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Intro on Calabi-Yau threefolds: manifolds used in superstring compactification

physically:

• Ricci flat: Rµν = 0 (solve vacuum Einstein equations)

• Kähler manifolds (complex structure compatible with SUSY)

mathematically: trivial canonical class K = 0 (up to torsion)

Long studied by mathematicians and physicists

— Used in compactification of string theory: 10D → 4D, 6D, . . .

Open Question:
Are there a finite number of topological types of Calabi-Yau threefolds?

Many large classes of CY3s have been constructed:

— CICY (complete intersection CYs): 7,890 [Candelas/Dale/Lutken/Schimmrigk]
— Toric hypersurface CY3s: 473.8M reflexive 4D polytopes [Kreuzer/Skarke]
— Generalized CICYs [Anderson/Apruzzi/Gao/Gray/Lee, . . . ]
— Elliptic CY3s [Grassi, Gross, . . . ]

W. Taylor New results on CY fibers and bases 4 / 26
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Elliptic and genus one-fibered CY threefolds

An elliptic or genus one fibered CY3 X:
A torus (fiber) at each p ∈ B2
π : X → B2

Elliptic: ∃ section σ : B2 → X, πσ = Id

• Elliptic Calabi-Yau threefold has Weierstrass model

y2 = x3 + fx + g, f , g sections of O(−4KB),O(−6KB)

• Elliptic CY3s have extra structure, more manageable mathematically

• Used for 6D F-theory construction (fiber τ = 10D axiodilaton)

• Evidence has been accumulating that
most known Calabi-Yau threefolds have elliptic/g1 structure
(i.e. birationally equivalent to an elliptic or genus one fibered CY3)

• F-theory + math ⇒ global picture of { ECY3s }
W. Taylor New results on CY fibers and bases 5 / 26
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Classifying elliptic Calabi-Yau threefolds

∃ finite # of topological types of elliptic CY3s [Gross]

Combining math + physics (F-theory), can systematically construct ECY3s

• Bases B2: must be Fm,P2, Enriques or blow-ups [Grassi]

• Finite number of distinct strata in space of B2 Weierstrass models
[Gross, Kumar/Morrison/WT]

“Algorithm” for constructing all ECY3s:

I. Construct bases by iterative blow-ups of Fm,P2 [large h2,1 ✓]

II. Tune Weierstrass models

A. Codimension 1 singularities ↔ nonabelian G (Kodaira) [mostly ✓]
B. Mordell-Weil rank ↔ U(1)k [k ≤ 2 ✓]
C. Discrete G (∼ multisections) [no systematics yet X]
D. Codim. 2 singularities ↔ matter [generic NA ✓, exotic, U(1)× G′ ?]

Question: how do these elliptic CY’s fit with known general CY’s
W. Taylor New results on CY fibers and bases 6 / 26
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Game plan

• Consider toric hypersurface constructions (KS)

• Toric ingredients:

— Toric fibers (16)

— Toric bases (61,539)

Identify all “obvious” toric elliptic fibrations in the KS database

→ 2.2 billion fiber-base combinations

Gives us a huge range of interesting examples to explore!

Elliptic fibrations may be our best tool for organizing and understanding CY’s

W. Taylor New results on CY fibers and bases 7 / 26
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Toric ingredients: hypersurface construction [Batyrev, Kreuzer/Skarke]

Toric variety: characterized by toric divisors Di ↔ rays vi ∈ Zd, fan (cones)

Anti-canonical class −K =
∑

i Di (never compact CY)

Anti-canonical hypersurface ⇒ CY by adjunction

∇ polytope: convex hull of vertices vi

{monomials} ↔ lattice points in dual polytope ∆ = ∇∗ = {w : w · v ≥ −1}

Batyrev: ∇ = ∇∗∗ reflexive ↔ 1 interior point
↔ hypersurface CY generically smooth (avoids singularities)

Kreuzer-Skarke: constructed all 473.8M reflexive ∇4

∇,∆ describe mirror Calabi-Yau threefolds h1,1 ↔ h2,1

Symmetry in toric hypersurface construction early evidence for mirror
symmetry

W. Taylor New results on CY fibers and bases 8 / 26
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Example: Batyrev for generic elliptic curve in P2,3,1

∇ ∆

Gives general Weierstrass (“Tate form”) model for elliptic curve:

y2 + a1yx + a3y = x3 + a2x2 + a4x + a6

Completing square, cube → standard (short) Weierstrass form

y2 = x3 + fx + g

More generally: a reflexive 2D subpolytope → elliptic fibration (in some –
possibly vex – flop phase) (fibration ↔ projection)

W. Taylor New results on CY fibers and bases 9 / 26
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Ingredients: toric fibers

∇2 ⊂ ∇, ∇2 reflexive

Only 16 reflexive ∇2’s; can do Kodaira/Nagel/Weierstrass on each
[Braun, Braun/Grimm/Keitel, Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

F1 F2 F3 F4

· · ·

F10

· · ·

F16

−1 curve C = D(2)
i : satisfies −K · C = C · C + 2 = 1, vi = vi−1 + vi+1

All but F1 = P2,F2 = F0 = P1 × P1,F4 = F2 have −1 curves ⇒ toric sections
Some fibers have multiple sections ⇒ U(1)’s in F-theory

W. Taylor New results on CY fibers and bases 10 / 26
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Huang/WT 2019: all but 29,223 4D reflexive polytopes have 2D fiber ∇2 ⊂ ∇

{140,62}

100 200 300 400 500
h
1,1

100

200

300

400

500

h
2,1

Largest h2,1 without toric fiber: (140, 62)

Similar results for CICYs [Anderson/Gao/Gray/Lee]:

• 99.3% (7837/7890) of CICYs have “obvious” elliptic/g1 fibration
W. Taylor New results on CY fibers and bases 11 / 26
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Ingredients: toric bases

Complete classification of toric bases [Morrison/WT]

• Finite # bases, all from blowing up P2 or Hirzebruch Fm ≤ 12 [Grassi, Gross]

• Bases characterized by cone of “effective” curves Ci w/ intersections Ci · Cj

Blow-up sequence of toric B

• Construction terminates with −13 curves (non-minimal)

Result: 61,539 toric bases (including -9, -10, -11 curves)

Note: also substantial progress on classifying non-toric bases
[Martini/WT, WT/Wang, Kim/Vafa/Xu]

W. Taylor New results on CY fibers and bases 12 / 26
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Classification of all KS fibers + bases

With Fatima Abbasi, Richard Nally:

Complete classification of all 2D subpolytopes ∇2 ⊂ ∇ [cf. Braun 2011]
and all associated bases

483 M KS polytopes → 2.25 B fibration structures (2.26B w/ multiplicities)

Bases: all in list of 61,539 toric bases [Morrison/WT 2012]
(including singular versions with rays missing)

Full results only two weeks old, today: some initial highlights

W. Taylor New results on CY fibers and bases 13 / 26
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Distribution of fibrations

• Fibrations per polytope on average: ∼ 4.7
(note 9.85 average obvious fibrations for CICYs [AGGL])

• Most fibrations: 362 (Hodge numbers (68, 4); 10 distinct bases)

• Most fibrations at small h2,1(X)

W. Taylor New results on CY fibers and bases 14 / 26
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Distribution of fibers

3

4
5

6

8
9

10

11

Density of fiber types

1 - 1.57 %
2 - 3.33 %
3 - 9.37 %
4 - 14.37 %
5 - 10.87 %
6 - 17.93 %
7 - 1.42 %
8 - 11.34 %
9 - 6.47 %
10 - 14.04 %
11 - 4.96 %
12 - 2.47 %
13 - 1.21 %
14 - 0.48 %
15 - 0.18 %
16 - 0.01 %

• Most common fibers:

F6 : 406 M fibers (generic extra U(1))
F4 : 325 M fibers (no section, Z4 symmetry)
F10 : 318 M fibers (standard Tate + generalizations)

• Least common fiber: F16 : 185 K fibers (more later)

W. Taylor New results on CY fibers and bases 15 / 26
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Distribution of fibers, continued

1 2 3 4 5 6 7 8 9 10111213141516

fiber type

72
73
49
28

215
117
225
121
139
52
16
50
15

116
191
85

118
94

417
251
122
395
189
351
27

226
140
53

133
392

ba
se

Fiber Types in the 30 Most Common Bases

3

4

5

6

7

lo
g 1

0(
#)

W. Taylor New results on CY fibers and bases 16 / 26
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Distribution of bases: Number of fibrations greatest for small h1,1(B)

Makes sense: expect bases with small h1,1(B) have most moduli (h2,1(X) for
generic fibration), admit most tuning options

W. Taylor New results on CY fibers and bases 17 / 26
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Examples I: popular bases

• Consider the base B = P2

Studied by [Braun 2011]

Braun: 102,581 distinct fibrations.
We find: 102,565 structures, 102,603 w/multiplicities (compatible)

• The base with the most fibrations:

Base 72: a gdP4 (-2, -1, -2, -1, -1, -1), 68 M structures, 115 M w/multiplicities

Other bases with O(50 M) fibrations are similar.

• Bases with e.g. −12 curves → rigid E8’s: fewer fibrations

e.g. F12 : 210 structures, 242 fibrations (w/multiplicities)

W. Taylor New results on CY fibers and bases 18 / 26
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Hodge numbers of fibrations over selected bases

100M fibrations on base 72

100K fibrations over base 1 (P2)

240 fibrations on base 14 (F12)

0 20 40 60 80 100 120
h11(X)0

100

200

300

400

500
h21(X)

Generic fibration over P2: Hodge numbers (2, 272)
Generic fibration over F12: Hodge numbers (11, 491)
Generic fibration over base 72: Hodge numbers (6, 156)

Note: examples with h1,1(X) = 4, 5 over singular reduced bases
W. Taylor New results on CY fibers and bases 19 / 26
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Examples II: SCFTs (cf. talks by Ami, Craig, etc.)

In many cases, there are non-flat fibrations, where divisors → base points.

In general these are SCFT’s [Heckman/Morrison/Rudelius/Vafa]
In these cases there are no toric resolutions on the base.

Simple example: over -9, -10, -11 curves there are 3, 2, 1 (4, 6) points on an E8
divisor

In general, Shioda-Tate-Wazir says

h1,1(X) = h1,1(B) + rk(G) + 1

W. Taylor New results on CY fibers and bases 20 / 26
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Examples II: SCFTs (cf. talks by Ami, Craig, etc.)

In many cases, there are non-flat fibrations, where divisors → base points.

In general these are SCFT’s [Heckman/Morrison/Rudelius/Vafa]
In these cases there are no toric resolutions on the base.

Simple example: over -9, -10, -11 curves there are 3, 2, 1 (4, 6) points on an E8
divisor

In general, Shioda-Tate-Wazir says (incorporating SCFT’s)
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Interesting SCFT example: largest h1,1(X) fibration on P2: (112, 4) [Braun]

SU(27) on a line (+1 curve) has 3 non-flat fibers with 28 divisors.

SU(27) [+1 ]
s ss

Resolution: 3 SCFT’s with SU(18) × SU(9) on a (non-toric) string (-2, -2, -1)
Satisfies anomaly cancellation, etc. (SU(N) on -2: 2N fundamentals)

Lesson: many toric hypersurface CY’s have SCFT singularities,
resolution → non-toric bases

Note: uses rare fiber 16, → SU3, implicated in other large ∆h1,1’s
W. Taylor New results on CY fibers and bases 21 / 26
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Examples III: Largest h1,1, (491, 11) polytope

We find two fibrations, matching known results:

Fibration A: standard F10 stacking, h1,1(B) = 193

Base: ([-12, -1, -2, -2, -3, -1, -5, -1, -3, -2, -2, -1]16, -12, 0)

(second -12 really -11 w/ a non-toric (4, 6) SCFT point)

G = E17
8 × F16

4 × G32
2 × SU(2)32

[Candelas/Perevalov/Rajesh, Morrison/WT, Kim/Vafa/Xu]

Fibration B: Fiber 13, h1,1(B) = 10

Base: (-4, -1, -3, -1, -4, -1, -4, -1, -4, 0)

(-3 has a non-toric (4, 6) SCFT point.)

G = SO(64)× Sp(56)× (SO(176)× Sp(40))× Sp(72)× SO(128)× Sp(48)×
SO(80)× Sp(24)× SO(32)
[Aspinwall/Morrison, Kim/Vafa/Xu]

W. Taylor New results on CY fibers and bases 22 / 26
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Fibration A: standard F10 stacking, h1,1(B) = 193

Base: ([-12, -1, -2, -2, -3, -1, -5, -1, -3, -2, -2, -1]16, -12, 0)

(second -12 really -11 w/ a non-toric (4, 6) SCFT point)

G = E17
8 × F16

4 × G32
2 × SU(2)32

[Candelas/Perevalov/Rajesh, Morrison/WT, Kim/Vafa/Xu]

Fibration B: Fiber 13, h1,1(B) = 10

Base: (-4, -1, -3, -1, -4, -1, -4, -1, -4, 0)

(-3 has a non-toric (4, 6) SCFT point.)

G = SO(64)× Sp(56)× (SO(176)× Sp(40))× Sp(72)× SO(128)× Sp(48)×
SO(80)× Sp(24)× SO(32)
[Aspinwall/Morrison, Kim/Vafa/Xu]
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Examples IV: tuning on non-toric divisors (beyond toric Tate)

Simplest tunings (e.g. Tate from standard P2,3,1 stacking) → G on toric D.

More general fibers, stacking → G on non-toric divisors
(implicit in [Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

Example:

∆

β

α

Gives general Weierstrass (“Tate form”) model for elliptic curve:

αy2 + a1yx + a3y = βx3 + a2x2 + a4x + a6

{α = 0} → SU(2), {β = 0} → SU(3) ⇒ e.g. SU(2) on 2H on P2
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Examples V: singular bases (without SCFTs)

About 11 M (∼ 0.5%) of fibrations have singularity in base

tdt t@@R��	
td d tt H
HHj��	

C2/Z2 C2/Z3

? ?@@R

Z3 singularities associated with fiber F1 (3-section)

Z2 singularities associated with fibers F2 (2-section), F4 (4-section)

Multi-sections → discrete G through Tate-Shafarevich/Weil-Chatalet
[Braun/Morrison, Morrison/WT, . . . ]

Seems multi-section has monodromy around singularity, but no SCFT.

Good subject for further study!
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Conclusions

• Elliptic fibrations provide a powerful tool for organizing and analyzing the
KS database, which contains most known CY3’s

• The toric hypersurface construction provides abundant information about
gauge groups on non-toric divisors and non-toric bases through SCFTs

Some further directions and open questions:

• How complete is the KS database for simple/complex tunings (nonabelian,
abelian, discrete G, non-toric divisors; exotic matter)? For non-toric bases via
SCFTs?

• Can we use the elliptic fiber structure to gain insight into broader questions
(equivalence, intersection numbers, triangulations, Kähler cone etc.)?

• Exploration of 2.2 G fibrations may reveal new interesting structures.
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Thank You!

We hope to see you in Boston for String Pheno 2025, July 7-11
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