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Stringy EFTs

L =R—g,0,p'0"p’ — e“?|F|* — ...

* scalars parametrize all masses and couplings

* Distance Conjecture [Oogur, Vata, *06]
infinite towers of states become exponentially light

* strong evidence from string compactifications
|Grimm, Palti, Valenzuela ’18; Lee, Lerche, Weigand, *19; ....]
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Compactifiability

Region within distance A:

M\ (Po) = (¢ € M | d(p,p) < A}

How does the volume grow with A?

Weaker but similar version:

. Area(0 ,)
Iim ——— —>
A — 00 VOl(%A)

0

Complementary version: tame Euclidean embedding
| Grimm, Prieto, van Vliet, ‘23]
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Moduli spaces and dualities

Self-dualities:

discrete, spontaneously broken, 0-form gauge symmetry 1

* |dentifies identical points in the moduli space T~

* Gauge symmetry only restored at fixed points in moduli space

* Full spectrum of states is invariant after relabeling
qQ=gq, g€l

* Duality vortices: codim-2 defects that implement the duality as you wind around
(7-branes in 10d Type 1IB, axionic strings in 4d supergravity)




The Plan

Today: explore the role of moduli space volumes and dualities in Quantum Gravity/String Theory.

1. Warm-up examples: How does the volume grow?
How do dualities act?

2. 4d ./ = 2 CYs compactifications: What is the representation of
duality groups? What do these duality groups explicitly look like?

3. Bottom-up argument for Compactifiability: How do ground states
see the moduli space? Is their finiteness related to the volume?
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Example: 10d Type llA string theory

Moduli space — .4 = R real line parametrized by g, = e?
¢
¢ —> — 0 ¢ — 50
weak-coupling strong-coupling
10d Type IIA 11d M-theory

— Volume within distance A: Vol(./ ,) = 2A

Aside: the EFT with cut-off A < Ag.cie5(¢) has a moduli space of finite diameter
|DvdH, Vata, Wiesner, Wu, ‘23]
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Example: 10d Type 1IB

_ 6/;8”%
Moduli space — upper-half plane w/ &, = =
(%)
Duality group — S1.(2.7) = { (“ Z) ad — bc = }
C
. . . b
e action on axio-dilaton: 7 — ar+
ct+d } 0 1
e action on other massless fields: | <

G, a b G,
(5) = (£ ) () &=

Duality vortices — (p,q) 7-branes:

l+pqg p*
_ _
Tp,q o gp,ngp,q o o) 1
—( — Pq
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Type lIB comparison

['=SL(2,2) No dualities

o
O

Vol(. ) = 2z(cosh A — 1) ~ me”

1 1

2 2

Vol(H/SL(2,2)) = %

*any finite-index I C SL(2,Z) works
(expect only genus-zero modular curves [Dierigl, Heckman "20])
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Type lIB: Non-example

Duality group generated by 7 — 7 + 1

1 Z
[ .=
uni (O 1)

Volume within distance A of 7 = i:

\VOI((A)) = e® + O(e™™)

—> Exponential growth, so not compactifiable!

—> | ,,; is a bad type of duality group
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Duality representation

[
|

Duality group has a semisimple representation:
Claim: *

____

spectrum of states —
(codim>2)

™~ irreducible subrepresentations
in Type lIB: (p,q)-strings, D3-branes, 5-branes, ...

Subsector A

Subsector B

Can we link semisimple dualities and compactifiable
<0> moduli spaces in more involved examples?

Non-semisimple



2.4d /' = 2 CY compactifications
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Type 1IB on Calabi-Yau threefolds

4d V' = 2 supergravity sector —  vector multiplet sector

» Moduli space — complex structure moduli space M\ = M . (Y3)

» Spectrum — BPS states from D3-branes on 3-cycles q € H;(Y3, Z)

mirror dual: q = (gp» 9p2> 4pa> 4p6)
» Duality group — monodromy group I 'p\y € Sp(2ny, + 2,Z) of M . (Y>)

 Duality vortices — axionic strings, [Lanza, Marchesano, Martucci, Valenzuela, °21; ...]
e.g. from wrapping NS5-branes on divisors (in Type lIA)

Type lIB: [Friedrich, Monnee, Weigand, Wiesner *25] Talk by Max!
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General proof for semisimple dualities from compactifiability in Hodge theory:
[Schmid, >70
(same asymptotic Hodge theory machinery as [Grimm, Palti, Valenzuela, ’18; ...])

*Zariski-open in compact analytic space
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Compactifiability and semisimple dualities

General proof for semisimple dualities from compactifiability in Hodge theory:
[Schmid, >70
(same asymptotic Hodge theory machinery as [Grimm, Palti, Valenzuela, ’18; ...])

*Zariski-open in compact analytic space

Semisimple electromagnetic dualities |
| ['em C Sp(2ny + 2,27)

e — —

Compactifiable* moduli space
W P W

vector

— = == —— —_—

2

Finite-volume proven for CY3 moduli spaces
| Todorov, *04; Lu, Sun ’05]
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Sketch of the proof m: scmid 70

How does this proof of semisimplicity roughly work®?

Semisimple representation:
for any I -invariant subspace V C W, there is a complementary I -invariant subspace V'st. V@ V' =W
(subrepresentation) W = R>w+? (subrepresentation)

Idea: consider orthogonal complement V' = V+, for a suitable inner product on the states

o Standard wedge product J v A w. Indefinite sighature — does not work...
Y3

 Hodge product [ v A xw: positive definite, but moduli-dependent — need compactifiability!
Y3

0 1 ] 1 (3]
For Type |IB: VS —
( P (‘1 O) (%) <T1 \T\2>)
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|Candelas, de la Ossa, Green, Parkes *93;.. .;
Doran, Morgan °05; Almkvist, van

Enckevort, van Straten, Zudilin, 03]
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Finite distance limit
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Calabi-Yau threefolds with .Z_. = P! — {0,1,00}

T e ——— = == e —— "

Large complex structure . LCS point (1x)

Infinite distance limit

\ * Conifold point (3x)
- Tower: mirror DO-branes _

= e R —— — - _— ———= E————S————

* Landau-Ginzburg point (7x) !

Orbifold point, no light states

— — E—— e = _ e

» K-point (3x)
| Infinite distance limit _
Tower: tensionless string

—— — — === e ——————— I ———

|Candelas, de la Ossa, Green, Parkes *93;.. .;
Doran, Morgan °05; Almkvist, van

Enckevort, van Straten, Zudilin, 03]

= e ——— = — = e

Conifold point

Finite distance limit
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Monodromies and volume

z=20

- Large complex structure

:“»
1 0 0 0}
I 0 0

e|g( Moo) — ( eZm’al’ eZm’az’ eZm’a3’ eZm’a4)

Volume of moduli space:
Vol( A/ .,) = 2na,
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LCS or conifold monodromy X [Brav, Thomas; "12]
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For 7 CY3s with /.. = P! — {0,1,00}:
(Reminiscent of Type IIB: SL(2,Z7) = Z, *Zz Z)

k=23
~ k=4,6

Landau—Ginzburg monodromy

Some lessons:
Conifold monodromy

* Duality groups can have infinite index:
|1Sp(4,7) : 1'| = oo (still Zariski-dense in Sp(4,7))

* Duality groups cannot always be generated by finite order elements

*Other 7: finite-index subgroups of Sp(4,Z2), see [Singh, Venkataramana, 12], [Singh, *13], [Hofmann, Van Straten; ’15]



Monodromy groups as amalgamated products

LCS or conifold monodromy x [Brav, Thomas; "12]

For 7 CY3s with . = P! — {0,1,00}: h B
(Reminiscent of Type IIB: SL(2,7) = Z,*, Zy)
2 ¥ (£ X ZZ) *Zz - k=4,6

Some lessons: Landau-Ginzburg monodromy

Conifold monodromy
* Duality groups can have infinite index:

|1Sp(4,7) : 1'| = oo (still Zariski-dense in Sp(4,7))

* Duality groups cannot always be generated by finite order elements
* Duality groups cannot always be generated by finite distance monodromies

*Other 7: finite-index subgroups of Sp(4,Z2), see [Singh, Venkataramana, 12], [Singh, *13], [Hofmann, Van Straten; ’15]
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Finiteness of Calabi-Yau manifolds?

V elliptic Calabi-Yau manifolds [Gross, *93; Birkar, Cerbo, Svaldi, *24]

Finiteness of 6d supergravity landscape
|Kumar, Taylor ’09; ..., Kim, Vafa, Xu, 24|

Finiteness of self-dual flux vacua

|Bakker, Grimm, Schnell, Tsimerman ’21]
Finiteness properties of QG theories by reduction
to 1d quantum-mechanical systems

|Hamada, Montero, Vata, Valenzuela °21; .-
Delgado DvdH, Raman, Torres, Vafa, Xu ’24]

QG (string theory)

X

EFTs
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Finiteness of vacua

- Compactifty QG theory to 1d =— number of ground states should be finite

|
|

(similar idea: [Hamada, Montero, Vafa, Valenzuela '21))

Why?

* Entropy of system diverges even at zero temperature:

S(T = 0) ~ log(# ground states) —» o

* Partition function diverges at finite temperature:
7 = Tre Pt = 2 e P - 0o

n



Ground states
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Compactify on 71
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Ground states

Compactify on 79! — ———
— ﬂ 1d SUSY Quantum Mechanics

ﬂ d—dlm sSusy QG theory zﬂ
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Ground states

Compactify on 79! — ———
— ﬂ 1d SUSY Quantum Mechanics

ﬂ d—dlm sSusy QG theory zﬂ

== === e ————

_

Harmonic, normalizable p—fof { o Ground states
f(¢>d¢1 i = f(¢)wo K 7| 0)

Can we relate the growth of Vol(.Z) to this ground state spectrum?
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— infinitely many modes precisely when Vol(.Z) > Adim(ﬂ)

Example: Type |IB with no duality group

27‘[1'2

Harmonic, normalizable one-forms on [H: @, = e~ (cos(2nt,/n)dr, + sin(2rz,/n)dr,)
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Mixing with 79! moduli
What about the moduli of the Td_l? . loop corrections, instantons, ...

— enlarge the moduli space: . yy, = M G4 X A 1a-i
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|f %QM IS compactifiable, also the large-radius region should be compactifiable
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* |s there an independent argument why Quantum Gravity should have semisimple dualities?

See also: [Marchesano, Melotti, Paoloni ’23; Raman, Vata ’24; Marchesano,

* Relation to curvature of moduli space?
P Melotti, Wiesner ’24; Castellano, Marchesano, Melotti, Pacloni ’24|

* Extension to theories with scalar potentials? UV complete field theories? Thank you!



