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Agenda

• NVIDIA hardware architecture overview;

• Main differences between the different NVIDIA GPU architectures;

• Overview of the main drivers / software libraries needed for the different hardware components;

• Programming languages available for GPUs;

• Tools for debugging and performance analysis (e.g. Visual/Compute Profiler);

• Main techniques for optimizing code performance;

• Main techniques for optimizing intra-node and inter-node multi-GPU communications with infiniband (e.g. GPUDirect P2P, 
RDMA); Roadmap of NVIDIA technological developments (for what concerns CPU/GPU);

• References to in-depth courses on the different topics.
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Note del presentatore
Note di presentazione
We see 5 major workloads emerging.
�At the center is Simulation and the foundation of HPC.��Over 20 years ago, computer scientists and researchers started using GPUs to accelerate a range of scientific applications.  Today we have over 3,000 GPU-accelerated applications and counting.
�Augmenting simulation is HPC+AI which can improve our simulation performance by several orders of magnitude. Over the last 5 years, the number of research papers published on AI-accelerated simulation has increased from less than 100/yr  to nearly 5,000 in the last year.  
�And now ⅓ of all AI research papers are being applied to science use cases.
�Supercomputers are now being brought closer to the edge and experiments.  Turning data collection instruments into real-time, interactive research accelerators. 
�DIGITAL TWINS uses inputs from simulation, AI surrogate models, and observed data from the edge to create real-time digital twins that are revolutionizing industrial and scientific HPC.
�And finally QUANTUM COMPUTING: Although production-scale quantum computers are not likely in the next decade , there is a ton of research being conducted at supercomputing centers today to emulate the Quantum accelerators of tomorrow.
�The modern supercomputer will leverage ALL of these technologies to solve the grand challenges of the 21st century.
�



Exascale Supercomputing

EDGE CLOUD

SUPERCOMPUTING

EXTREME IO

DIGITAL TWINEDGE SIMULATIONSIM + AI QUANTUM COMPUTING

NETWORK

Note del presentatore
Note di presentazione
We see 5 major workloads emerging.
�At the center is Simulation and the foundation of HPC.��Over 20 years ago, computer scientists and researchers started using GPUs to accelerate a range of scientific applications.  Today we have over 3,000 GPU-accelerated applications and counting.
�Augmenting simulation is HPC+AI which can improve our simulation performance by several orders of magnitude. Over the last 5 years, the number of research papers published on AI-accelerated simulation has increased from less than 100/yr  to nearly 5,000 in the last year.  
�And now ⅓ of all AI research papers are being applied to science use cases.
�Supercomputers are now being brought closer to the edge and experiments.  Turning data collection instruments into real-time, interactive research accelerators. 
�DIGITAL TWINS uses inputs from simulation, AI surrogate models, and observed data from the edge to create real-time digital twins that are revolutionizing industrial and scientific HPC.
�And finally QUANTUM COMPUTING: Although production-scale quantum computers are not likely in the next decade , there is a ton of research being conducted at supercomputing centers today to emulate the Quantum accelerators of tomorrow.
�The modern supercomputer will leverage ALL of these technologies to solve the grand challenges of the 21st century.
�
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AI Factory for Research

Note del presentatore
Note di presentazione
We see 5 major workloads emerging.
�At the center is Simulation and the foundation of HPC.��Over 20 years ago, computer scientists and researchers started using GPUs to accelerate a range of scientific applications.  Today we have over 3,000 GPU-accelerated applications and counting.
�Augmenting simulation is HPC+AI which can improve our simulation performance by several orders of magnitude. Over the last 5 years, the number of research papers published on AI-accelerated simulation has increased from less than 100/yr  to nearly 5,000 in the last year.  
�And now ⅓ of all AI research papers are being applied to science use cases.
�Supercomputers are now being brought closer to the edge and experiments.  Turning data collection instruments into real-time, interactive research accelerators. 
�DIGITAL TWINS uses inputs from simulation, AI surrogate models, and observed data from the edge to create real-time digital twins that are revolutionizing industrial and scientific HPC.
�And finally QUANTUM COMPUTING: Although production-scale quantum computers are not likely in the next decade , there is a ton of research being conducted at supercomputing centers today to emulate the Quantum accelerators of tomorrow.
�The modern supercomputer will leverage ALL of these technologies to solve the grand challenges of the 21st century.
�



AI: The new tool for Science

DRUG DISCOVERY
EvolutionaryScale

CANCER RESEARCH
Wellcome Sanger Institute

LABORATORY ROBOTICS
Argonne National Lab

MATERIALS DISCOVERY
Microsoft Research

CLIMATE MODELING
KAUST

ASTRO FOUNDATION MODELS
The Flatiron Institute

AGRICULTURAL HEALTH
Fermata

SEISMIC GEOSCIENCE
California Institute of Technology



AI is Transforming Material Science and Chemistry

Multi-National Effort
GNoME

Google DeepMind
MatterGen

Microsoft Research

MACE

Materials Project

OpenSource
MatterSIM

Microsoft Research
Open Materials 2024

Meta FAIR

Broad industry innovation and achievement

Note del presentatore
Note di presentazione
AI has transformed the study of proteins for drug discovery.  
 
We think AI has the potential to make the same impact in digital chemistry. 
 
Digital Chemistry is the inflection point where Generative models can cover much more of the design space suggesting novel materials while other AI models can predict the properties of those materials several orders of magnitude faster than physics-based methods. 
�The last two years have seen unprecedented innovation in AI, most notably in Generative AI. 

A great example is MACE, an open-source project that uses machine learning to simulate inorganic materials with unprecedented speed and accuracy, helping scientists discover new materials faster and more efficiently.

However, there’s still a lot of work required to optimize the deployment of modern AI-accelerated Material science.

 

�


Factoids
Chemistry Foundation Models can be broadly categorized based on material class:
Small molecule (e.g., NVIDIA’s MegaMolBART and MolMIM, Uni-Mol2, …)
Polymer (e.g., polyBERT)
Inorganic (e.g., MACE, Google DeepMind’s GNoMe, Microsoft’s MatterSim and MatterGen, Meta’s OpenCatalyst …)
��




CorrDiff NIM for Generative AI Powered Downscaling | FourCastNet NIM for Global Weather Forecasting

GEFS Lower-Resolution
Forecast ~25km 

CorrDiff NIM

HRRR/WRF-Based 
Regional NWP

10,000X
More Efficient

User
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Downstream 
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Higher-Resolution Surface Temperature 
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Option 1

Option 2

500X
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Forecast Rollout T=0 to T=120 hrs

FCN NIM

GFS/IFS NWP 
SimulationT=0 Initial State
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User
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Application
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Surface Wind Speeds
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Announcing Earth-2 NIMs for CorrDiff & FourCastNet

First… 

NVIDIA Earth-2’s CorrDiff is a generative AI model for kilometer-scale super-resolution. 

Earlier this year we showed its ability to super-resolve typhoons over Taiwan. 

CorrDiff is 500 times faster and 10,000 times more energy efficient than traditional high-resolution numerical weather prediction using CPUs. 

We’ve also worked with US weather  forecasting agencies to develop a CorrDiff model for the entire continental US; an area 300x larger than the original Taiwan-based model. 

Next week we will make NVIDIA Earth-2 NIM for CorrDiff generally available. 

Note del presentatore
Note di presentazione
First… 

NVIDIA Earth-2’s CorrDiff is a generative AI model for kilometer-scale super-resolution. 

Earlier this year we showed its ability to super-resolve typhoons over Taiwan. 

CorrDiff is 500 times faster and 10,000 times more energy efficient than traditional high-resolution numerical weather prediction using CPUs. 

We’ve also worked with US weather  forecasting agencies to develop a CorrDiff model for the entire continental US; an area 300x larger than the original Taiwan-based model. 

Next week we will make NVIDIA Earth-2 NIM for CorrDiff generally available. 

____

However, not every use case requires high-resolution forecasts. Some applications benefit more from larger ensembles at a coarser resolution. 

State-of-the-art numerical models like GFS are limited to 20 ensembles due to computational constraints. 

At SC24 we will also announce the availability of the FourCastNet NIM. 

It delivers global, two-week forecasts 5,000 times faster than numerical weather models. 

This makes it possible to use ensembles with thousands of members, opening new opportunities for climate tech providers. 

They can now estimate risks related to extreme weather and predict low-probability events that current computational methods might miss. 




One Year Rhythm  |  Supercluster Scale  |  Full-Stack  |  CUDA Everywhere
NVIDIA BUILDS AI SUPERCOMPUTING INFRASTRUCTURE

Grace Blackwell
MGX Node

NVLink Switch Quantum Switch Spectrum-X Switch

Chips Purpose-Built for AI Supercomputing
GPU  |  CPU  |  DPU  |  NIC  |  NVLink Switch  |  IB Switch  |  ENET Switch

CUDA • DOCA • NCCL

Cluster-Scale Software

System Software

Chip Software

CUDA-X Libraries

NIM
CUDA-Accelerated

Agentic AI Libraries

Omniverse
CUDA-Accelerated

Physical AI Libraries

Accelerated 
Software Stack

GB200 NVL72 SuperPOD

Note del presentatore
Note di presentazione
Today’s AI computers are unlike anything built before. Every stage of AI computing, from data processing to training to inference, challenges every component—from GPUs, to memory, to networking, and switches. 
�The significant investment in AI factories makes every detail—time-to-first train, reliability, utilization, power efficiency, token generation throughput and responsiveness - all crucial.
 
NVIDIA embraces extreme co-design, optimizing every layer, from chips and systems to software and algorithms.

Next week we will announce innovations at every layer of the stack that are pushing the boundaries of scientific computing
 
��



RubinBlackwellHopper Blackwell-Ultra

Blackwell Ultra GPU
288GB HBM3e
More AI FLOPS

NVLink Switch
900 GB/sec

CX7 SuperNIC

Hopper GPU
6S HBM3

Hopper+ GPU
6S HBM3e

BF3 SuperNIC

Quantum-X400
InfiniBand Switch

Grace CPU

NVLink 6 Switch
3600 GB/sec

CX9 SuperNIC
1600 Gb/sec

Rubin GPU
8S HBM4

Vera CPU

X1600
IB/Ethernet Switch

Rubin Ultra GPU
12S HBM4

2022 2024 20262023 2025 2027

Spectrum Ultra X800
Ethernet Switch 512-Radix

CX8 SuperNIC

ONE YEAR RHYTHM  |  SUPERCLUSTER SCALE  |  FULL-STACK  |  CUDA EVERYWHERE



Partners Supercharge HPC and AI
Ecosystem Powering the Next Wave of AI Supercomputing Systems

NVIDIA GB200 Grace Blackwell 
Superchip

Grace Hopper
 Superchip

NVIDIA GB200 Grace Blackwell
NVL4 Superchip

H200 NVL

Note del presentatore
Note di presentazione
We’re excited to collaborate and support customer successes within our growing solution ecosystem. 
Our partners offer a wide range of systems, from Hopper to Blackwell.  
The H200 NVL is designed for air-cooled, flexible HPC solutions, featuring a 4-GPU NVLink domain in a PCIe form factor. 
We’re also working with partners to bring Grace Blackwell configurations to market. 
Including the GB200 Grace Blackwell NVL4 Superchip, which integrates a 4-GPU NVLink domain with 
dual-Grace CPUs for liquid-cooled scientific computing. 
The rollout of Blackwell solutions is progressing smoothly thanks to our reference architecture, enabling partners to quickly bring products to market while adding their own customizations. 
��



NVIDIA Blackwell
The Engine of the New Industrial Revolution

DECOMPRESSION ENGINE
800 GB/s

2nd GEN TRANSFORMER ENGINE
FP4/FP6 Tensor Core

AI SUPERCHIP
208B Transistors

5th GENERATION NVLINK
Scales to 576 GPUs

RAS ENGINE
100% In-System

Self-Test

SECURE AI
Full Performance
Encryption & TEE

Built to Democratize Trillion-Parameter AI

20 PetaFLOPS  of AI performance on a single GPU

4X Training | 30X Inference | 25X Energy Efficiency & TCO

Expanding AI Datacenter Scale to beyond100K GPUs

Note del presentatore
Note di presentazione
AI Superchip:​
two reticle-limited-sized physical die into a single unified GPU architecture.  ​
2nd Gen Transformer Engine: Custom Blackwell Tensor Core technology combined with TensorRT-LLM and Nemo Framework to accelerate inference and training for LLMs and Mixture-of-Experts (MoE) models.​
20 PF of AI, 5X more than Hopper​
20PF was the performance of the original Titan Supercomputer 10 years ago and size of a tennis court. Blackwell is the size of a credit card​
Secure AI: Fastest, most secure and attestable protections for LLMs and other sensitive data without performance compromise.​
New encryption engines that can secure PCIe and NVLink traffic at line rates so you can scale out to 128 GPUs to have security at scale​
5th Gen NVLink:   1800 GB/s; 2x the bandwidth of Hopper and expands NVLink scale up to 576 GPUs​ with NVLink Switch Chip
Critical capability for trillion-parameter models​
RAS Engine: Intelligent resiliency with a dedicated Reliability, Availability, and Serviceability (RAS) Engine to identify potential faults that may occur early on to minimize downtime.​
 5 billion bits of GPU SRAM tested (99% of all SRAM)​
192GB of HBM memory tested ​
2.5M scan chains for logic / wires (average length of 250 flip-flops per chain)​
Decompression Engine: Snappy, deflate, LZ4 data compression formats used by hyperscalers, databases, and the internet and can decompress data up to 800 GB/s​
20X faster decompression than CPUs allowing operations directly on compressed data​
​




Announcing Fifth Generation NVLink and NVLink Switch Chip
Efficient Scaling for Trillion Parameter Models

7.2 TB/s Full all-to-all Bidirectional Bandwidth

Sharp v4 plus FP8

3.6 TF In-Network Compute

Expanding NVLink up to 576 GPU NVLink Domain

18X Faster than Today’s Multi-Node Interconnect

Note del presentatore
Note di presentazione
2x Faster
8x Mored



GB200 NVL72
Delivers New Unit of Compute

36 GRACE CPUs
72 BLACKWELL GPUs
Fully Connected NVLink Switch 
Rack

GB200 NVL72

Training 720 PFLOPs
Inference 1,440 PFLOPs
NVL Model Size 27T params
Multi-Node All-to-All 130 TB/s
Multi-Node All-Reduce 260 TB/s

OEM and DGX 
options

Note del presentatore
Note di presentazione
NVIDIA GB200 NVL72​
Tensor Cores designed for AI compute​
Fast compute with high bandwidth memory​
36 Grace CPUs and 72 Blackwell GPUs all connected by a single NVLink high-speed backplane​
Single NVLink domain​
DELIVERS NEW UNIT OF COMPUTE​
Data Center Scale Design​
​
​
NEED INTERESTING THINGS​
5481 wires for NVLink​
Over 1.5 miles of cable in the NVLink cable cartridge​
108 blind mate connectors for NVLink​
Each tray has blind mate liquid cooling connections in rack; 54 total in rack​
Complete rack weighs almost 3000lbs​
Over 120kW of liquid cooling capacity​
1.4EF of compute in a single rack​
​






X86 + HOPPER
Architectures & Connectivity

PCIe

S

HGX 4-way HGX 8-way

NEWNEWNEW

HGX H100 4-GPU 80GB HBM3 3.4TB/s
HGX H200 4-GPU 141GB HBM3e 4.8TB/s

HGX H100 8-GPU 80GB HBM3 3.4TB/s
HGX H200 8-GPU 141GB HBM3e 4.8TB/s

H100 up to NVL2 94GB HBM3
H200 up to NVL4 141GB HBM3e

OEM and DGX 
options



NVIDIA GH200 Grace Hopper 
Superchip
Built for the New Era of Accelerated Computing and 
Generative AI

Most versatile compute
Best performance across CPU, GPU or memory intensive 

applications

Easy to deploy and scale out
1 CPU:1 GPU node simple to manage and schedule for for 

HPC, enterprise, and cloud

Best Perf/TCO for diverse workloads
Maximize data center utilization and power efficiency

Continued Innovation
Grace and Blackwell in 2025

900GB/s NVLink-C2C  |  624GB High-Speed Memory
4 PF AI Perf  |  72 Arm Cores

Note del presentatore
Note di presentazione
Most versatile scale out​
Unique GH arch with 900GB/s coherent NVLink-C2C connect CPU and GPU provides almost 600GB fast memory to GPU​
CPU intensive, GPU intensive, memory or combo workloads​
CPU Grace is high-perf and power efficient​
1:1 ratio can do all pre-processing for end-to-end​
 ​
Easy to scale out​
Easy to manage with 1:1 and simplify optimization and scheduling​
 ​
TCO always the best​
Run any kind of workload​
Power efficient with Grace and Hopper able to dynamically share power to optimize power and performance​
 ​
Strongly invest in this platform moving forward​
Grace Hopper with HBM3e coming​
Grace with Hopper-Next as well that delivers big improvement Inference compute​
Most power and perf efficiency





Grace Hopper Powers AI Supercomputing Datacenters
Grace Hopper Will Deliver 200 Exaflops of AI performance for Groundbreaking Research
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200 ExaFLOPS
AI Grace Hopper in Supercomputing Centers

GENCI

EXA1 HE

Helios

Miyabi

BioHive2

65%
of Hopper are Grace Hopper

2X
More energy efficient

Note del presentatore
Note di presentazione
With the introduction of Grace Hopper, a new wave of supercomputers, AI supercomputers are emerging.�If we look back over time we can see the explosive growth of AI:�The first GPU-accelerated supercomputers were Tsubame3 and Piz Daint systems.�In 2017, Sierra and Summit, powered by a combined 45,000 NVIDIA’s V100 GPU’s, which were the first exascale AI supercomputers, a combined 7 EF of peak AI performance.�By the release of Ampere’s A100 GPU, AI and deep learning were clearly recognized as a new tool for science that would revolutionize scientific computing.�Systems like Perlmutter,  Leonardo, and the Jewels Booster added another 20 EF of AI performance  to the scientific community.
�Recently MareNostum 4 came online  adding nearly 18 EF of AI.�Today Grace Hopper is powering the next wave of new exaflop AI systems around the globe.�New systems are being built as we speak including the Alps system at CSCS, Venado at Los Alamos National Labs, Vista at TACC, Isambard-AI at Bristol, and Jupiter in Julich.�
We already see a combined 200 Exaflops of AI of Grace Hopper Supercomputers for the SC community going to production 2024.  
80% of Hopper systems delivered into HPC are Grace Hopper systems.  Grace Hopper systems are 2X more energy efficient.�NVIDIA has been committed to Supercomputing for almost 20 years.  Now with Grace Hopper around the world and AI a new tool for science we are super excited how these new systems will provide breakthrough science.
These Grace Hopper systems are the first to be online of the systems we were referencing when we announced at SC23 that  200 ExaFLOPs of new ExaFLOP class AI systems are coming online in 2024.
Site/ Supercomputer/ Grace Hopper GPUs
Bristol Isambard-AI  5,280 planned
CEA EXA1 High Efficiency 1,908
CSCS Alps 2,688 now/ 10K planned�Cyfronet Helios 440
JCAHPC Miyabi 1,120
Julich Pre-Jupiter, JEDI 384 now/ 24,000 planned
Los Alamos Venado 2,560
NCSA DeltaAI 21 FP64 PF and 633 FP16 PF from 320 GH200 with 96GB/GPU (384GB GPU mem per node)



2-Way
2:2

4-Way
4:4

GRACE GPU-GPU NVLINK
Architectures & Cost of Connectivity

GH200 NVL2 480 GB LP5x
144GB HBM3e GH200 96GB 120 GB LP5x

96GB HBM3

Scale Out
AI Inference

Scale Out
Exascale HPC & AI Training

1-Way
1:1

GH200 96GB 480 GB LP5x
96GB HBM3

Scale Out
AI Inference



4X CX7

BMC

NVIDIA or OEM 
Provided

Baseboard

Grace Hopper Superchip 4-Way Design
The choice for the world’s fastest supercomputers



GH200 Grace Hopper HPC Platform
Unified Memory and Cache Coherence for Next Gen HPC Performance

Partially GPU Accelerated Apps No More PCIe Bottleneck CPU & GPU Cache Coherence
Big performance gains with no code changes Incremental code changes yield big gainsNVLink-C2C is 7X PCIe BW

DATA

CPU
GPU

PCIe

Note del presentatore
Note di presentazione
The Unified Memory and Cache Coherence enabled by NVLink-C2C allows Grace Hopper to deliver better performance than next gen x86 HPC systems on application code that are partially GPU accelerated. 

Partially GPU accelerated code may have certain parts or modules that are GPU accelerated, but large portions of the code are still CPU only.  Grace Hopper shines in these situations. 

First we look at OpenFOAM which is a Computational fluid dynamics (CFD) toolbox developed by OpenCFD
Popular in automotive and other engineering sectors
Highly configurable fluid flow solvers with turbulence / heat transfer / etc.
Leverage GPU accelerated AMGX linear solvers

The benchmark is HPC motorbike problem (Large) 
Around 30% of CPU-only execution is spent in linear solves

Performance on Grace Hopper is 2.5X that of x86+A100
High CPU and GPU memory bandwidth improve compute performance
C2C bandwidth minimises the cost of migrating CPU matrix data

Second we look at NAMD, a Molecular Dynamics Simulation 
Collective Variables provided by 3rd party Colvars1 module (CPU-only)
Colvars currently only compatible with NAMD’s GPU-offload mode

The benchmark is Glucose transporter 3 system (143k atoms)
Majority of forces are GPU accelerated 
Additional Colvars force computed on CPU
Major bottleneck is integration step bound by CPU memory bandwidth

Performance on Grace Hopper is almost 3X that of x86+A100
Grace CPU memory bandwidth accelerates integration step
NVLink C2C bandwidth prevents data transfer bottleneck

Lastly, we look at Quantum Chemistry application CP2K
Implements a suite of different methods - many not yet GPU accelerated
Memory capacity constraints often require to keep some data in system memory

Benchmark is Dataset "128-H2O"  with random-phase approximation (RPA) method
PDGEMM dominates CPU runtime → use GPU accelerated PDGEMM

Performance on Grace Hopper is almost 4X compared to x86+A100
Grace CPU memory bandwidth and NVLink C2C greatly accelerates CP2k RPA
C2C accelerated transfers hidden behind GPU-accelerated PDGEMM  

While Grace Hopper is excellent at speeding up existing partially GPU accelerated apps, the future is even brighter as developer’s can make incremental code changes taking advantage of unified memory and cache coherence to yield big performance gains.  For more details on how this works, please watch the GTC sessions “Accelerating HPC applications with ISO C++ on Grace Hopper” and Programming Model and Applications for Grace Hopper Superchip”
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Grace-Hopper Performance Across a Range of Algorithms

x86+A100
x86+H100
Grace Hopper

NVLINK C2C
900 GB/s

Faster CPU
3.1 FP64 Tflops
500 GB/s BW

Extended GPU Memory
480GB + 96GB

Note del presentatore
Note di presentazione
And it really works. The ability to share data so seamlessly, and at a speed that’s many times faster than a PCIe connection, is amazing for a whole range of different algorithms. These are results from a bunch of test runs by my friend Vishal – I’ve linked his talk below – and a key thing here is that these experiments range from CFD simulation on the left to shared data structures on the right. This really is a broad, general gain across lots of workloads. I really urge to check out his talk because he goes into a whole pile of detail that I don’t have time for here.



Hopper architecture



80B Transistors, TSMC 4N
HOPPER H100 TENSOR CORE GPU

2nd Gen Multi-Instance GPU 
Confidential Computing 
PCIe Gen5

New Memory System 
World’s First HBM3 DRAM 
Larger 50MB L2

4th Gen NVLink 900GB/s total BW 
New SHARP support 
NVLink Network

132 SMs 2x Performance per Clock 
4th Gen Tensor Core
Thread Block Clusters

Note del presentatore
Note di presentazione
H100 is built on TSMC’s custom 4-nanometer process and contains over 80B transistors, which makes it the world’s most advanced monolithic chip. 

The H100 GPU contains 132 SMs, each delivering twice the performance per clock over A100’s SMs and introduces multiple new features.

H100 also includes a new memory system that features the world’s first implementation of HBM3 and a larger L2 cache to deliver a generational leap in memory bandwidth.

And to support the Multi-GPU SuperPod and Cloud designs, H100 introduces a variety of new system architecture features. It includes the 4th generation of NVLink and a new NVLink Network, our second-generation Multi-Instance GPU technology, as well as new accelerated confidential computing support for secure accelerated computing.



NEW HOPPER SM ARCHITECTURE

▪ 2x faster FP32 & FP64 FMA 

▪ 256 KB L1$ / Shared Memory

▪  New 4th Gen Tensor Core

▪ New DPX instruction set

▪ New Tensor Memory Accelerator

▪ Fully asynchronous data movement

▪  New Thread Block Clusters

▪ Turn locality into efficiency

Note del presentatore
Note di presentazione
Hopper has made many improvements to its SM core.

It features a 2x clock-for-clock improvement in traditional FP32 and FP64 throughput.
It support 256 KB of unified L1$ and shared memory storage,  which is 33% more then A100.

It contains the new 4th generation Tensor Core that is 2x faster and more efficient. 

The Hopper SM introduces a new dedicated instruction set for dynamic programming called DPX which provides advanced operand fusion for the inner loop of many dynamic programming algorithms.

It adds a tensor memory accelerator for efficient asynchronous movement of multi-dimensional tensor data.

Finally, Hopper introduces the biggest shift in GPU compute since the foundation of CUDA: A new level of hierarchy between the CUDA hierarchy of thread blocks and grids called Thread Block Clusters.  Thread Block Cluster enable applications to take advantage of locality in order to dramatically improve efficiency.
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Tensor Cores

• Specialized high-performance compute cores for matrix multiply and accumulate (MMA) math 
operations for AI and HPC applications. 

• Operating in parallel across SMs in one NVIDIA GPU deliver massive increases in throughput and 
efficiency compared to standard floating-point (FP), integer (INT), and fused multiply-accumulate 
(FMA) operations. 

• Support for a wide range of data types (fp64, fp32, tf32, fp16, bfloat16, fp8, int8) and mixed 
precision

• New Transformer Engine designed specifically to accelerate Transformer model training and 
inference (chooses dynamically between FP8 and 16-bit calculations)

• Tensor Memory Accelerator feeds the H100 Tensor Cores with transfers large blocks of data and 
multi-dimensional tensors from global memory to shared memory and vice-versa. 

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.



FP8 TENSOR CORE

FP32|FP16|BF16|FP8
matrix

FP8
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FP8
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Allocate 1 bit to either range or precision Support for multiple accumulator and output types
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Note del presentatore
Note di presentazione
Let’s look at the new FP8 support in a little more detail.

On the left, we see the exponent range and mantissa precision provided by each of TensorCore floating point formats.  

You’ll note that Tensor Cores support two FP8 formats.  
One provide an extra bit of exponent range and matches the exponent range of FP16.   It can be thought of as a truncated mantissa version of FP16, like how BFLOAT16 is a truncated mantissa version of FP32.
The other FP8 format trades off one bit of range for an additional 1 bit of precision.

On the right, we see how the Tensor Core processes FP8 data.   The multiplication of FP8 data can be accumulated into either FP32 or FP16.
Once the matrix multiply is done, various common neural network functions, like adding a bias or applying an activation function, can be performed in the higher FP32 or FP16 precision.   The final result is then converted to desired output format before being stored back to memory.




Thread Block Clusters

• New feature introduces programming 
locality within clusters of SMs

• Shared memory blocks of SMs within a GPU 
Processing Cluster (GPC) can communicate 
directly (w/o going to HBM)

• Leveraged with CUDA cooperative groups API

For details, see “NVIDIA H100 Tensor Core GPU Architecture” white paper available for download
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HW-accelerated mem_copies
Global <=> Shared Mem 

Shared Mem <=> Shared Mem for Clusters

Address generation for 1D to 5D Tensors

Simplified programming model
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Synchronize with transaction barrier

A100
Using LDGSTS instr

Global Memory Global Memory

SM

SMEM L1 Cache

Threads

Tensor 
Core

Registers

TMA

SM

SMEM L1 Cache

Threads

Tensor 
Core

Registers

H100
Using TMA Unit

Addr gen by threads

Addr gen by TMA

Data Reads ReadsData + TransCnt

Asynchronous direct copy to Shared Mem 

TENSOR MEMORY ACCELERATOR UNIT
ASYNC MEM COPY USING TMA

2D Tensor in Mem

paddingblock width

Te
ns

or
 h

ei
gh

t

base addr

Region
to copybl

oc
k

he
ig

ht

Tensor width

Address generation for Region to copy

Tensor 
stride

Note del presentatore
Note di presentazione
On Hopper H100, another way to execute asynchronous mem copies is by using a new unit inside the SM called the Tensor Memory Accelerator or TMA.  As shown in the upper diagram, TMA can copy any subsection of a tensor with up to 5 dimensions.  Think of tensors as basically multi-dimensional arrays.

TMA provides a much simpler programming model since it takes over the task of address generation by computing stride, offset, and boundary conditions when copying segments of a tensor.  

It can handle copies of any size, up to the full size of Shared memory on an SM.  It can do asynchronous copies between global and shared memory in either direction, whereas A100 could only do asynchronous copies into shared memory.   For Clusters, it can also do copies from one Block’s shared memory to another Block’s shared memory.

A key advantage of TMA is it frees the threads to execute other independent work. On A100, shown on the lower diagram’s left side,  mem copies were executed using a special LoadGlobalStoreShared instruction so the threads were responsible for generating all the addresses and looping across the whole copy region.  On H100, shown on the right, TMA takes care of everything.  A single thread creates a copy descriptor before launching the TMA, and from then on address generation and data movement are handled completely in HW.

Overall, TMA is a very powerful DMA engine for asynchronous mem copies to or from Shared memory.
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CUDA



CUDA: NVIDIA’s Computing Platform
Used Everywhere

AI Training & Inference

Speech Visual Search

Video AnalysisRobotics

Gaming ScienceMedia & Entertainment

http://developer.nvidia.com/cuda-downloads

http://developer.nvidia.com/cuda-downloads


CUDA TOOLKIT
Libraries, Languages and Development Tools for GPU Computing

Programming 
Approaches

Development
Environment

Language Support

Libraries Programming Languages

“Drop-in” Acceleration Maximum Flexibility

NVIDIA 
Visual Profiler

Compile new languages to CUDA

FortranC++C

CUDA-GDB 
Debugger

CUDA Profiling
Tools Interface

CUDA
MEMCHECK

Note del presentatore
Note di presentazione
The CUDA toolkit itself is the platform on which that ecosystem rests.
It comprises GPU-enabled software built by NVIDIA, including development tools, libraries and compilers.
We also offer an LLVM back-end, which means other user-defined languages can target the GPU as well and have access to CUDA.



GPU Accelerated Libraries
“Drop-In” Acceleration For Your Applications

DEEP LEARNING

LINEAR ALGEBRA PARALLEL ALGORITHMS

SIGNAL, IMAGE & VIDEO

cuBLAS

cuSPARSE

nvGRAPH NCCL

CUDA
Math library

cuRAND

cuSOLVER

NVIDIA NPPcuFFT CODEC SDKTensorRT DeepStream SDK



NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect
Libraries | Accelerated C++ and Fortran | Directives | CUDA

x86_64 | Arm | OpenPOWER 
7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP
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libcu++

Thrust

CUB
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Note del presentatore
Note di presentazione
NVIDIA’s software product to support this programming strategy is the NVIDIA HPC SDK. This SDK provides everything developers need to program for the CPU and GPU and also scale applications up to the full system available to you. The HPC SDK supports all the programming models I’ve discussed. It provides 4 compilers, the CUDA nvcc compiler, plus high quality compilers for C, C++, and Fortran. The compilers provide great performance both for CPU and GPU applications and support x86, Arm, and OpenPower CPUs, so you can use them anywhere. Along with our compilers we include a large range of common libraries you’ll need, including our core C++ libraries, math libraries, and communication libraries to make your application perform great whether it’s running on one node or at supercomputer scale. Lastly, it includes NVIDIA’s profilers and debuggers to aid in your understanding of the application. All of this is freely available regardless of whether you have any NVIDIA hardware and is portable to all common CPU ISAs and on all the major clouds. Having a free and portable software stack like the HPC SDK makes it possible to move your application freely between CPU ISAs, GPUs, and even different clouds with ease. To download the HPC SDK, visit the website on this slide, download it via a container, install it via spack, or look for it on your favorite cloud provider. 



OK, but, What Does It Mean?



How GPU Acceleration Works

Application Code

GPU CPU
5% of Code

95% of Execution

Compute-Intensive Functions

Rest of Sequential CPU Code

95% of Code
5% of Execution

+



Piece-by-Piece, not All-or-Nothing
Incrementally accelerate key components of an application

Real applications are complex

No need to port the whole thing in one go
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Example: “Transformer” deep neural network



Piece-by-Piece, not All-or-Nothing
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Incrementally accelerate key components of an application

CUDA includes heterogeneous 
profiling tools to help evaluate 
which components to port next

Example: “Transformer” deep neural network



Piece-by-Piece, not All-or-Nothing
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Piece-by-Piece, not All-or-Nothing
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Piece-by-Piece, not All-or-Nothing
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What is CUDA
A Simplified View

• Domain-Specific Libraries

• CUDA Programming Environment
• Compiler
• CUDA programming model (will talk more about this)

• CUDA Runtime Libraries

• Driver:
• Kernel Mode Driver – Lives in the OS, handles low-level hardware 

interaction
• User Mode Driver – Integrates with your application, maps low-

level CUDA API calls to your specific HWOS CUDA KMD

CUDA UMD

NVCC

CUDA Runtime
Your Application

Math 
Libraries GPU Direct Other

Application

Driver



But, Of Course, a Real Application is Complex
Many Components, Many Dependencies

OS CUDA KMD

CUDA UMD

NVCC

CUDA Runtime
Your Application

Math 
Libraries GPU Direct Other

Application

Driver

Your Application

Mod A Mod CMod B Mod D Mod E

PyTorch

cuDNN

cuBLAS

PyTorch

cuDNN

cuBLAS

cuFFT

OS CUDA KMD

CUDA UMD



4 Ways To Accelerate Applications
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Libraries: Easy, High-Quality Acceleration

EASE OF USE Using libraries enables GPU acceleration without in-depth knowledge of 
GPU programming

“DROP-IN” Many GPU-accelerated libraries follow standard APIs, thus enabling 
acceleration with minimal code changes

QUALITY Libraries offer high-quality implementations of functions encountered in 
a broad range of applications 

PERFORMANCE NVIDIA libraries are tuned by experts



GPU Accelerated Libraries
“Drop-In” Acceleration For Your Applications

DEEP LEARNING

LINEAR ALGEBRA PARALLEL ALGORITHMS

SIGNAL, IMAGE & VIDEO

cuBLAS

cuSPARSE

nvGRAPH NCCL

CUDA
Math library

cuRAND

cuSOLVER

NVIDIA NPPcuFFT CODEC SDKTensorRT DeepStream SDK



3 Steps To A CUDA-Accelerated Application

STEP 1
Substitute library calls with equivalent CUDA library calls

saxpy ( ... )  cublasSaxpy ( ... )

STEP 2
Manage data locality

with CUDA: cudaMallocManaged,() cudaMalloc(), cudaMemcpy()
with CUBLAS: cublasAlloc(), cublasSetVector()

STEP 3 Rebuild and link the application with the CUDA-accelerated library
$ gcc myobj.o –l cublas 



Single Precision Alpha X Plus Y (SAXPY)

Part of Basic Linear Algebra Subroutines (BLAS) library

𝒛𝒛 =  𝛼𝛼𝒙𝒙 + 𝒚𝒚
x, y, z : vector
α : scalar



Drop-In Acceleration With CUDA Maths Libraries
In two easy steps

int N = 1 << 20;  // 1M elements

x = (float *)malloc(N * sizeof(float));

y = (float *)malloc(N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

useResult(y);

int N = 1 << 20;  // 1M elements

x = (float *)malloc(N * sizeof(float));

y = (float *)malloc(N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

useResult(y);

Original Code GPU-Accelerated Code



Drop-In Acceleration With CUDA Maths Libraries
Step 1: Update memory allocation to be CUDA-aware

int N = 1 << 20;  // 1M elements

x = (float *)malloc(N * sizeof(float));

y = (float *)malloc(N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

useResult(y);

int N = 1 << 20;  // 1M elements

cudaMallocManaged(&x, N * sizeof(float));

cudaMallocManaged(&y, N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

useResult(y);

Original Code GPU-Accelerated Code

Here, we use Unified Memory which automatically migrates
between host (CPU) and device (GPU) as needed by the program



Drop-In Acceleration With CUDA Maths Libraries
Step 2: Call CUDA library version of API

int N = 1 << 20;  // 1M elements

x = (float *)malloc(N * sizeof(float));

y = (float *)malloc(N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

useResult(y);

int N = 1 << 20;  // 1M elements

cudaMallocManaged(&x, N * sizeof(float));

cudaMallocManaged(&y, N * sizeof(float));

initData(x, y);

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

cublasSaxpy(N, 2.0, x, 1, y, 1);

useResult(y);

Original Code GPU-Accelerated Code

Here, we use Unified Memory which automatically migrates
between host (CPU) and device (GPU) as needed by the program



SIX WAYS TO SAXPY
Programming Languages for GPU Computing



Single Precision Alpha X Plus Y (SAXPY)

Part of Basic Linear Algebra Subroutines (BLAS) library

𝒛𝒛 =  𝛼𝛼𝒙𝒙 + 𝒚𝒚
x, y, z : vector
α : scalar

GPU SAXPY in multiple languages and libraries

A selection of possibilities, not a tutorial



void saxpy(int n, 
           float a, 
           float *x, 
           float *y)
{
#pragma acc kernels
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}

// Perform SAXPY on 1M elements
int N = 1<<20;
saxpy(N, 2.0, x, y);

Parallel C code with OpenACC

OpenACC Compiler Directives1

void saxpy(int n, 
           float a, 
           float *x, 
           float *y)
{

  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}

// Perform SAXPY on 1M elements
int N = 1<<20;
saxpy(N, 2.0, x, y);

Serial C code



cuBLAS Library2

int N = 1<<20;

cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasShutdown();

int N = 1<<20;

...

// Use your choice of blas library

// Perform SAXPY on 1M elements
blas_saxpy(N, 2.0, x, 1, y, 1);

Serial BLAS code Parallel cuBLAS code

You can also call cuBLAS from Fortran,
C++, Python and other languages



CUDA C++3

__global__ 
void saxpy(int n, float a, 
   float *x, float *y)
{
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  if (i < n) y[i] = a*x[i] + y[i];
}

// Perform SAXPY on 1M elements
int N = 1<<20;
saxpy<<< 4096, 256 >>>(N, 2.0, d_x, d_y);

void saxpy(int n, float a, 
   float *x, float *y)
{
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}

// Perform SAXPY on 1M elements
int N = 1<<20;
saxpy(N, 2.0, x, y);

Serial C code CUDA C++ code



CUDA C++ Core Libraries (CCCL)4

int N = 1<<20;
thrust::host_vector<float> x(N), y(N);
thrust::device_vector<float> d_x = x;
thrust::device_vector<float> d_y = y;
...

// Perform SAXPY on 1M elements
thrust::transform(d_x.begin(), d_x.end(), 
                  d_y.begin(),d_y.begin(), 
                  2.0f * _1 + _2)

int N = 1<<20;
std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
               y.begin(), y.end(),
       2.0f * _1 + _2);

Serial Standard C++ code CUDA C++ code



Standard C++ Parallel Algorithms (stdpar)5

int N = 1<<20;
std::vector<float> x(N), y(N), out;
out.reserve(N);

...

// Perform SAXPY on 1M elements 
std::transform(
 std::execution::par_unseq,
 x.begin(), x.end(), y.begin(), y.end(),
 std::back_inserter(out),
 [](int a, int b) {
  return 2.0f * a + b;
 });

int N = 1<<20;
std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
               y.begin(), y.end(),
       2.0f * _1 + _2);

Serial Standard C++ code CUDA C++ code



Python6

import numpy as np
from numba import vectorize

@vectorize(['float32(float32, float32,
             float32)'], target='cuda')
def saxpy(a, x, y):
 return a * x + y

N = 1048576

# Initialize arrays
A = np.ones(N, dtype=np.float32)
B = np.ones(A.shape, dtype=A.dtype)
C = np.empty_like(A, dtype=A.dtype)

# Add arrays on GPU
C = saxpy(2.0, X, Y)

import numpy as np

def saxpy(a, x, y):
  return [a * xi + yi 
          for xi, yi in zip(x, y)]

x = np.arange(2**20, dtype=np.float32)
y = np.arange(2**20, dtype=np.float32)

cpu_result = saxpy(2.0, x, y)

Standard Python Numba Parallel Python



“example”
executable

Anatomy of a CUDA binary

__global__ void kernel() {
    printf(“Hello, CUDA\n”);
}

void main() {
    kernel<<< 1, 1 >>>();
    cudaDeviceSynchronize();
}

nvcc example.cu –o example

Hello world example

Note del presentatore
Note di presentazione
If I look inside it, I’ve got three sections. I’ve obviously got a CPU code section which contains the executable code for main. I’ve got a GPU section which contains the GPU code for hello. And I’ve got a third section which is the PTX assembly listing that CUDA compiles for running on future hardware.



example.ptx

kernel()

main()

Anatomy of a CUDA binary

__global__ void kernel() {
    printf(“Hello, CUDA\n”);
}

void main() {
    kernel<<< 1, 1 >>>();
    cudaDeviceSynchronize();
}

nvcc example.cu –o example

CPU code section

GPU code section

PTX Compatibility Layer

Hello world example

Note del presentatore
Note di presentazione
If I look inside it, I’ve got three sections. I’ve obviously got a CPU code section which contains the executable code for main. I’ve got a GPU section which contains the GPU code for hello. And I’ve got a third section which is the PTX assembly listing that CUDA compiles for running on future hardware.



How Do We Keep Things Working 
Together?



CUDA Compatibility

The simplest use case: 
“Your compiled application will work forever on NVIDIA GPUs, 
regardless of installed driver”

All newer GPU drivers will be binary-compatible with older 
binaries

Requires statically linking libraries like the CUDA runtime

Recompiling from source may require API changes
Only binary compatibility is guaranteed

“Backward Compatibility” Software Considerations

Compiled User Application

NVIDIA Display Driver 
Version X

User-Mode Driver
(libcuda.so)

Kernel-Mode Driver
(nvidia.ko)

NVIDIA Display Driver 
Version ≥ X+1

User-Mode Driver
(libcuda.so)

Kernel-Mode Driver
(nvidia.ko)

Upgrade
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CUDA Compatibility

Binaries are built for a specific GPU family, PTX is used to target 
additional families

Each architecture supports a given ISA, or compute capability
PTX enables compatibility between architectures

Compiled applications target a specific CC, with some 
compatibility within a family (newer but not older)

Supported: 
CC 8.0 cubin runs on CC 8.6 (A100  A40)

Unsupported: 
CC 8.6 cubin cannot run on CC 8.0 (A40  A100)
CC 8.0 cubin cannot run on CC 7.0 (A100  V100) 
CC 7.0 cubin cannot run on CC 8.0 (V100  A100) 

“SM/Compute Compatibility” Hardware Considerations (Binaries)

Compiled User 
Application (.cubin)

NVIDIA Display Driver 

User-Mode Driver
(libcuda.so)

Kernel-Mode Driver
(nvidia.ko)

GPU Compute Capability 
Version x.y

GPU Compute Capability 
Version x.(y+)

Su
pp

or
te

d

GPU Compute Capability 
Version z._

https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf 

https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf


CUDA compatibility

PTX Code is compatible with future versions, both Major and 
Minor

Supported PTX Migration: 
CC 8.0 PTX runs on CC 8.6 (A100 PTX  A40)
CC 7.0 PTX runs on CC 8._ (V100 PTX  A100) 

Unsupported PTX Migration: 
CC 8.6 PTX cannot run on CC 8.0 (A40 PTX  A100)
CC 8.0 PTX cannot run on CC 7.0 (A100 PTX  V100) 

“PTX Compatibility” Hardware Considerations

User Application Code 
(PTX)

NVIDIA Display Driver 

User-Mode Driver
(libcuda.so)

Kernel-Mode Driver
(nvidia.ko)

GPU Compute Capability 
Version x.y

Supported

U
ns

up
po

rt
ed

https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf 

GPU Compute 
Capability 

Version (x-)._

GPU Compute 
Capability 

Version x.(y-)

GPU Compute 
Capability 

Version x(+).y

GPU Compute 
Capability 

Version x.y(+)

https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf


CUDA COMPATIBILITY
“PTX Compatibility” Hardware Considerations

Volta (SM-7.0)
Application

7.0
Volta

7.5
Turing

8.0
A100

8.6
GA10x

8.9
Ada

9.0
Hopper

“CUDA Everywhere”

Code for one GPU runs on all GPUs with newer SM version

CUDA applications are  portable between all chip classes 
(100, 10x, 20x, 21x, 10b, etc.)

 All current features supported on all future architectures

 Performance & capacities vary (e.g. SM count)

 A few features much slower but still functional (e.g. FP64) 

Volta applications “just work” on Turing/Ampere/Hopper
Datacenter libraries “just work” for Quadro, GeForce, etc.

Portability depends on PTX Just-In-Time Compilation

CC 
Version

5

6

7

8

9

10

11
JIT compilation Forward compatibility 

guarantee: PTX 8.0 runs 
on CC 9,10,11, ...

Exact match of SASS runs 
natively (many may exist)

PTX 8.0 won’t run on an older 
CC. Applications occasionally 
include older PTX to avoid 
shipping lots of SASS.

PTX 3.5

SASS 7.0

SASS 8.0

PTX 8.0

CUDA 
“Fat” 
binary

JIT compilation

SASS is pre-compiled binary code native to a specific GPU 
architecture - multiple versions may be packaged together

PTX is assembly code JIT compiled by CUDA when an 
application is run on a new GPU for which there is no SASS



NVIDIA Driver 
11x_VER_MAX

NVIDIA Driver 
495.29.05

NVIDIA Driver 
470.42.01

CUDA compatibility
“Minor-Version Compatibility” (Previously “Enhanced Compatibility”)

User Application with CTK 11._

NVIDIA Driver 
465.19.01

KMD
(nvidia.ko)

Applications created within a major-release of CUDA may 
run on a system with the minimum driver version

E.g., 11.x CTK requires 450.80.02

Works with:
Newer driver than CTK
Newer CTK than driver

New CTK features that require a new driver will return 
errors

Programmers must write code to check if features exist and 
if libraries are supported (e.g., cublas must match cudnn)*

PTX JIT unsupported (matching driver required)

KMD
(nvidia.ko)

KMD
(nvidia.ko)

KMD
(nvidia.ko)

* See NVIDIA “Best Practices” Documentation

11.3 UMD &
lib*.so

11.4 UMD & 
lib*.so

11._ UMD & 
lib*.so

11.5 UMD & 
lib*.so



CUDA Compatibility

Using a CUDA toolkit with higher-versioned UMD with a 
lower-versioned KMD

Deployment & upgrade of Drivers may be very disruptive, 
especially in CSP and enterprise datacenters

Can be used across major and minor versions of CTK

Compatibility Package to be installed, includes user-mode driver 
(among other files)

Via symbolic links, multiple compatibility versions can be installed 
together in a single system

Programmers must check for supported features & supported 
hardware

Supports PTX JIT compilation

“Forward Compatibility”

NVIDIA Display Driver 
Version 470.42.01

User-Mode Driver
(libcuda.so)

Kernel-Mode Driver
(nvidia.ko)

Compatibility Package

Replace

User Application Version 
11.7

(libcuda.so.515.43.04)
11.7 User-Mode Driver



Key Takeaways

• CUDA applications are compatible – forever

• CUDA programs within a major version – generally are compatible

• CUDA applications run against older drivers – with compatibility shims
• Matters in e.g. containers, data center environments



Multi GPU Multi Node programming

Note del presentatore
Note di presentazione
In the case of the CODA code you have on one side the 



Example: Jacobi solver

Solves the 2D-Laplace Equation on a rectangle

∆𝒖𝒖(𝒙𝒙,𝒚𝒚)=𝟎𝟎 ∀ (𝒙𝒙,𝒚𝒚)∈Ω\𝜹𝜹Ω

Dirichlet boundary conditions (constant values on boundaries) on left and right boundary

Periodic boundary conditions on top and bottom boundary



Example: Jacobi Solver
Single GPU

While not converged

    Do Jacobi step:

 for( int iy = 1       ; iy < ny-1  ; iy++ )

 for( int ix = 1       ; ix < nx-1  ; ix++ )

   a_new[iy*nx+ix] = -0.25 *

            -( a[ iy  *nx+(ix+1)] + a[ iy  *nx+ix-1]

            + a[(iy-1)*nx+ ix  ] + a[(iy+1)*nx+ix ] );

    Apply periodic boundary conditions 

 

    Swap a_new and a

    Next iteration



Example: Jacobi Solver
Multi GPU

While not converged

    Do Jacobi step:

 for( int iy = iy_start; iy < iy_end; iy++ )

 for( int ix = 1       ; ix < nx-1  ; ix++ )

   a_new[iy*nx+ix] = -0.25 *

            -( a[ iy  *nx+(ix+1)] + a[ iy  *nx+ix-1]

            + a[(iy-1)*nx+ ix  ] + a[(iy+1)*nx+ix ] );

    Apply periodic boundary conditions 

    Halo exchange

    Swap a_new and a

    Next iteration

One-step with ring 
exchange



Message Passing Interface - MPI

• Standard to exchange data between processes via messages
• Defines API to exchanges messages

• Point to Point: e.g. MPI_Send, MPI_Recv
• Collectives: e.g. MPI_Reduce

• Multiple implementations (open source and commercial)
• Bindings for C/C++, Fortran, Python, …
• E.g. MPICH, OpenMPI, MVAPICH, IBM Platform MPI, Cray MPT, …



MPI - Skeleton

#include <mpi.h>

int main(int argc, char *argv[]) {

  int rank,size;

  /* Initialize the MPI library */

  MPI_Init(&argc,&argv);

  /* Determine the calling process rank and total number of ranks */

  MPI_Comm_rank(MPI_COMM_WORLD,&rank);

  MPI_Comm_size(MPI_COMM_WORLD,&size);

  /* Call MPI routines like MPI_Send, MPI_Recv, ... */ 

  ... 

  /* Shutdown MPI library */

  MPI_Finalize();

  return 0;

}



MPI
Launching

$ mpirun -np 4 ./myapp <args>

myapp

rank = 0

myapp

rank = 1

myapp

rank = 2

myapp

rank = 3



Multi Process Multi GPU Programming
Using CUDA-aware MPI

Handle GPU affinity on multi-GPU nodes:

int local_rank = -1;

MPI_Comm_rank(local_comm,&local_rank);

int num_devices = 0;

cudaGetDeviceCount(&num_devices);

cudaSetDevice(local_rank % num_devices);

(Use M PI_Comm_split_type(MPI_COMM_WORLD, M PI_COM M _TYPE_SHARED, rank, info, &local_comm); to get 
local_comm. )



Multi Process Multi GPU Programming
Using CUDA-aware MPI

while (l2_norm > tol && iter < iter_max) {

  cudaMemsetAsync(l2_norm_d, 0, sizeof(real), compute_stream);

  launch_jacobi_kernel(a_new, a, l2_norm_d, iy_start, iy_end, nx, compute_stream);

  cudaEventRecord(compute_done, compute_stream);

  cudaMemcpyAsync(l2_norm_h, l2_norm_d, sizeof(real), cudaMemcpyDeviceToHost, compute_stream);

  cudaEventSynchronize(compute_done);

  const int top = rank > 0 ? rank - 1 : (size - 1);

  const int bottom = (rank + 1) % size;

  // Top/Bottom Halo exchange -> next slide

  cudaStreamSynchronize(compute_stream);

  MPI_CALL(MPI_Allreduce(l2_norm_h, &l2_norm, 1, MPI_REAL_TYPE, MPI_SUM, MPI_COMM_WORLD));

  l2_norm = std::sqrt(l2_norm);

  std::swap(a_new, a); iter++;

}



Example Jacobi
Top/Bottom Halo

MPI_Sendrecv(a_new+iy_start*nx, nx, MPI_FLOAT, top , 0, 

      a_new+(iy_end*nx), nx, MPI_FLOAT, bottom, 0, 

      MPI_COMM_WORLD, MPI_STATUS_IGNORE);



Example Jacobi
Top/Bottom Halo

MPI_Sendrecv(a_new+iy_start*nx, nx, MPI_FLOAT, top , 0, 

      a_new+(iy_end*nx), nx, MPI_FLOAT, bottom, 0, 

      MPI_COMM_WORLD, MPI_STATUS_IGNORE);

1

1



Example Jacobi
Top/Bottom Halo

MPI_Sendrecv(a_new+iy_start*nx, nx, MPI_FLOAT, top , 0, 

      a_new+(iy_end*nx), nx, MPI_FLOAT, bottom, 0, 

      MPI_COMM_WORLD, MPI_STATUS_IGNORE);

1
2

1
2

MPI_Sendrecv(a_new+(iy_end-1)*nx, nx, MPI_FLOAT, bottom, 0,

      a_new              , nx, MPI_FLOAT, top, 0, 

             MPI_COMM_WORLD, MPI_STATUS_IGNORE);



Benchmark Setup
DGX H100

• CUDA Driver 535.129.03

• NVIDIA HPC SDK container: Tag nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04

• GPUs@1980 Mhz

• Reported Runtime is the minimum of 5 repetitions

• For all runs CPU and GPU affinities have been tuned: See bench.sh in https://github.com/NVIDIA/multi-gpu-programming-models 

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nvhpc
https://github.com/NVIDIA/multi-gpu-programming-models


Example: Jacobi Solver
Single GPU performance vs. problem size – NVIDIA H100 80GB HBM3

Benchmarksetup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,
GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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Note del presentatore
Note di presentazione
7168 (< (20480*20480)/8 ) runs with 99.% efficiency




Multi GPU Jacobi Runtime And Parallel Efficiency
MPI on DGX H100 – 20480 x 20480, 1000 iterations
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Benchmark setup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,
GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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Multi GPU Jacobi Nsight Systems Timeline
MPI 8 NVIDIA H100 80GB HBM3 on DGX H100

Note del presentatore
Note di presentazione
TODO: Consider updating timeline with problem size matching benchmark (currently all are 16384x16384 while benchmarks are 20480x20480)




Overlapping Communication and Computation​
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MPI
Overlapping Communication and Computation​

launch_jacobi_kernel( a_new, a, l2_norm_d, iy_start, (iy_start+1), nx, push_top_stream );

launch_jacobi_kernel( a_new, a, l2_norm_d, (iy_end-1), iy_end, nx, push_bottom_stream ); 

launch_jacobi_kernel( a_new, a, l2_norm_d, (iy_start+1), (iy_end-1), nx, compute_stream ); 

const int top = rank > 0 ? rank - 1 : (size-1);

const int bottom = (rank+1)%size;

cudaStreamSynchronize( push_top_stream );

MPI_Sendrecv( a_new+iy_start*nx, nx, MPI_REAL_TYPE, top , 0,

       a_new+(iy_end*nx), nx, MPI_REAL_TYPE, bottom, 0,

       MPI_COMM_WORLD, MPI_STATUS_IGNORE );

cudaStreamSynchronize( push_bottom_stream );

MPI_Sendrecv( a_new+(iy_end-1)*nx, nx, MPI_REAL_TYPE, bottom, 0,

       a_new, nx, MPI_REAL_TYPE, top, 0, MPI_COMM_WORLD,

       MPI_STATUS_IGNORE );



Multi GPU Jacobi Nsight Systems Timeline
MPI Overlap 8 NVIDIA H100 80GB HBM3 on DGX H100



Multi GPU Jacobi Parallel Efficiency
DGX H100 – 20480 x 20480, 1000 iterations

Benchmarksetup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,
GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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NCCL
Optimized inter-GPU communication

• Library for efficient communication with 
GPUs

• First: Collective Operations (e.g. Allreduce), 
as they are required for Deep Learning

• Since 2.8: Support for Send/Recv between 
GPUs

• Library running on GPU: Communication 
calls are translated to a GPU kernel (running 
on a stream) 

NCCL : NVIDIA Collective Communication Library
Communication library running on GPUs, for GPU buffers.

Binaries : https://developer.nvidia.com/nccl and in NGC containers
Source code : https://github.com/nvidia/nccl 
Perf tests : https://github.com/nvidia/nccl-tests  

Sockets
InfiniBand

Other networks

GPU GPU

https://developer.nvidia.com/nccl
https://github.com/nvidia/nccl
https://github.com/nvidia/nccl-tests


Multi GPU Jacobi Parallel Efficiency
DGX H100 – 20480 x 20480, 1000 iterations

Benchmarksetup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,
GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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NCCL
Overlapping Communication and Computation​

int leastPriority = 0;
int greatestPriority = leastPriority;
cudaDeviceGetStreamPriorityRange(&leastPriority, &greatestPriority);
cudaStream_t compute_stream,push_stream;
cudaStreamCreateWithPriority(&compute_stream, cudaStreamDefault, leastPriority);
cudaStreamCreateWithPriority(&push_stream, cudaStreamDefault, greatestPriority);

...

launch_jacobi_kernel(a_new, a, l2_norm_d, iy_start,    (iy_start + 1), nx, push_stream);   

launch_jacobi_kernel(a_new, a, l2_norm_d, (iy_end - 1),  iy_end,     nx, push_stream); 

launch_jacobi_kernel(a_new, a, l2_norm_d, (iy_start + 1), (iy_end - 1),  nx, compute_stream);  

ncclGroupStart(); 

ncclRecv(a_new,           nx, NCCL_REAL_TYPE, top, nccl_comm, push_stream)

ncclSend(a_new + (iy_end - 1) * nx, nx, NCCL_REAL_TYPE, btm, nccl_comm, push_stream); 

ncclRecv(a_new + (iy_end * nx),   nx, NCCL_REAL_TYPE, btm, nccl_comm, push_stream); 

ncclSend(a_new + iy_start * nx,   nx, NCCL_REAL_TYPE, top, nccl_comm, push_stream);

ncclGroupEnd();

Need to use  CUDA high priority 
streams to avoid NCCL comms 
getting stuck behind compute.



Multi GPU Jacobi Parallel Efficiency
DGX H100 – 20480 x 20480, 1000 iterations

Benchmarksetup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,
GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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CUDA Graphs
Reducing launch overhead

GPU: Short kernel Short kernel Short kernel

CPU: Kernel launch Kernel launch Kernel launch

CUDA graphs reduce kernel launch latencies:

GPU: Short kernel Short kernel Short kernel

CPU: Graph launch

timeline

From Advanced Performance Optimization in CUDA [S62192] by Igor Terentyev more details on Graphs there.

https://register.nvidia.com/flow/nvidia/gtcs24/attendeeportal/page/sessioncatalog/session/1695395019805001m1oR


Three-Stage Execution Model
Minimizes Execution Overheads – Pre-Initialize As Much As Possible

Define

Single Graph “Template”

Created in host code

or built up from libraries

Instantiate 

Multiple “Executable Graphs”

Snapshot of templates

Sets up & initializes GPU execution structures 
(create once, run many times)

Execute

Executable Graphs Running in CUDA Streams

Concurrency in graph is not limited by stream

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

s1 s2 s3



Multi GPU Jacobi Parallel Efficiency
DGX H100 – 20480 x 20480, 1000 iterations

Benchmarksetup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,
GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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NVSHMEM
Implementation of OpenSHMEM, a Partitioned Global Address Space (PGAS) library

Symmetric objects are allocated collectively with the same size on every PE

 Symmetric memory: nvshmem_malloc(…); Private memory: cudaMalloc(…);

CPU (blocking and stream-ordered) and CUDA Kernel interfaces
 Read: nvshmem_get(…); Write: nvshmem_put(…); Atomic: nvshmem_atomic_add(…);
 Flush writes: nvshmem_quiet(); Order writes: nvshmem_fence();

 Synchronize: nvshmem_barrier(); Poll: nvshmem_wait_until(…);

Interoperable with MPI



Multi GPU Jacobi Parallel Efficiency
DGX H100 – 20480 x 20480, 1000 iterations

[1] Serial execution baseline uses same kernel as parallel version
Benchmarksetup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04 ,

GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions
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Conclusion
Thank you for your attention

Source is on GitHub: https://github.com/NVIDIA/multi-gpu-programming-models  

GPUDirect P2P/RDMA CUDA stream/graph-aware Kernel Initiated 
Communication

MPI Improves Perf. No No

NCCL Improves Perf. Yes No

NVSHMEM Required Yes Yes

https://github.com/NVIDIA/multi-gpu-programming-models
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