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Introduction

We introduce in this paper a particular class of rational singularities, which
we call symplectic, and classify the simplest ones. Our motivation comes
from the analogy between rational Gorenstein singularities and Calabi-Yau
manifolds: a compact, Kdhler manifold of dimension n is a Calabi-Yau
manifold if it admits a nowhere vanishing n-form, while a normal variety
V of dimension n has rational Gorenstein singularities® if its smooth part
Vieg Carries a nowhere vanishing n-form, with the extra property that its
pull-back in any resolution X — V extends to a holomorphic form on X.
Among Calabi-Yau manifolds an important role is played by the symplectic
(or hyperkahler) manifolds, which admit a holomorphic, everywhere non-
degenerate 2-form; by analogy we say that a normal variety V has symplectic
singularities if Vg carries a closed symplectic 2-form whose pull-back in
any resolution X — V extends to a holomorphic 2-form on X.

We discuss in §4 whether a classification of isolated symplectic singu-
larities makes sense. Each such singularity gives rise to many others by
considering its quotient by a finite group; to get rid of those we propose
to consider only isolated symplectic singularities with trivial local funda-
mental group. The singularities (O min., 0) have this property when the Lie
algebra is not of type C;; it is certainly desirable to find more examples.

(4.3) It would be interesting to find more examples of isolated symplectic
singularities with trivial local fundamental group, and also examples with
infinite local fundamental group.
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The question:

What are the elementary building blocks (=atoms)
of Higgs branches (=molecules)?

The strategy:

In order to find atoms,
try to break into pieces until it is not possible.

(A related but distinct question: classify rank-1 theories)
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Breaking a symplectic singularity into pieces:




“Periodic Table” of Elementary Transitions
in Singular HyperKéhler Geometry, as of 2025
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How to obtain this without knowing the stratification a priori?
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String theoretic setup: branes, geometry, fluxes, ...
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Sharp question:

What are the unitary magnetic quivers
whose M ¢ has an isolated singularity?

Using the Fission & Decay algorithm:

What are the stable unitary magnetic quivers ?
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Main Result

Theorem: The full list of stable unitary quivers is given in the table below.
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The Theorem combined with the Decay & Fission Conjecture imply the
classification of ICSS which are M ¢ of a unitary quiver.



Comment on Y(d)

A NEW FAMILY OF ISOLATED SYMPLECTIC SINGULARITIES
WITH TRIVIAL LOCAL FUNDAMENTAL GROUP
by

GWYN BELLAMY, CEDRIC BONNAFE, BAOHUA Fu, DANIEL JUTEAU, PAUL
LEVY & ERIC SOMMERS

Abstract. — We construct a new infinite family of 4-dimensional isolated symplectic singu-
larities with trivial local fundamental group, answering a question of Beauville raised in 2000.
Three constructions are presented for this family: (1) as singularities in blowups of the quo-
tient of C* by the dihedral group of order 2d, (2) as singular points of Calogero-Moser spaces
associated with dihedral groups of order 2d at equal parameters, (3) as singularities of a cer-
tain Slodowy slice in the d-fold cover of the nilpotent cone in sl,.
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New families of ICSS
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Definition. A quiver Q is a triple (V, A, K) where V is a finite set, A a function
V x V — Z and K a function V — Z~¢, such that

(i) for all x € V, A(x, x) = —2 + 2g, for some gy € Z>o. If K(x) =1, then
A(x, x) = 2.

(ii) for all x #y € V, A(x,y) =0 if and only if A(y,x) = 0. If they are
non-zero, then both are positive and one is a divisor of the other.

(iii) there exists a function L : V — Zs such that for every x,y € V,
Alx, y)L(y) = Aly, x)L(x).

Definition. A connected quiver Q is good if it is non-empty and one of the

following holds true:

- Its Hilbert Series converges, is non-constant, and has in its series expansion
no coefficient at order t.

- QisN-AY for N>20r N- X\ for N > 1.



Definition. Let Q@ = (V, A, K) be a quiver. A fission product of Q is a
multiset {Q1, ..., Q,} with n > 0, where Q; = (V;, A;, K;) are quivers such that :
@ foreach 1 << n, Qis a good connected subquiver of Q;
Q 27:1 K; < K, where we define each K; to vanish on V\V;
We call £(Q) the set of fission products of Q.
Definition. Let Q be a quiver and {Q1,..., Q,}, {Q1, ..., Q. } two fission
products of Q. We define a partial order on L(Q) by

Q... Q) < {Q1, ..., Qn} if there exists a partition {1,...,n} = |, I;,
with the /; possibly empty, such that for every 1 <j < m, {Q;:ie [} € E(QJ{).

Conjecture. There exists a 1-to-1 correspondence between the poset of
symplectic leaves of the Coulomb branch of a good 3d NV = 4 quiver theory Q
and the poset (L, =) of decay and fission products of the good quiver Q.

Theorem. Let Q be a good quiver. Then Q admits a decay product isomorphic
to one of the quivers listed above.

Proof. On the board?



Conclusion

In a nutshell:
- We recover all ICSS from the math and physics literature,
- make new additions,
- and formulate a formal framework

- which enables us to prove a completeness result.

Open questions:
String theory realization of the new slices
Yet other ICSSs from other constructions?

(]

(]

@ Reasoning a la Robertson-Seymour for more general cases?

@ How to combine these building blocks to form general molecules?
(]

Proof of the Decay & Fission Conjecture?



Conclusion

Thank you!
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