 70% for LUTs
and 80% for DSPs.

These would give an estimated performance C of:

C = 300×min

(
1.380 · 106

616 + 172
LUT× 0.7,

11508

8 + 3
DSP× 0.8

)
= 251 · 109 FMA/s

= 502 GFLOP/s
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Cross-architectural comparison (not fair for FPGA)
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Roofline obtained by FER on the Alveo U250, compared with the ones obtained by
ERT on an Intel Skylake CPU and by our custom Arm optimized ERT version on a
Marvell ThunderX2 CPU.
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Empirical Roofline for other Alveos
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Empirical Roofline for lower precision
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Much more competitive performance can be obtained using lower precision operations.
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DNN (Deep Neural Network) inference use case

The inference phase of DNN can exploit lower precision weights for the trained model

Programming models and frameworks

Low level programming at RTL (Register Transfer Level), using HDL (Hardware
Description Languages) e.g., Verilog, VHDL

Programming in C with pragma directives, using HLS (High Level Synthesis)

Generate HLS code using an higher level tool

Deploy on the FPGA a DPU (Deep Learning Processor Unit) and then compile a
trained model as a sequence of DPU instructions
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Alveo U250 Card and DPUCADF8H Architecture

PCIe Gen3 x16

4× 16 GB DDR4 memory banks

16 nm XCU250 FPGA

Power consumption: 215 Watts (TDP)

3 cores

4 Process Elements (PE) per core

Convolution Engines
Misc Engines
Feature Map Buffer
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Vitis-AI
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Application

Segmentation of Aortic Valve Calcium lesions using a CNN model of a Unet

The full pipeline

27392 image slices extracted from annotated gated contrast-enhaced Cardiac Computed
Tomography (CCT) acquired with 256-slide scanner

ROI extraction around the aortic root

Aortic root segmentation within the ROI with the previous application

Calcium segmentation within the aortic root segmentation with our application
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Accuracy Comparison

Dice Score

Achieved a Dice score of approximately 93% across all trials.
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Hardware Accelerators Details

Xilinx Alveo U250

FinFET+ 16nm

77 GB/s off-chip
38 TB/s on-chip

225 W

33 TOPS INT8

4 SLR

NVIDIA P100

FinFET+ 16nm

732 GB/s off-chip

250 W

9340 GFLOPS SP

SMs 56

NVIDIA V100

FFN 12nm

900 GB/s off-chip

250 W

112 TFLOPS HP
14 TFLOPS SP

SMs 80
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Throughput Performance Comparison

Inference performance on different architectures and numerical precision.
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Power Comparison

Total power drained as reported by nvidia-smi and xbutil.
Energy derived as integral over the execution time.
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Edit distance (Used for DNA “strings”)

The edit distance is the number of operations required to morph a string S1 into a
string S2 using three kinds of operations:

substitution or replacement of a character;

insertion of a new character;

deletion of a character.

If the cost of each operation is unitary, the sum of the costs of the corresponding
operations required to align the two strings is named the Levenshtein distance.
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Edit distance computation

(Left) Example of computation of the Levenshtein distance between two strings of 8
characters each. (Center) Example of distance path built by the algorithm during the
execution. (Right) Example of Banded Levenshtein distance with a threshold of 4; only
the white cells are computed while dark cells correspond to those for which the
distance is higher than the threshold.
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Edit distance computation
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Edit distance computation
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Edit distance computation
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Results

Comparison with previous research works implementing the Banded Myers algorithm
on different architectures, in terms of CUPs (Cell Updates per Second).
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Conclusions and future works

Conclusions

The use of HLS, and even higher level abstractions, are maturing;

Using SP and DP floating-point operations FPGAs are competitive with CPUs;

Using low precision arithmetic, FPGAs can be competitive with GPUs.

Specific use cases

The inference phase of DNN algorithms;

The edit distance computation;

When low precision arithmetic can be used;

When results latency has to be predictable.
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Conclusions and future works

Future works

Test the same applications on newer FPGAs (e.g., Alveo V70, or V80);

Test newer versions of Vivado / Vitis-AI;

Test performance and programmability of different tools (e.g., HLS4ML);

Try to port and implement other applications.
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Unet Structure

Based on the 2D Unet developed in 2015 at the University of Freiburg

U-shape pattern:
Encoder branch: extract feature maps and reduce the dimensions
Decoder branch: Reconstructs image reducing feature maps and restoring dimensions

Skip connections
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Unet implementation

Max-pooling (not supported by the DPU) replaced by convolutions with stride 2

Added batch normalizations

Implemented using Python 3.7.12 and Pytorch 1.10.1, in Vitis-AI Docker 2.5

Enrico Calore FPGAs Accelerators



Float and Quantized Weights Distributions

Comparison between float and quantized weights distributions of the same layer (a
convolution of a downblock)

Float model: continuous distribution

Quantized model (PTQ): discrete distribution at regular intervals
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The Dataset

Cropped original images to a volume 128 x 128 x 128 pixels
around the centroid of the aortic root

Clipped within the range [0, 1000]

Normalized in range [0.0, 1.0]

Stored as 32-bit floating point values

extracted all 2D slices containing the aortic root

Result: 1350 images

Augmentation

With probability 0.5.
Horizontal/vertical flip, rotation between -180 and 180 degrees

We thank the San Carlo di Nancy Hospital (Rome) for access to the dataset.
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Loss and Accuracy

Loss function

Weighted sum of Dice and Cross Entropy (CE)

Dice = 1− 2 |A ∩ B|
|A|+ |B|

CE(y , ŷ) = −y log(ŷ)− (1− y) log(−ŷ)

Accuracy metrics

Dice Score

Intersection over Union (IoU)

IoU =
|A ∩ B|
|A ∪ B|
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Deploy on FPGA

1 g = xir.Graph.deserialize(config.PQT_COMPILED_MODEL_PATH)

2 subgraphs = get_child_subgraph_dpu(g)

3 runner = vart.Runner.create_runner(subgraphs [0], "run")

4 qimgs = quantization_img(imgs , input_scale)

5 rid = runner.execute_async(qimgs , predictions)

6 runner.wait(rid)

7 pred_imgs = np.argmax(predictions , axis=-1)

Deployment Process

1 Extract the subgraphs executable on the DPU from the compiled model

2 Instantiate a Vitis AI Runtime runner to handle asynchronous data transfer and
communication between CPU and DPU

3 Quantize input images for DPU processing

4 Launch the runner for asynchronous inference execution on DPU
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PTQ and QAT Pipelines

Symmetric quantization

Bitwidth: 8

Calibration set: 1000 randomly augmented images from the training set
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