

Technological Update November 2024

All information in the following presentation is NVIDIA confidential, including codenames, future products, and performance projections

No information in this presentation is allowed to be revealed or published without NVIDIA consent

Sharing or distributing copies of this presentation to anyone is strictly prohibited

Use of cameras to capture information is strictly prohibited

NVIDIA CONFIDENTIAL PRESENTATION

Customer Guidelines

- NVIDIA hardware architecture overview;
- Main differences between the different NVIDIA GPU architectures;
- Programming languages available for GPUs;
- Main techniques for optimizing code performance;
- References to in-depth courses on the different topics.

Agenda

• Overview of the main drivers / software libraries needed for the different hardware components;

Tools for debugging and performance analysis (e.g. Visual/Compute Profiler);

• Main techniques for optimizing intra-node and inter-node multi-GPU communications with infiniband (e.g. GPUDirect P2P, RDMA); Roadmap of NVIDIA technological developments (for what concerns CPU/GPU);

Pre-Exascale Supercomputing

EDGE

SIMULATION

Viz

EDGE

Exascale Supercomputing

SIM + AI

DIGITAL TWIN

QUANTUM COMPUTING

📀 NVIDIA.

AI Factory for Research

SIMULATION

DIGITAL TWIN

QUANTUM COMPUTING

CLOUD

📀 NVIDIA.

DRUG DISCOVERY EvolutionaryScale

CLIMATE MODELING KAUST

AI: The new tool for Science

CANCER RESEARCH

Wellcome Sanger Institute

LABORATORY ROBOTICS

Argonne National Lab

ASTRO FOUNDATION MODELS The Flatiron Institute

AGRICULTURAL HEALTH Fermata

MATERIALS DISCOVERY

Microsoft Research

SEISMIC GEOSCIENCE California Institute of Technology

Al is Transforming Material Science and Chemistry

Materials Project Multi-National Effort

MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields

ML] 26 Jan 2023

Ilyes Batatia Engineering Laboratory, University of Cambridge Cambridge, CB2 1PZ UK Department of Chemistry, ENS Paris-Saclay, Université Paris-Saclay 91190 Gif-sur-Yvette, France ilyes.batatia@ens-paris-saclay.fr

Gregor N. C. Simm Engineering Laboratory, University of Cambridge Cambridge, CB2 1PZ UK **Dávid Péter Kovács** Engineering Laboratory, University of Cambridge Cambridge, CB2 1PZ UK

Christoph Ortner Department of Mathematics University of British Columbia Vancouver, BC, Canada V6T 1Z2

MACE OpenSource

Broad industry innovation and achievement

Article

Scaling deep learning for materials discovery

https://doi.org/10.1038/s41586-023-06735-9 Received: 8 May 2023

Accepted: 10 October 2023

Published online: 29 November 2023

Open access

2024

May

10

Sci]

ntrl-

Check for updates

Amil Merchant^{1,3}, Simon Batzner^{1,3}, Samuel S. Schoenholz^{1,3}, Muratahan Aykol¹, Gowoon Cheon² & Ekin Dogus Cubuk^{1,3}

Novel functional materials enable fundamental breakthroughs across technological applications from clean energy to information processing^{1–11}. From microchips to batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by expensive trial-and-error approaches. Concurrently, deep-learning models for language, vision and biology have showcased emergent predictive capabilities with increasing data and computation^{12–14}. Here we show that graph networks trained at scale can reach unprecedented levels of generalization, improving the efficiency of materials discovery by an order of magnitude. Building on 48,000 stable crystals identified in continuing studies^{15–17}, improved efficiency enables the discovery of 2.2 million structures below the current convex hull, many of which escaped previous

GNoME Google DeepMind

MatterSim: A Deep Learning Atomistic Model Across

Elements, Temperatures and Pressures

Han Yang^{1*†}, Chenxi Hu^{1†}, Yichi Zhou^{1†}, Xixian Liu^{1†}, Yu Shi^{1†}, Jielan Li^{1*†}, Guanzhi Li^{1†}, Zekun Chen^{1†}, Shuizhou Chen^{1†}, Claudio Zeni¹, Matthew Horton¹, Robert Pinsler¹, Andrew Fowler¹, Daniel Zügner¹, Tian Xie¹, Jake Smith¹, Lixin Sun¹, Qian Wang¹, Lingyu Kong¹, Chang Liu¹, Hongxia Hao^{1*}, Ziheng Lu^{1*}

^{1*}Microsoft Research AI for Science.

*Corresponding author(s). E-mail(s): hanyang@microsoft.com; jielanli@microsoft.com; hongxiahao@microsoft.com; zihenglu@microsoft.com; †These authors contributed equally to this work.

Abstract

MatterSIM Microsoft Research

202

Jan

29

rl-sci]

MatterGen: a generative model for inorganic materials design

Claudio Zeni^{1†}, Robert Pinsler^{1†}, Daniel Zügner^{1†}, Andrew Fowler^{1†}, Matthew Horton^{1†}, Xiang Fu¹, Aliaksandra Shysheya¹, Jonathan Crabbé¹, Lixin Sun¹, Jake Smith¹, Bichlien Nguyen¹, Hannes Schulz¹, Sarah Lewis¹, Chin-Wei Huang¹, Ziheng Lu¹, Yichi Zhou¹, Han Yang¹, Hongxia Hao¹, Jielan Li¹, Ryota Tomioka^{1*†}, Tian Xie^{1*†}

¹Microsoft Research AI4Science.

*Corresponding author(s). E-mail(s): ryoto@microsoft.com; tianxie@microsoft.com; †Equal contribution; non-corresponding authors are listed in random order.

> MatterGen Microsoft Research

Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models

 $\label{eq:LuisBarroso-Luque} \mbox{Muhammed Shuaibi}, \mbox{Xiang Fu}, \mbox{Brandon M. Wood}, \mbox{Misko Dzamba}, \mbox{Meng Gao}, \mbox{Ammar Rizvi}, \mbox{C. Lawrence Zitnick}, \mbox{Zachary W. Ulissi}$

Fundamental AI Research (FAIR) at Meta

The ability to discover new materials with desirable properties is critical for numerous applications from helping mitigate climate change to advances in next generation computing hardware. AI has the potential to accelerate materials discovery and design by more effectively exploring the chemical space compared to other computational methods or by trial-and-error. While substantial progress has been made on AI for materials data, benchmarks, and models, a barrier that has emerged is the lack of publicly available training data and open pre-trained models. To address this, we present a Meta FAIR release of the Open Materials 2024 (OMat24) large-scale open dataset and an accompanying set of pre-trained models. OMat24 contains over 110 million density functional theory (DFT) calculations focused on structural and compositional diversity. Our EquiformerV2 models achieve state-of-the-art performance on the Matbench Discovery leaderboard and are capable of predicting ground-state stability and formation energies to an F1 score above 0.9 and an accuracy of 20 meV/atom, respectively. We explore the impact of model size, auxiliary denoising objectives, and fine-tuning on performance across a range of datasets including OMat24, MPtraj, and Alexandria. The open release of the OMat24 dataset and models enables the research community to build upon our efforts and drive

> Open Materials 2024 Meta FAIR

trl-sci] 16 Oct 2024

Announcing Earth-2 NIMs for CorrDiff & FourCastNet

GEFS Lower-Resolution Forecast ~25km

CorrDiff NIM for Generative AI Powered Downscaling | FourCastNet NIM for Global Weather Forecasting

Forecast Rollout T=0 to T=120 hrs

Capture Extremely Rare Events 3 Sigma or 4 Sigma

NIM CUDA-Accelerated Agentic AI Libraries

Grace Blackwell MGX Node

NVLink Switch

NVIDIA BUILDS AI SUPERCOMPUTING INFRASTRUCTURE One Year Rhythm | Supercluster Scale | Full-Stack | CUDA Everywhere

Omniverse CUDA-Accelerated Physical AI Libraries

CUDA • D
Cluster-Sca
System
Chip S

GB200 NVL72 SuperPOD

Chips Purpose-Built for AI Supercomputing GPU | CPU | DPU | NIC | NVLink Switch | IB Switch | ENET Switch CUDA-X Libraries

DOCA • NCCL cale Software n Software Software

Accelerated Software Stack

Quantum Switch

Spectrum-X Switch

Inventec

Lenovo

Grace Hopper Superchip

Ecosystem Powering the Next Wave of AI Supercomputing Systems

Partners Supercharge HPC and AI

PEGATRON

NVIDIA GB200 Grace Blackwell NVL4 Superchip

NVIDIA GB200 Grace Blackwell Superchip

GIGABYTE[™]

Hewlett Packard Enterprise

H200 NVL

AI SUPERCHIP 208B Transistors

2nd GEN TRANSFORMER ENGINE FP4/FP6 Tensor Core

NVIDIA Blackwell The Engine of the New Industrial Revolution

Built to Democratize Trillion-Parameter Al

5th GENERATION NVLINK Scales to 576 GPUs

RAS ENGINE 100% In-System Self-Test

- 20 PetaFLOPS of AI performance on a single GPU
- 4X Training | 30X Inference | 25X Energy Efficiency & TCO
- Expanding AI Datacenter Scale to beyond100K GPUs

SECURE AI Full Performance Encryption & TEE

DECOMPRESSION ENGINE 800 GB/s

Announcing Fifth Generation NVLink and NVLink Switch Chip Efficient Scaling for Trillion Parameter Models

7.2 TB/s Full all-to-all Bidirectional Bandwidth

Sharp v4 plus FP8

3.6 TF In-Network Compute

Expanding NVLink up to 576 GPU NVLink Domain

18X Faster than Today's Multi-Node Interconnect

	•
	III.
I I	
(
E D	
-	

GB200 NVL72 Delivers New Unit of Compute

Training Inference **NVL Model Size** Multi-Node All-to-All Multi-Node All-Reduce

GB200 NVL72

36 GRACE CPUs 72 BLACKWELL GPUs Fully Connected NVLink Switch Rack

> 720 PFLOPs 1,440 PFLOPs 27T params 130 TB/s 260 TB/s

> > **OEM and DGX** options

Choose The Right <u>Solution</u> For The Job

Scale-up, CPU+GPU & HGX Products

Real-Time Trillion-Parameter Models LLM & MoE

Graph Neural Networks

Massive Scale Model Training & Inference

405B - 1T+

Rack Power: ~120 / 70kW

NVLink Domain 72

Max GPUs per NVLink Domain Max Performance & Capability

GB200 NVL72 1000W, 480GB, 144GB

Quantum-2/CX7

N/A

4-8 GPUs per Baseboard Highest Compute Performa AI, HPC & Data Analytics

HGX Products	Scale-out, CPU+GPU & PCIe Products				
Highest Compute Performance HPC & Al	Most Versatile Platform Diverse Workloads	Most Efficient Compute LLM Inference, AI + HPC	Fast Universal AI + Graphics Text to Image/Video	Al Video Entry-tier Universal & Edge Al	
	ı∥ııı ← L 🀲		J.C.		
Al Training, Inference & Scientific Research	LLM Inference & Retrieval- Augmented Generation	LLM Inference & Retrieval- Augmented Generation	Text to Image/Video Al Multi-modal Generative Al	Edge AI, Inference + Video and AI	
				البالي	
Data Analytics	Data Analytics, Vector Database & HPC	AI, HPC & Data Analytics	Fine Tune Training/Inference, GenAI + Omniverse	Mobile Cloud Gaming + vWS	
70B-405B	70B-175B	70B-175B	13B-70B	Up to 7B	
Node Power: ~11 / 5.5kW	Node Power: ~3kW	Node Power: ~8kW	Node Power: ~3kW	Node Power: ≤2kW	
NVLink Domain 8 & 4	NVLink Domain 2	NVLink Domain 4 & 2	NA	NA	
4-8 GPUs per Baseboard lighest Compute Performance AI, HPC & Data Analytics	1 – 2 GPUs per node Best Inference TCO Adv. Arch for AI & HPC	4-8 GPUs per node 2 nd Generation MIG 5-year NVIDIA AI Enterprise	Fastest RT Graphics Largest Render Models	1-16 GPUs per node Video & Graphics Compact & Versatile	
HGX H200 H100 700W, 141GB 80GB	GH200 NVL2 1000W, 480GB, 144GB	H200 NVL H100 NVL 600W, 141GB 400W, 94GB NVL2 & 4 NVL2	L40S 350W 48GB 2-Slot FHFL	L4 72W 24GB 1-Slot HHHL	
Quantum-2/ConnectX-7					
Spectrum-X / B3140H SuperNIC				Ethernet/Wi-Fi	
BlueField-3 DPU					

X86 + HOPPER Architectures & Connectivity

HGX H100 4-GPU HGX H200 4-GPU

NEW

80GB HBM3 3.4TB/s 141GB HBM3e 4.8TB/s

HGX H100 8-GPU HGX H200 8-GPU

80GB HBM3 3.4TB/s 141GB HBM3e 4.8TB/s

NEW

NVIDIA GH200 Grace Hopper Superchip

Built for the New Era of Accelerated Computing and **Generative Al**

Most versatile compute

Best performance across CPU, GPU or memory intensive applications

Easy to deploy and scale out 1 CPU:1 GPU node simple to manage and schedule for for HPC, enterprise, and cloud

Best Perf/TCO for diverse workloads Maximize data center utilization and power efficiency

Continued Innovation

Grace and Blackwell in 2025

900GB/s NVLink-C2C | 624GB High-Speed Memory 4 PF AI Perf | 72 Arm Cores

Grace Hopper Powers Al Supercomputing Datacenters

400 350 Cumulative AI Performance (ExaFLOPS of AI) 300 250 200 150 100 50 0

2015

2016

Grace Hopper Will Deliver 200 Exaflops of AI performance for Groundbreaking Research

Cumulative AI FLOPS

Isambard A an Ois VENADO

200 ExaFLOPS Al Grace Hopper in Supercomputing Centers

65% of Hopper are Grace Hopper

> **2X** More energy efficient

GH200 96GB

480 GB LP5x 96GB HBM3

Scale Out Al Inference

GRACE GPU-GPU NVLINK

Architectures & Cost of Connectivity

Grace Hopper Superchip 4-Way Design

Hewlett Packard Enterprise

The choice for the world's fastest supercomputers

GH200 Grace Hopper HPC Platform Unified Memory and Cache Coherence for Next Gen HPC Performance

Grace-Hopper Superchip Workload Performance

Hopper architecture

132 SMs 2x Performance per Clock 4th Gen Tensor Core **Thread Block Clusters**

HOPPER H100 TENSOR CORE GPU 80B Transistors, TSMC 4N

4th Gen NVLink 900GB/s total BW New SHARP support **NVLink Network**

NEW HOPPER SM ARCHITECTURE

- 2x faster FP32 & FP64 FMA
- 256 KB L1\$ / Shared Memory
- New 4th Gen Tensor Core
- New DPX instruction set
- New Tensor Memory Accelerator
 - Fully asynchronous data movement
- New Thread Block Clusters
 - Turn locality into efficiency

SM

		_	
	-	Warp	
-		Disp	
-			
	Regis		
Thirteel			
INT32	FP32	FP32	
LD/ ST	1000	.D/ L ST :	

		10.
)	Warp
		Disp
		Regis
INT32	FP32	FP32
LD/	LD/ L	_D/
ST	ST	ST
_	_	

Tex

- Specialized high-performance compute cores for matrix multiply and accumulate (MMA) math operations for AI and HPC applications.
- Operating in parallel across SMs in one NVIDIA GPU deliver massive increases in throughput and efficiency compared to standard floating-point (FP), integer (INT), and fused multiply-accumulate (FMA) operations.
- Support for a wide range of data types (fp64, fp32, tf32, fp16, bfloat16, fp8, int8) and mixed precision
- New Transformer Engine designed specifically to accelerate Transformer model training and inference (chooses dynamically between FP8 and 16-bit calculations)
- Tensor Memory Accelerator feeds the H100 Tensor Cores with transfers large blocks of data and multi-dimensional tensors from global memory to shared memory and vice-versa.

Tensor Cores

Allocate 1 bit to either range or precision

2x throughput & half footprint of FP16/BF16

FP8 TENSOR CORE

Support for multiple accumulator and output types

For details, see "NVIDIA H100 Tensor Core GPU Architecture" white paper available for download

Thread Block Clusters

New feature introduces programming locality within clusters of SMs Shared memory blocks of SMs within a GPU Processing Cluster (GPC) can communicate directly (w/o going to HBM) Leveraged with CUDA cooperative groups API

HW-accelerated mem_copies

Global <=> Shared Mem

Shared Mem <=> Shared Mem for Clusters

Address generation for 1D to 5D Tensors

Simplified programming model

Fully asynchronous with threads

No addr gen or data movement overhead Synchronize with transaction barrier

TENSOR MEMORY ACCELERATOR UNIT

ASYNC MEM COPY USING TMA

Software

CUDA

CUDA: NVIDIA's Computing Platform Used Everywhere

Media & Entertainment

http://developer.nvidia.com/cuda-downloads

CUDA TOOLKIT Libraries, Languages and Development Tools for GPU Computing

Programming Approaches

Development Environment

Language Support

Libraries

"Drop-in" Acceleration

CUDA Profiling Tools Interface

Programming Languages

Maximum Flexibility

CUDA-GDB Debugger

Compile new languages to CUDA

DEEP LEARNING

LINEAR ALGEBRA

GPU Accelerated Libraries "Drop-In" Acceleration For Your Applications

SIGNAL, IMAGE & VIDEO

PARALLEL ALGORITHMS

NVIDIA HPC SDK

Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect Libraries | Accelerated C++ and Fortran | Directives | CUDA x86_64 | Arm | OpenPOWER 7-8 Releases Per Year | Freely Available

OK, but, What Does It Mean?

How GPU Acceleration Works

Application Code

Rest of Sequential CPU Code

CPU 95% of Code 5% of Execution

Piece-by-Piece, not All-or-Nothing

Incrementally accelerate key components of an application

Real applications are complex

No need to port the whole thing in one go

Piece-by-Piece, not All-or-Nothing

Incrementally accelerate key components of an application

CUDA includes heterogeneous profiling tools to help evaluate which components to port next

Piece-by-Piece, not All-or-Nothing Incrementally accelerate key components of an application

Piece-by-Piece, not All-or-Nothing Incrementally accelerate key components of an application

Piece-by-Piece, not All-or-Nothing

Incrementally accelerate key components of an application

What is CUDA A Simplified View

- Domain-Specific Libraries
- - Compiler
- CUDA Runtime Libraries

- Driver:
 - interaction

CUDA Programming Environment

CUDA programming model (will talk more about this)

• Kernel Mode Driver – Lives in the OS, handles low-level hardware

• User Mode Driver – Integrates with your application, maps lowlevel CUDA API calls to your specific HW

But, Of Course, a Real Application is Complex

Many Components, Many Dependencies

"Drop-in" Acceleration

4 Ways To Accelerate Applications

Applications

Directives (OpenACC, OpenMP)

Standard Languages

Easily Accelerate Applications

Portable Performance

Flexibility

"Drop-in" Acceleration

4 Ways To Accelerate Applications

Applications

Directives (OpenACC, OpenMP)

Standard Languages

Easily Accelerate Applications

Portable Performance

Flexibility

EASE OF USE

"DROP-IN"

QUALITY

PERFORMANCE

Libraries: Easy, High-Quality Acceleration

Using libraries enables GPU acceleration without in-depth knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions encountered in a broad range of applications

NVIDIA libraries are tuned by experts

DEEP LEARNING

LINEAR ALGEBRA

GPU Accelerated Libraries "Drop-In" Acceleration For Your Applications

SIGNAL, IMAGE & VIDEO

PARALLEL ALGORITHMS

Substitu	STEP 1
Manage wit	STEP 2
Rebuild	STEP 3

3 Steps To A CUDA-Accelerated Application

ite library calls with equivalent CUDA library calls

data locality cudaMallocManaged,() cudaMalloc(), cudaMemcpy() th CUDA: ith CUBLAS: cublasAlloc(), cublasSetVector()

and link the application with the CUDA-accelerated library \$ gcc myobj.o -1 cublas

Single Precision Alpha X Plus Y (SAXPY)

Part of Basic Linear Algebra Subroutines (BLAS) library

$z = \alpha x + y$ *x*, *y*, *z* : vector α : scalar

Drop-In Acceleration With CUDA Maths Libraries

int N = 1 << 20;x = (float *)malloc(N * sizeo y = (float *)malloc(N * sizeo initData(x, y); // Perform SAXPY on 1M elemen saxpy(N, 2.0, x, 1, y, 1); useResult(y);

Original Code

In two easy steps

/ 1M elements	
of(float)); of(float));	
nts: y[]=a*x[]+	y[]

int N = 1 << 20; // 1M elements x = (float *)malloc(N * sizeof(float)); y = (float *)malloc(N * sizeof(float)); initData(x, y); // Perform SAXPY on 1M elements: y[]=a*x[]+y[]

useResult(y);

saxpy(N, 2.0, x, 1, y, 1);

GPU-Accelerated Code

Drop-In Acceleration With CUDA Maths Libraries Step 1: Update memory allocation to be CUDA-aware

int N = 1 << 20; x = (float *)malloc(N * sizeof(float)); y = (float *)malloc(N * sizeof(float)); initData(x, y); // Perform SAXPY on 1M elements: y[]=a*x[]+y[] saxpy(N, 2.0, x, 1, y, 1); useResult(y);

Original Code

Here, we use Unified Memory which automatically migrates between host (CPU) and device (GPU) as needed by the program


```
int N = 1 << 20;
                              // 1M elements
cuda Malloc Managed (&x, N * sizeof(float));
cuda Malloc Managed (&y, N * sizeof(float));
// Perform SAXPY on 1M elements: y[]=a*x[]+y[]
```

GPU-Accelerated Code

Drop-In Acceleration With CUDA Maths Libraries Step 2: Call CUDA library version of API

int N = 1 << 20; x = (float *)malloc(N * sizeof(float)); y = (float *)malloc(N * sizeof(float)); initData(x, y); // Perform SAXPY on 1M elements: y[]=a*x[]+y[] saxpy(N, 2.0, x, 1, y, 1); useResult(y);

Original Code

Here, we use Unified Memory which automatically migrates between host (CPU) and device (GPU) as needed by the program

int N = 1 << 20; // 1M elements cudaMallocManaged(&x, N * sizeof(float)); cudaMallocManaged(&y, N * sizeof(float));

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]

GPU-Accelerated Code

SIX WAYS TO SAXPY

Programming Languages for GPU Computing

Single Precision Alpha X Plus Y (SAXPY)

Part of Basic Linear Algebra Subroutines (BLAS) library

$z = \alpha x + y$ *x*, *y*, *z* : vector α : scalar

GPU SAXPY in multiple languages and libraries

A selection of possibilities, not a tutorial

Serial C code

OpenACC Compiler Directives

Parallel C code with OpenACC

```
float a,
           float *x,
           float *y)
  for (int i = 0; i < n; ++i)
   y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
```


Serial BLAS code

int N = 1 < < 20; • • • // Use your choice of blas library // Perform SAXPY on 1M elements blas_saxpy(N, 2.0, x, 1, y, 1);

cuBLAS Library

int N = 1 < < 20;

cublasInit();

cublasShutdown();

You can also call cuBLAS from Fortran, C++, Python and other languages

Parallel cuBLAS code

```
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);
cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);
```


3

Serial C code

```
void saxpy(int n, float a,
           float *x, float *y)
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
int N = 1 < < 20;
saxpy(N, 2.0, x, y);
```

CUDA C++

```
__global__
int N = 1 < < 20;
```

CUDA C++ code

- void saxpy(int n, float a, float *x, float *y)
 - int i = blockIdx.x*blockDim.x + threadIdx.x; if (i < n) y[i] = a*x[i] + y[i];

// Perform SAXPY on 1M elements saxpy<<< 4096, 256 >>>(N, 2.0, d_x, d_y);

Serial Standard C++ code

int N = 1 < < 20;

std::vector<float> x(N), y(N); • • • // Perform SAXPY on 1M elements std::transform(x.begin(), x.end(), y.begin(), y.end(), $2.0f * _1 + _2);$

CUDA C++ Core Libraries (CCCL)

int N = 1 < < 20;

• • •

CUDA C++ code

- thrust::host_vector<float> x(N), y(N);
- thrust::device_vector<float> d_x = x;
- thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(), d_x.end(), d_y.begin(),d_y.begin(), $2.0f * _1 + _2)$

Serial Standard C++ code

int N = 1 < < 20;

std::vector<float> x(N), y(N); • • • // Perform SAXPY on 1M elements std::transform(x.begin(), x.end(), y.begin(), y.end(), 2.0f * _1 + _2);

Standard C++ Parallel Algorithms (stdpar)

int N = 1 < < 20; out.reserve(N); • • •

std::transform(

});

CUDA C++ code

```
std::vector<float> x(N), y(N), out;
// Perform SAXPY on 1M elements
        std::execution::par_unseq,
         x.begin(), x.end(), y.begin(), y.end(),
        std::back_inserter(out),
         [](int a, int b) {
                  return 2.0f * a + b;
```


Standard Python

import numpy as np def saxpy(a, x, y): return [a * xi + yi for xi, yi in zip(x, y)] x = np.arange(2**20, dtype=np.float32)y = np.arange(2**20, dtype=np.float32) $cpu_result = saxpy(2.0, x, y)$

Python

import numpy as np def saxpy(a, x, y): return a * x + y N = 1048576# Initialize arrays # Add arrays on GPU C = saxpy(2.0, X, Y)

Numba Parallel Python

```
from numba import vectorize
@vectorize(['float32(float32, float32,
             float32)'], target='cuda')
A = np.ones(N, dtype=np.float32)
B = np.ones(A.shape, dtype=A.dtype)
C = np.empty_like(A, dtype=A.dtype)
```


Anatomy of a CUDA binary

Hello world example

Anatomy of a CUDA binary

Hello world example

- PTX Compatibility Layer

How Do We Keep Things Working Together?

CUDA Compatibility "Backward Compatibility" Software Considerations

- The simplest use case:
 - "Your compiled application will work forever on NVIDIA GPUs, regardless of installed driver"
- All newer GPU drivers will be binary-compatible with older binaries
 - Requires statically linking libraries like the CUDA runtime
- Recompiling from *source* may require API changes Only binary compatibility is guaranteed

CUDA Compatibility "SM/Compute Compatibility" Hardware Considerations (Binaries)

- Binaries are built for a specific GPU family, PTX is used to target additional families
 - Each architecture supports a given ISA, or compute capability
 - PTX enables compatibility between architectures
- Compiled applications target a specific CC, with some compatibility within a family (newer but not older)
- Supported:
 - CC 8.0 cubin runs on CC 8.6 (A100 \rightarrow A40)
- Unsupported:
 - CC 8.6 cubin cannot run on CC 8.0 (A40 \rightarrow A100)
 - **CC 8.0** cubin cannot run on **CC 7.0** (A100 \rightarrow V100)
 - CC 7.0 cubin cannot run on CC 8.0 (V100 \rightarrow A100)

- **PTX Code** is compatible with future versions, both Major and Minor
- **Supported PTX Migration:**
 - CC 8.0 PTX runs on CC 8.6 (A100 PTX \rightarrow A40)
 - CC 7.0 PTX runs on CC 8. (V100 PTX \rightarrow A100)
- **Unsupported PTX Migration:**
 - CC 8.6 PTX cannot run on CC 8.0 (A40 PTX \rightarrow A100)
 - CC 8.0 PTX cannot run on CC 7.0 (A100 PTX \rightarrow V100)

CUDA compatibility "PTX Compatibility" Hardware Considerations

"CUDA Everywhere"

Code for one GPU runs on all GPUs with newer SM version

CUDA applications are portable between all chip classes (100, 10x, 20x, 21x, 10b, etc.)

- All current features supported on all future architectures
- Performance & capacities vary (e.g. SM count)
- A few features much slower but still functional (e.g. FP64)

Volta applications "just work" on Turing/Ampere/Hopper Datacenter libraries "just work" for Quadro, GeForce, etc.

CUDA COMPATIBILITY "PTX Compatibility" Hardware Considerations

SASS is pre-compiled binary code native to a specific GPU architecture - multiple versions may be packaged together

PTX is assembly code JIT compiled by CUDA when an application is run on a new GPU for which there is no SASS

Portability depends on PTX Just-In-Time Compilation

Forward compatibility guarantee: PTX 8.0 runs on CC 9,10,11, ...

Exact match of SASS runs natively (many may exist)

PTX 8.0 won't run on an older CC. Applications occasionally include older PTX to avoid shipping lots of SASS.

🕑 NVIDIA.

CUDA compatibility "Minor-Version Compatibility" (Previously "Enhanced Compatibility")

- Applications created within a major-release of CUDA may run on a system with the minimum driver version
 - E.g., 11.x CTK requires 450.80.02
- Works with:
 - Newer driver than CTK
 - Newer CTK than driver
- New CTK features that require a new driver will return errors
 - Programmers must write code to check if features exist and if libraries are supported (e.g., cublas must match cudnn)*
- PTX JIT unsupported (matching driver required)

🗼 NVIDIA.

Using a CUDA toolkit with higher-versioned UMD with a lower-versioned KMD

- Deployment & upgrade of Drivers may be very disruptive, especially in CSP and enterprise datacenters
- Can be used across major and minor versions of CTK
- Compatibility Package to be installed, includes user-mode driver (among other files)
 - Via symbolic links, multiple compatibility versions can be installed together in a single system
- Programmers must check for supported features & supported hardware
- Supports PTX JIT compilation

CUDA Compatibility "Forward Compatibility"

- CUDA applications are compatible forever
- CUDA programs within a major version generally are compatible
- CUDA applications run against older drivers with compatibility shims
 - Matters in e.g. containers, data center environments

Key Takeaways

Multi GPU Multi Node programming

Solves the 2D-Laplace Equation on a rectangle

Dirichlet boundary conditions (constant values on boundaries) on left and right boundary Periodic boundary conditions on top and bottom boundary

Example: Jacobi solver

$\Delta u(x,y) = \mathbf{0} \forall (x,y) \in \Omega \setminus \delta \Omega$

While not converged Do Jacobi step: for(int iy = 1 ; iy < ny-1 ; iy++)</pre> for(int ix = 1 ; ix < nx-1 ; ix++)</pre> $a_new[iy*nx+ix] = -0.25 *$

Apply periodic boundary conditions

Swap a_new and a Next iteration

Example: Jacobi Solver Single GPU

- -(a[iy *nx+(ix+1)] + a[iy *nx+ix-1]
- + a[(iy-1)*nx+ix] + a[(iy+1)*nx+ix]);

Apply periodic boundary conditions

Halo exchange

Swap a_new and a

Next iteration

Example: Jacobi Solver Multi GPU

Standard to exchange data between processes via messages

- Defines API to exchanges messages
 - Point to Point: e.g. MPI_Send, MPI_Recv
 - Collectives: e.g. MPI_Reduce
- Multiple implementations (open source and commercial)
 - Bindings for C/C++, Fortran, Python, ...
 - E.g. MPICH, OpenMPI, MVAPICH, IBM Platform MPI, Cray MPT, ...

Message Passing Interface - MPI

#include <mpi.h>

• • •

int main(int argc, char *argv[]) { int rank,size;

/* Initialize the MPI library */

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

/* Shutdown MPI library */ MPI_Finalize(); return 0;

MPI - Skeleton

- /* Determine the calling process rank and total number of ranks */ /* Call MPI routines like MPI_Send, MPI_Recv, ... */

Handle GPU affinity on multi-GPU nodes:

int local_rank = -1; MPI_Comm_rank(local_comm, &local_rank); int num_devices = 0; cudaGetDeviceCount(&num_devices); cudaSetDevice(local_rank % num_devices);

(Use M PI_Comm_split_type(MPI_COMM_WORLD, M PI_COM M _TYPE_SHARED, rank, info, &local_comm); to get local_comm.)

Multi Process Multi GPU Programming

Using CUDA-aware MPI

while (l2_norm > tol && iter < iter_max) {</pre> cudaEventRecord(compute_done, compute_stream);

cudaEventSynchronize(compute_done); const int top = rank > 0 ? rank - 1 : (size - 1); const int bottom = (rank + 1) % size; // Top/Bottom Halo exchange -> next slide

cudaStreamSynchronize(compute_stream); MPI_CALL(MPI_Allreduce(12_norm_h, &12_norm, 1, MPI_REAL_TYPE, MPI_SUM, MPI_COMM_WORLD)); $12_norm = std::sqrt(12_norm);$

std::swap(a_new, a); iter++;

Multi Process Multi GPU Programming

```
Using CUDA-aware MPI
```

- cudaMemsetAsync(l2_norm_d, 0, sizeof(real), compute_stream);
- launch_jacobi_kernel(a_new, a, l2_norm_d, iy_start, iy_end, nx, compute_stream);
- cudaMemcpyAsync(l2_norm_h, l2_norm_d, sizeof(real), cudaMemcpyDeviceToHost, compute_stream);

MPI_Sendrecv(a_new+iy_start*nx, nx, MPI_FLOAT, top , 0,

Example Jacobi Top/Bottom Halo

a_new+(iy_end*nx), nx, MPI_FLOAT, bottom, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(a_new+iy_start*nx, nx, MPI_FLOAT, top , 0,

a_new+(iy_end*nx), nx, MPI_FLOAT, bottom, 0,

Example Jacobi **Top/Bottom Halo**

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Example Jacobi **Top/Bottom Halo**

- CUDA Driver 535.129.03
- GPUs@1980 Mhz
- Reported Runtime is the minimum of 5 repetitions

Benchmark Setup DGX H100

• NVIDIA HPC SDK container: Tag nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04

• For all runs CPU and GPU affinities have been tuned: See bench.sh in <u>https://github.com/NVIDIA/multi-gpu-programming-models</u>

Example: Jacobi Solver

Single GPU performance vs. problem size – NVIDIA H100 80GB HBM3

Problem size nx=ny

ciency

Multi GPU Jacobi Runtime And Parallel Efficiency

Benchmark setup: DGX H100, CUDA Driver 535.129.03, NVIDIA HPC SDK container: nvcr.io/nvidia/nvhpc:24.1-devel-cuda12.3-ubuntu22.04, GPUs@1980Mhz AC, Reported Runtime is the minimum of 5 repetitions

MPI on DGX H100 – 20480 x 20480, 1000 iterations

Multi GPU Jacobi Nsight Systems Timeline

e <u>V</u> iew <u>T</u> ools <u>H</u> elp		
titled 1 * \times		
≡ Timeline View		
		0 1577.06m
	7s •	s +577.96m
[All Streams]	Ŧ	void jacob
MPI	¥	MP
[All Streams]	¥	void jacob
MPI	¥	MP
[All Streams]	Ŧ	void jaco
MPI	¥	MPI_
[All Streams]	¥	void jaco
MPI	¥	MPI_
[All Streams]	¥	void jacobi
MPI	¥	MF
[All Streams]	¥	void jacob
MPI	¥	MP
[All Streams]	¥	void jaco
MPI	¥	MPI
[All Streams]	¥	void jaco
MPI	¥	MPL
NVTX	¥	
CUDA API		cudaEventS
Profiler overhead	e	
		100%

MPI 8 NVIDIA H100 80GB HBM3 on DGX H100

			×
🗉 Q 🗆 🔤 🛛	@ [.]	112 mess	ages
578.12ms +578.14ms +578.16ms +578.18ms +578.2ms +578.22ms	+5/8.24	ms	-
)32, (int)32>(float *, const float *, float *, int, int, int, bool)			
		MPI_Sen	
32, (int)32>(float *, const float *, float *, int, int, int, bool)			
		MPI_Send	r
)32, (int)32>(float *, const float *, float *, int, int, int, bool)		0	
/, {, ,, / / /, /,,		•	
		MPI_Sen	
t)32, (int)32>(float *, const float *, float *, int, int, int, bool)			
		MPI_Sen	
32, (int)32>(float *, const float *, float *, int, int, int, bool)			
	ſ	MPI_Send	r
)32, (int)32>(float *, const float *, float *, int, int, int, bool)			
,, (, , , ,, ,, ,,,,,,		•	
	(MDL Cond	
		MPI_Send	
32, (int)32>(float *, const float *, float *, int, int, int, bool)		- (
		MPI_Sendr	ī
nt)32, (int)32>(float *, const float *, float *, int, int, int, bool)			
		MPI_Se	
		MPI [41	
cudaEventSynchronize			
			▼
			P :

Overlapping Communication and Computation

No Overlap

Overlap

Process boundary domain

Process Whole Domain

Process inner domain

Dependency

COMM

const int top = rank > 0 ? rank - 1 : (size-1); const int bottom = (rank+1)%size; cudaStreamSynchronize(push_top_stream); cudaStreamSynchronize(push_bottom_stream); MPI_STATUS_IGNORE);

MPI

Overlapping Communication and Computation

- launch_jacobi_kernel(a_new, a, l2_norm_d, iy_start, (iy_start+1), nx, push_top_stream);
- launch_jacobi_kernel(a_new, a, l2_norm_d, (iy_end-1), iy_end, nx, push_bottom_stream);
- launch_jacobi_kernel(a_new, a, l2_norm_d, (iy_start+1), (iy_end-1), nx, compute_stream);
- MPI_Sendrecv(a_new+iy_start*nx, nx, MPI_REAL_TYPE, top , 0,
 - a_new+(iy_end*nx), nx, MPI_REAL_TYPE, bottom, 0,
 - MPI_COMM_WORLD, MPI_STATUS_IGNORE);
- MPI_Sendrecv(a_new+(iy_end-1)*nx, nx, MPI_REAL_TYPE, bottom, 0, a_new, nx, MPI_REAL_TYPE, top, 0, MPI_COMM_WORLD,

Multi GPU Jacobi Nsight Systems Timeline

e <u>V</u> iew <u>T</u> ools <u>H</u> elp				
titled 2 * \times				
■ Timeline View		ons		
	7s -	ms +672.12	ms +672.14	ms
[All Streams]	¥	void jacobi_k	-	vo
MPI	Ŧ		M	
[All Streams]	Ŧ	void jacobi_ke	-	voi
MPI	Ŧ		MPI_A	
[All Streams]	Ŧ	void jacobi	-	vo
MPI	Ŧ		MPI	
[All Streams]	Ŧ	void jacobi		vo vo.
MPI	Ŧ		MPI_Allred	
[All Streams]	Ŧ	void jacobi		v
MPI	Ŧ		MPI_Al	
[All Streams]	Ŧ	void jacobi_k	-	V V.
MPI	Ŧ		M)	
[All Streams]	Ŧ	void jacobi		V
MPI	Ŧ		MPI_Allre	
[All Streams]	Ţ	void jacobi_k		v vo.
MPI	¥		MP	
NVTX				
CUDA API		cudaStreamSynch	ronize	j
Profiler overhea	ad 🔻	4		

MPI Overlap 8 NVIDIA H100 80GB HBM3 on DGX H100

Multi GPU Jacobi Parallel Efficiency DGX H100 – 20480 x 20480, 1000 iterations

NCCL : NVIDIA Collective Communication Library Communication library running on GPUs, for GPU buffers.

- Library for efficient communication with GPUs
- First: Collective Operations (e.g. Allreduce), as they are required for Deep Learning
- Since 2.8: Support for Send/Recv between GPUs
- Library running on GPU: Communication calls are translated to a GPU kernel (running on a stream)

NCCL **Optimized inter-GPU communication**

Binaries : https://developer.nvidia.com/nccl and in NGC containers Source code : https://github.com/nvidia/nccl Perf tests : https://github.com/nvidia/nccl-tests

Sockets InfiniBand Other networks

GPU

Multi GPU Jacobi Parallel Efficiency DGX H100 – 20480 x 20480, 1000 iterations


```
int leastPriority = 0;
int greatestPriority = leastPriority;
cudaStream_t compute_stream, push_stream;
• • •
launch_jacobi_kernel(a_new, a, l2_norm_d, iy_start,
launch_jacobi_kernel(a_new, a, l2_norm_d, (iy_end - 1),
ncclGroupStart();
ncclRecv(a_new,
ncclSend(a_new + iy_start * nx,
```

ncclGroupEnd();

NCCL

Overlapping Communication and Computation

cudaDeviceGetStreamPriorityRange(&leastPriority, &greatestPriority)

cudaStreamCreateWithPriority(&compute_stream, cudaStreamDefault, lea cudaStreamCreateWithPriority(&push_stream, cudaStreamDefault, great

- (iy_start
- iy_end,
- launch_jacobi_kernel(a_new, a, l2_norm_d, (iy_start + 1), (iy_end -

nx, NCCL_REAL_TYPE, top, nccl_c

- ncclSend(a_new + (iy_end 1) * nx, nx, NCCL_REAL_TYPE, btm, nccl_comm, push_stream)
- ncclRecv(a_new + (iy_end * nx), nx, NCCL_REAL_TYPE, btm, nccl_comm, push_stream);
 - nx, NCCL_REAL_TYPE, top, nccl_comm, push_stream);

	Need to use CUDA high priorit streams to avoid NCCL comma		
);	getting stuck behind compute		
eastPriority) testPriority)	•		
t + 1), nx, <mark>p</mark> u	ush_stream);		
nx, pı	ush_stream);		
-1), nx, <mark>co</mark>	<pre>mpute_stream);</pre>		
comm, push_stre	eam)		
comm, <pre>push_stream);</pre>			

Multi GPU Jacobi Parallel Efficiency DGX H100 – 20480 x 20480, 1000 iterations

CUDA graphs reduce kernel launch latencies:

GPU:

CPU:

GPU:

CPU:

From <u>Advanced Performance Optimization in CUDA [S62192]</u> by Igor Terentyev more details on Graphs there.

CUDA Graphs Reducing launch overhead

Short kernel

Short kernel

Kernel launch

Short kernel

Short kernel

Single Graph "Template"

Created in host code or built up from libraries

Three-Stage Execution Model Minimizes Execution Overheads – Pre-Initialize As Much As Possible

Instantiate

Multiple "Executable Graphs"

Snapshot of templates

Sets up & initializes GPU execution structures (create once, run many times)

Execute

Executable Graphs Running in CUDA Streams Concurrency in graph is not limited by stream

Multi GPU Jacobi Parallel Efficiency DGX H100 – 20480 x 20480, 1000 iterations

Symmetric objects are allocated collectively with the same size on every PE

Symmetric memory: nvshmem_malloc(...); Private memory: cudaMalloc(...);

CPU (blocking and stream-ordered) and CUDA Kernel interfaces Read: nvshmem_get(...); Write: nvshmem_put(...); Atomic: nvshmem_atomic_add(...); Flush writes: nvshmem_quiet(); Order writes: nvshmem_fence();

Synchronize: nvshmem_barrier(); Poll: nvshmem_wait_until(...);

Interoperable with MPI

NVSHMEM

Implementation of OpenSHMEM, a Partitioned Global Address Space (PGAS) library

Multi GPU Jacobi Parallel Efficiency DGX H100 – 20480 x 20480, 1000 iterations

MPI

NCCL

NVSHMEM

Source is on GitHub: https://github.com/NVIDIA/multi-gpu-programming-models

Conclusion Thank you for your attention

GPUDirect P2P/RDMA	CUDA stream/graph-
Improves Perf.	No
Improves Perf.	Yes
Required	Yes

aware	Kernel Initiated Communication
	No
	No
	Yes

