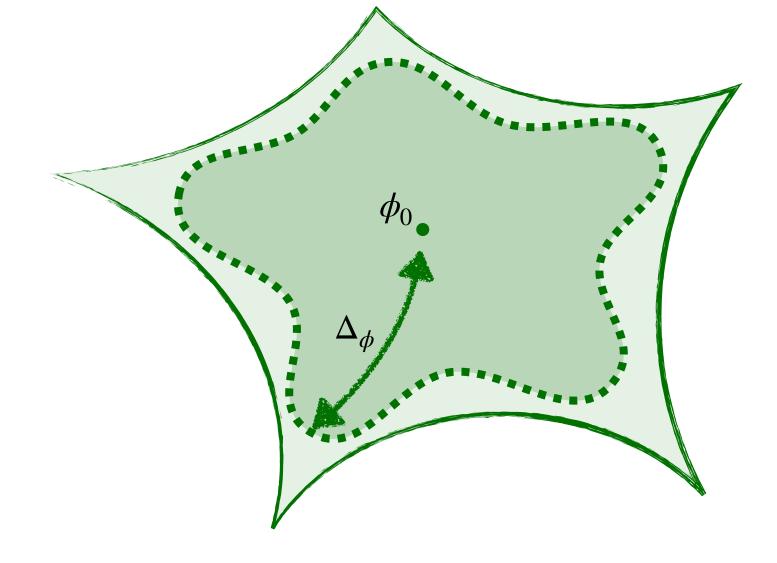
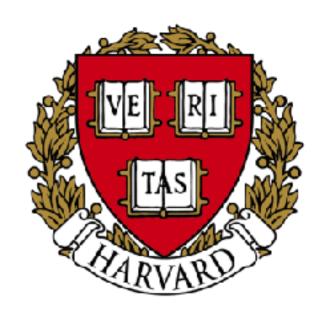
Finiteness & the **Emergence of Dualities**

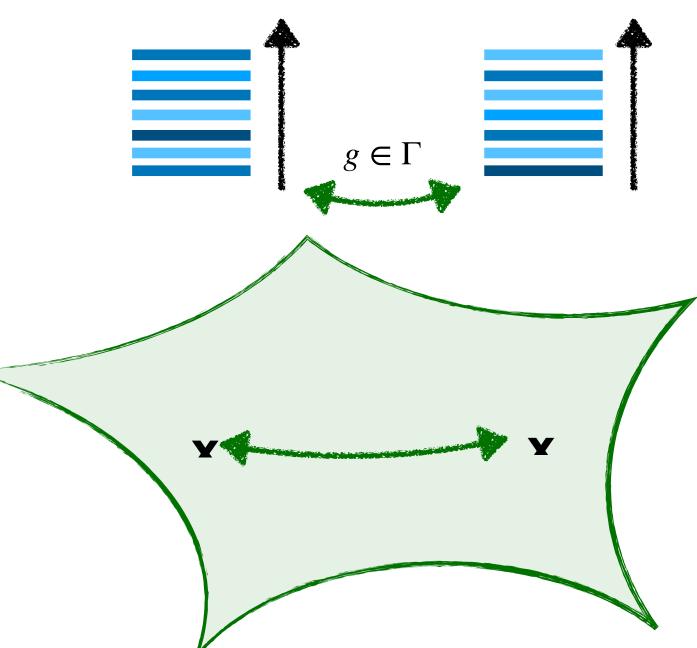




Based on: 2412.03640,

with Matilda Delgado, Sanjay Raman, Ethan Torres, Cumrun Vafa & Kai Xu

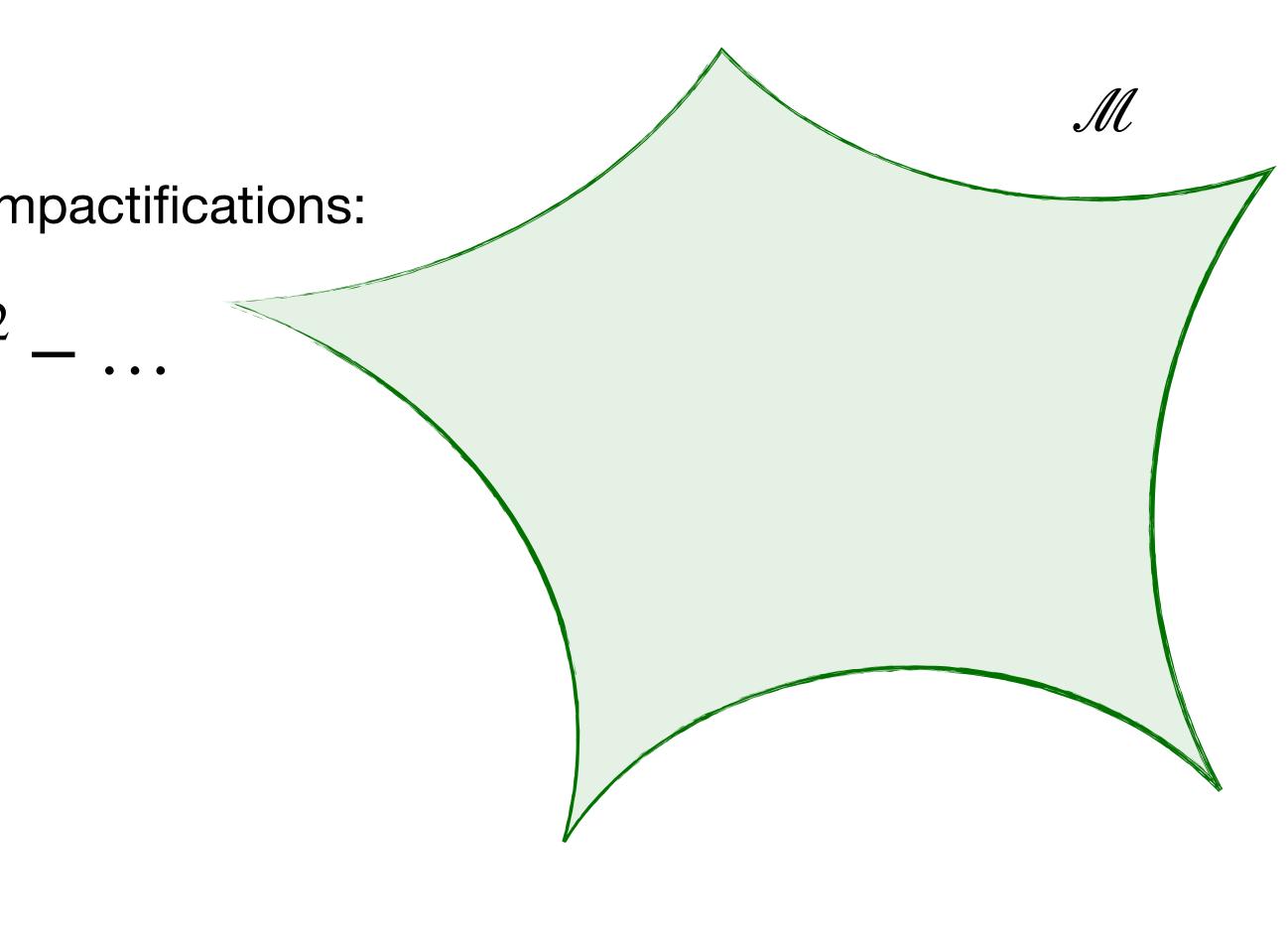
Damian van de Heisteeg



Strings & Geometry ICTP, April 9th

Typical effective action arising from string compactifications:

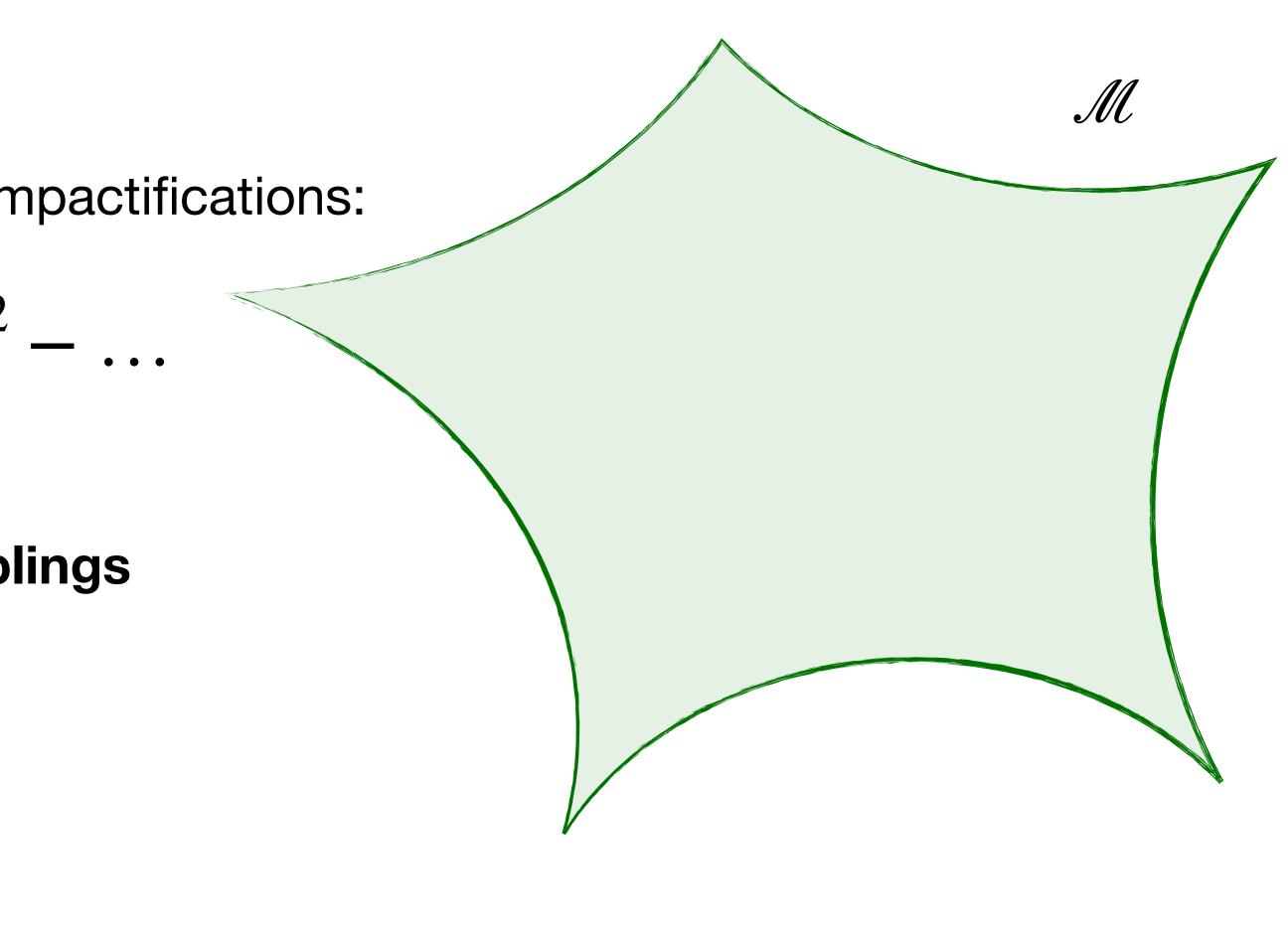
$$\mathscr{L} = R - g_{IJ}\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J} - e^{a\phi}|F|^{2}$$



Typical effective action arising from string compactifications:

$$\mathscr{L} = R - g_{IJ}\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J} - e^{a\phi}|F|^{2}$$

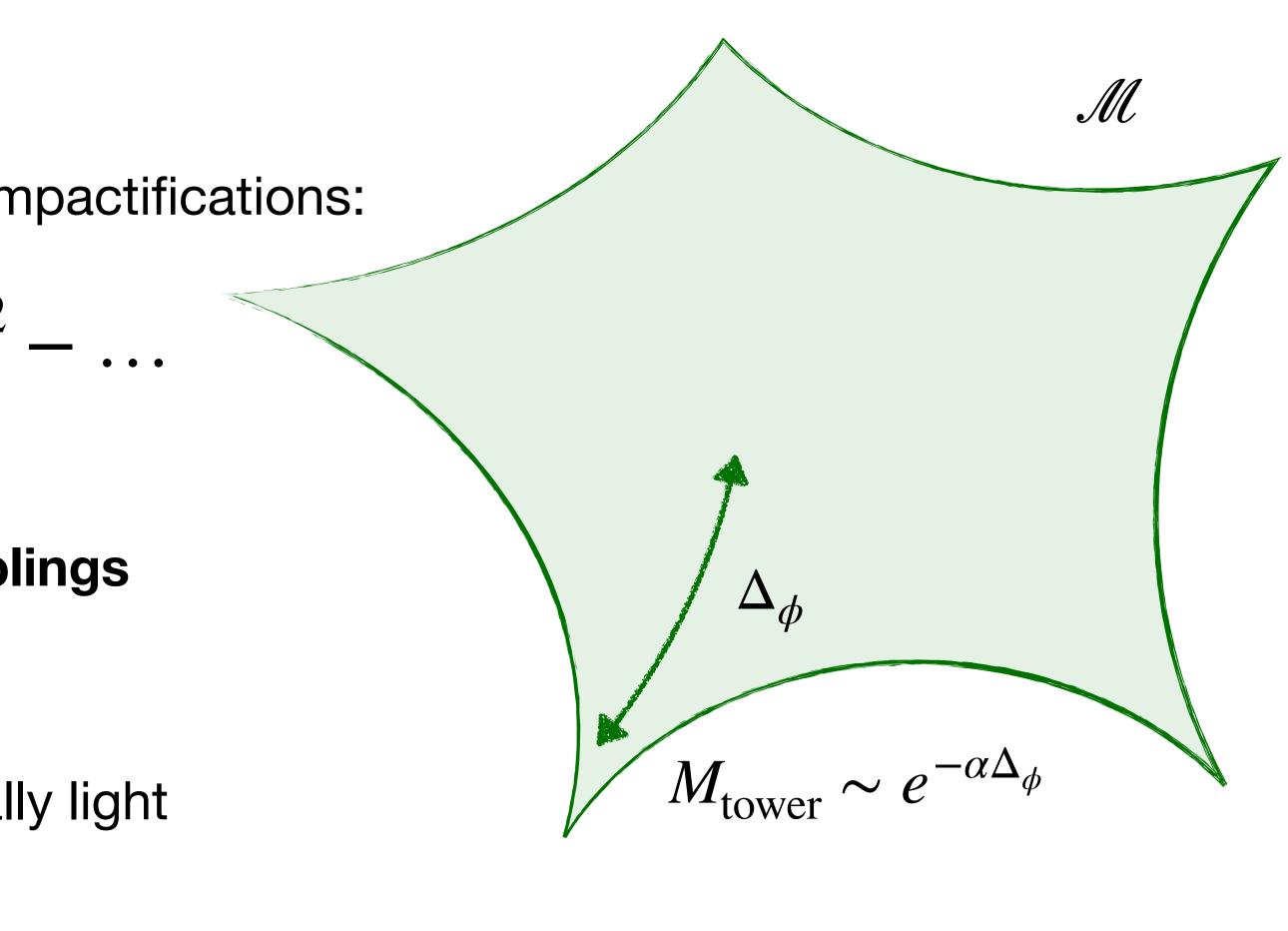
scalars parametrize all masses and couplings



Typical effective action arising from string compactifications:

$$\mathscr{L} = R - g_{IJ}\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J} - e^{a\phi}|F|^{2}$$

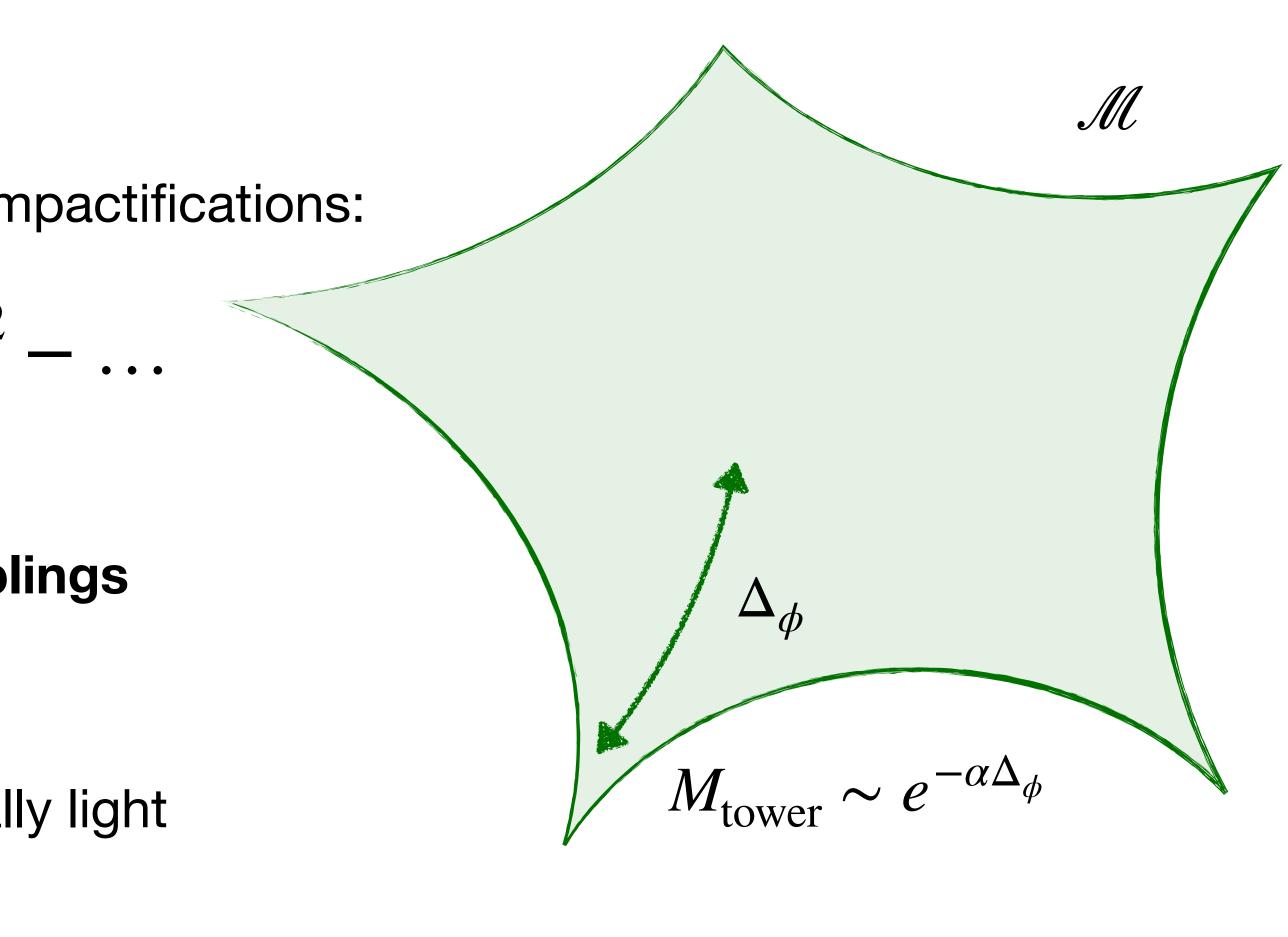
- scalars parametrize all masses and couplings
- **Distance Conjecture** [Ooguri, Vafa, '06] infinite towers of states become exponentially light



Typical effective action arising from string compactifications:

$$\mathscr{L} = R - g_{IJ}\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J} - e^{a\phi}|F|^{2}$$

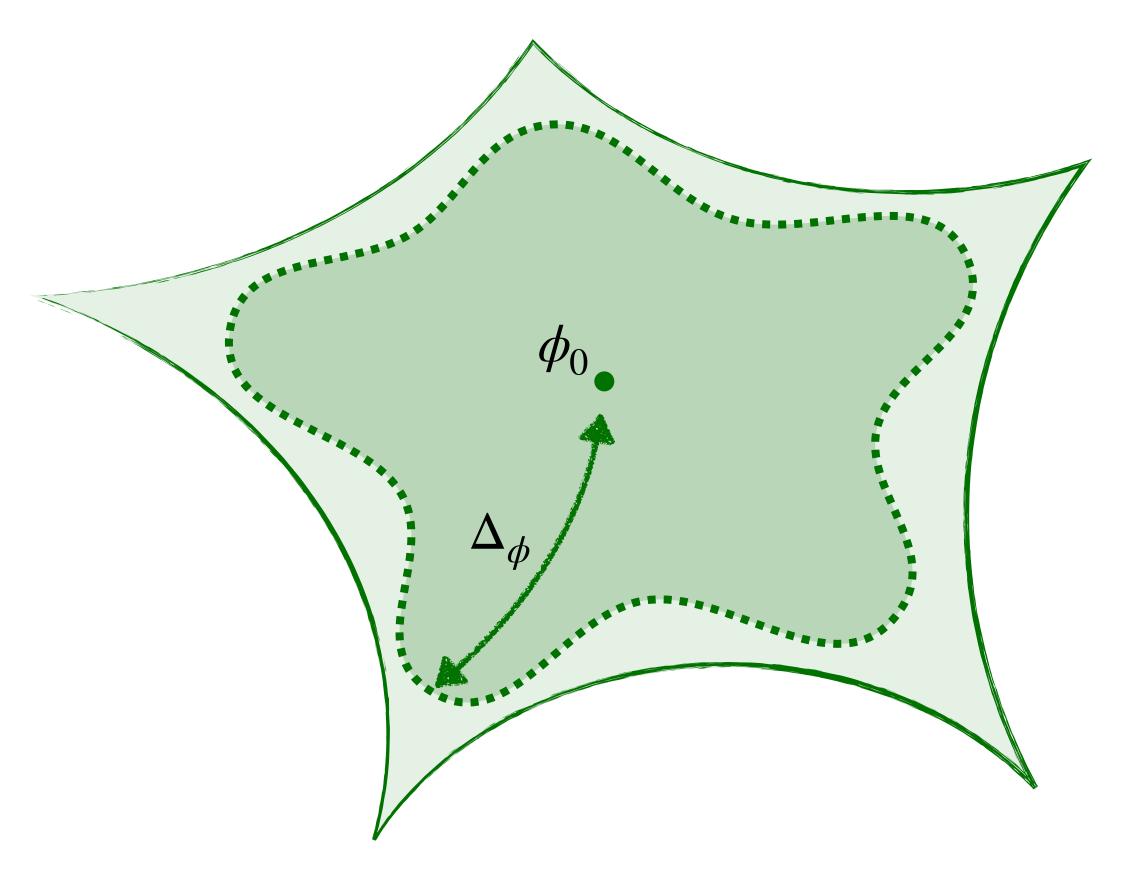
- scalars parametrize all masses and couplings
- **Distance Conjecture** [Ooguri, Vafa, '06] lacksquareinfinite towers of states become exponentially light
- strong evidence from string compactifications



[Grimm, Palti, Valenzuela '18; Lee, Lerche, Weigand, '19;]

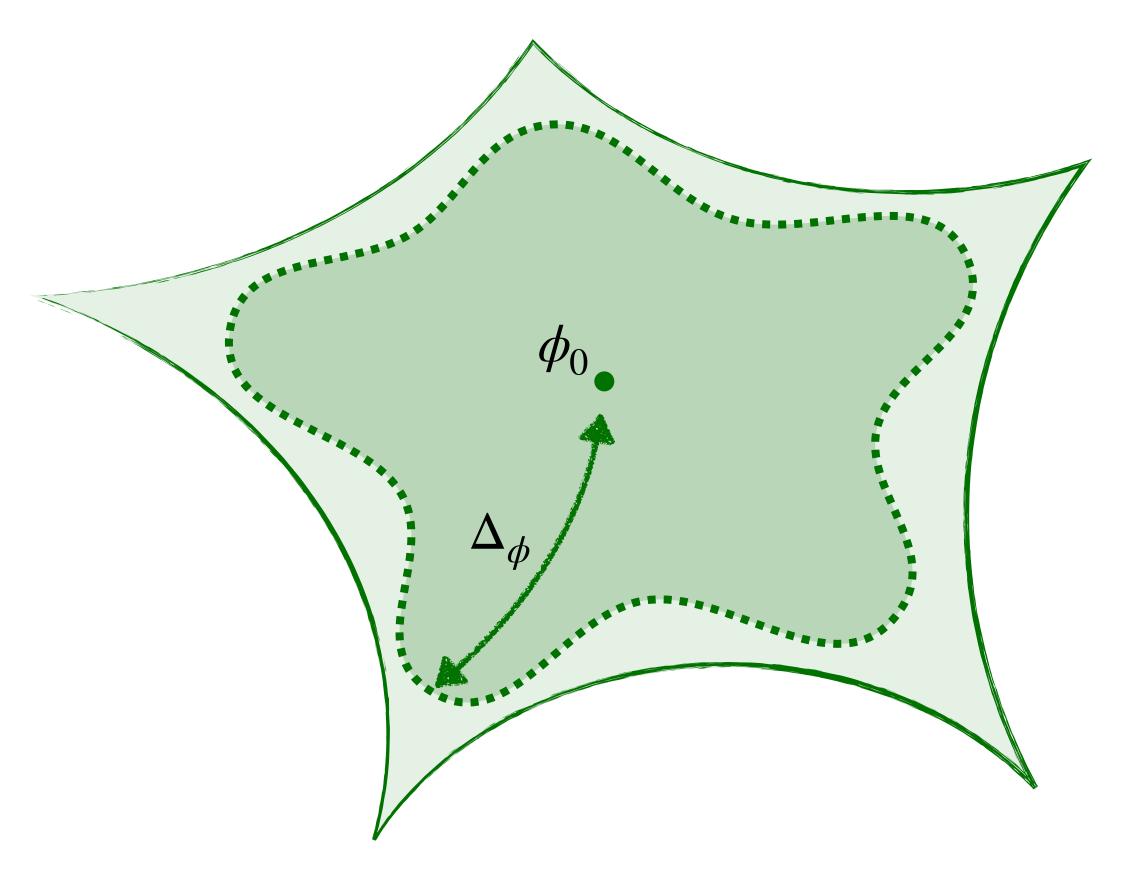
Region within distance Δ :

 $\mathcal{M}_{\Delta}(\phi_0) = \{ \phi \in \mathcal{M} \mid d(\phi, \phi_0) \leq \Delta \}$



Region within distance Δ :

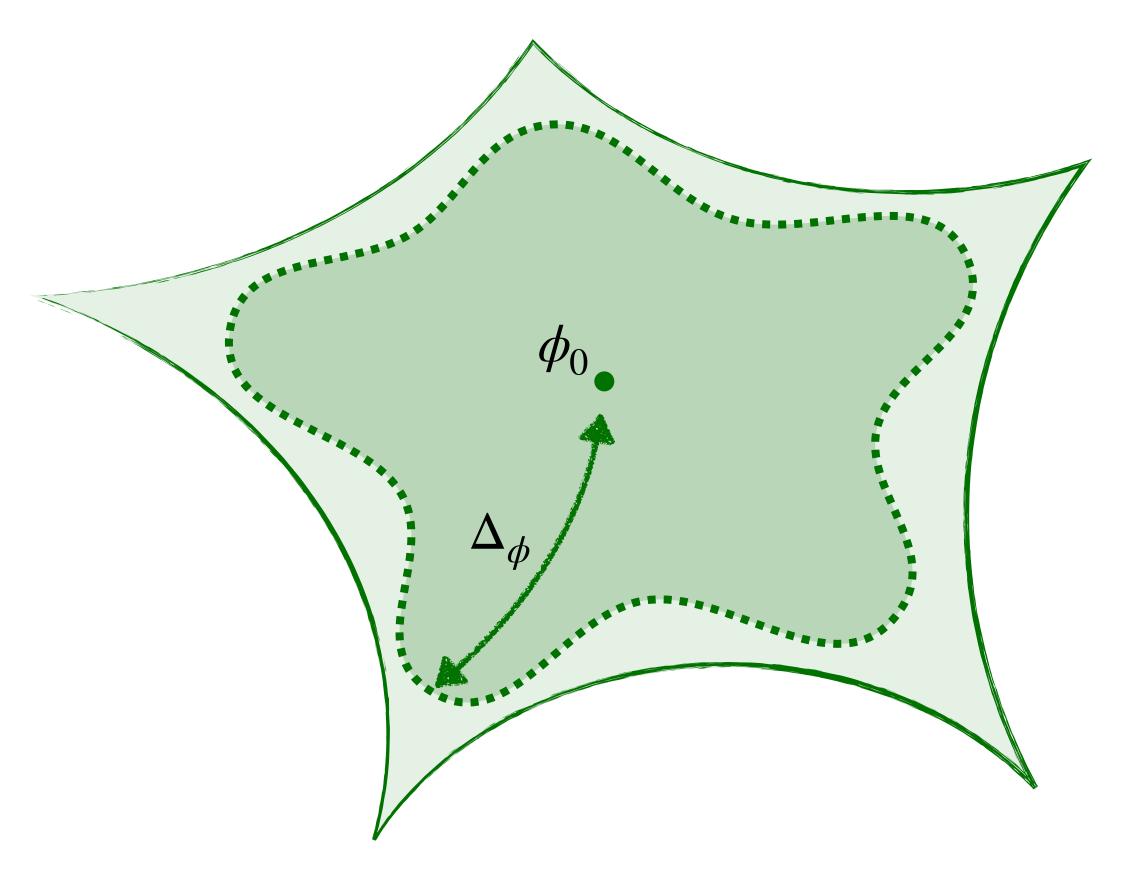
 $\mathcal{M}_{\Delta}(\phi_0) = \{ \phi \in \mathcal{M} \mid d(\phi, \phi_0) \leq \Delta \}$



How does the volume grow with Δ ?

Region within distance Δ :

 $\mathcal{M}_{\Delta}(\phi_0) = \{ \phi \in \mathcal{M} \mid d(\phi, \phi_0) \leq \Delta \}$



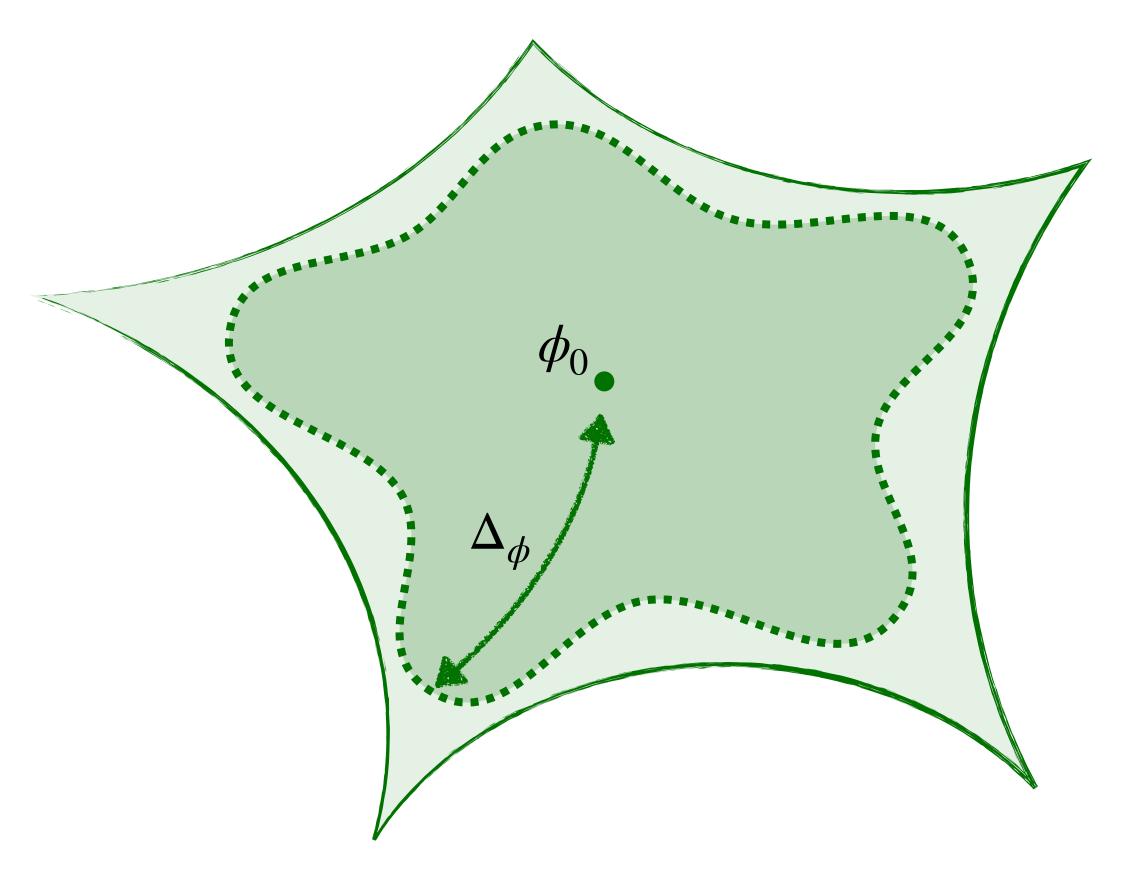
How does the volume grow with Δ ?

Compactifiability criterion

 $\mathsf{Vol}(\mathscr{M}_{\Delta}) \lesssim \Delta^{\dim(\mathscr{M})}$

Region within distance Δ :

 $\mathcal{M}_{\Delta}(\phi_0) = \{ \phi \in \mathcal{M} \mid d(\phi, \phi_0) \leq \Delta \}$



How does the volume grow with Δ ?

Compactifiability criterion

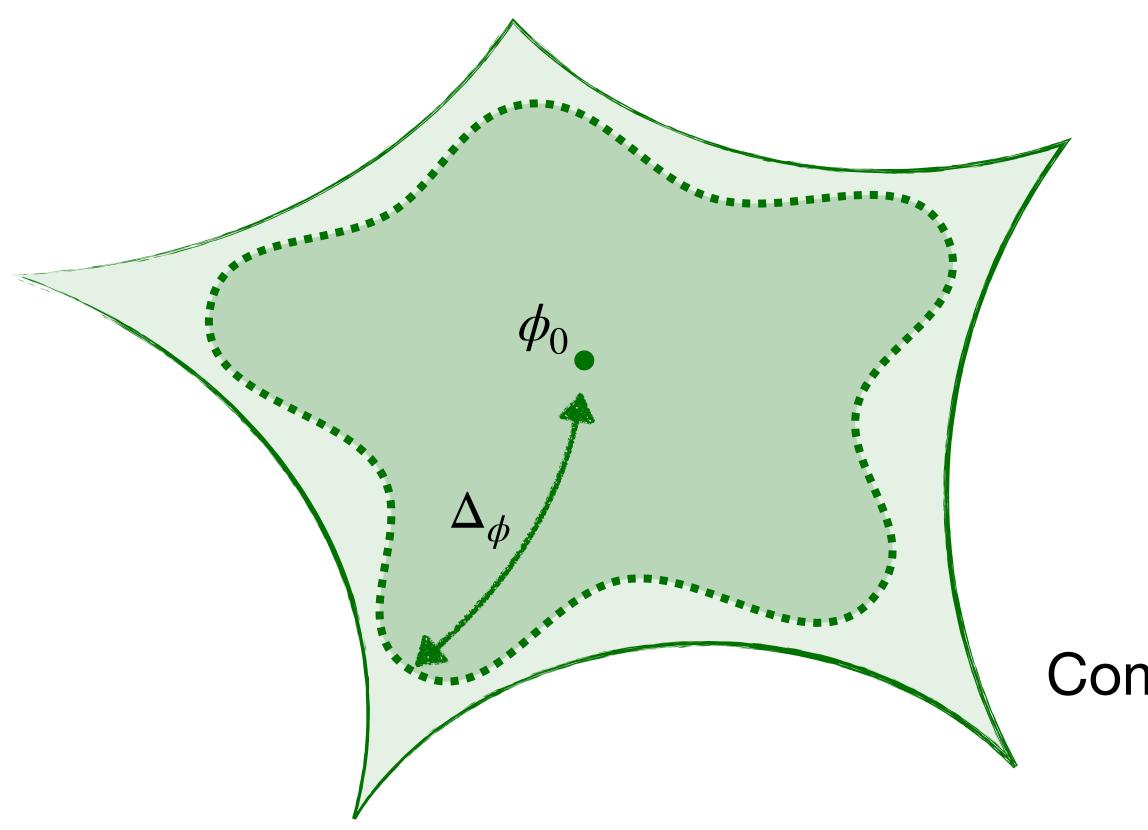
 $\mathsf{Vol}(\mathscr{M}_{\Delta}) \lesssim \Delta^{\dim(\mathscr{M})}$

Weaker but similar version:

 $\lim_{\Delta \to \infty} \frac{\operatorname{Area}(\partial \mathscr{M}_{\Delta})}{\operatorname{Vol}(\mathscr{M}_{\Delta})} \to 0$

Region within distance Δ :

 $\mathscr{M}_{\Delta}(\phi_0) = \{ \phi \in \mathscr{M} \mid d(\phi, \phi_0) \leq \Delta \}$



How does the volume grow with Δ ?

Compactifiability criterion

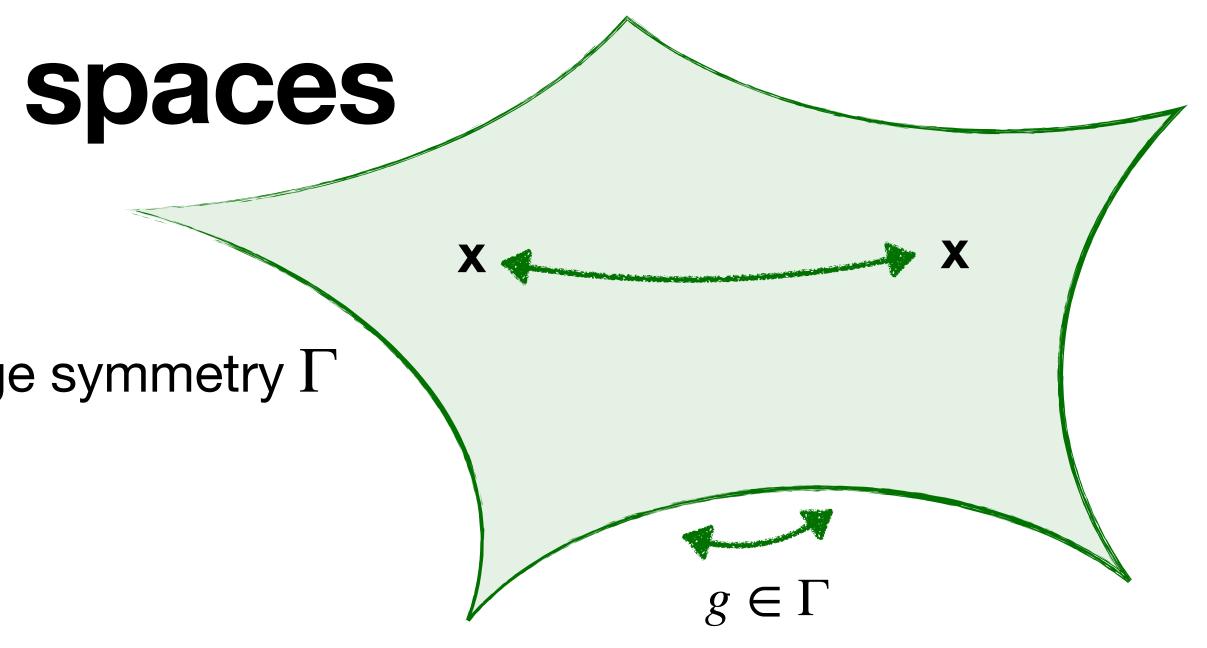
 $\operatorname{Vol}(\mathcal{M}_{\Lambda}) \lesssim \Delta^{\dim(\mathcal{M})}$

Weaker but similar version:

$$\lim_{\Delta \to \infty} \frac{\operatorname{Area}(\partial \mathscr{M}_{\Delta})}{\operatorname{Vol}(\mathscr{M}_{\Delta})} \to 0$$

Complementary version: tame Euclidean embedding [Grimm, Prieto, van Vliet, '25]

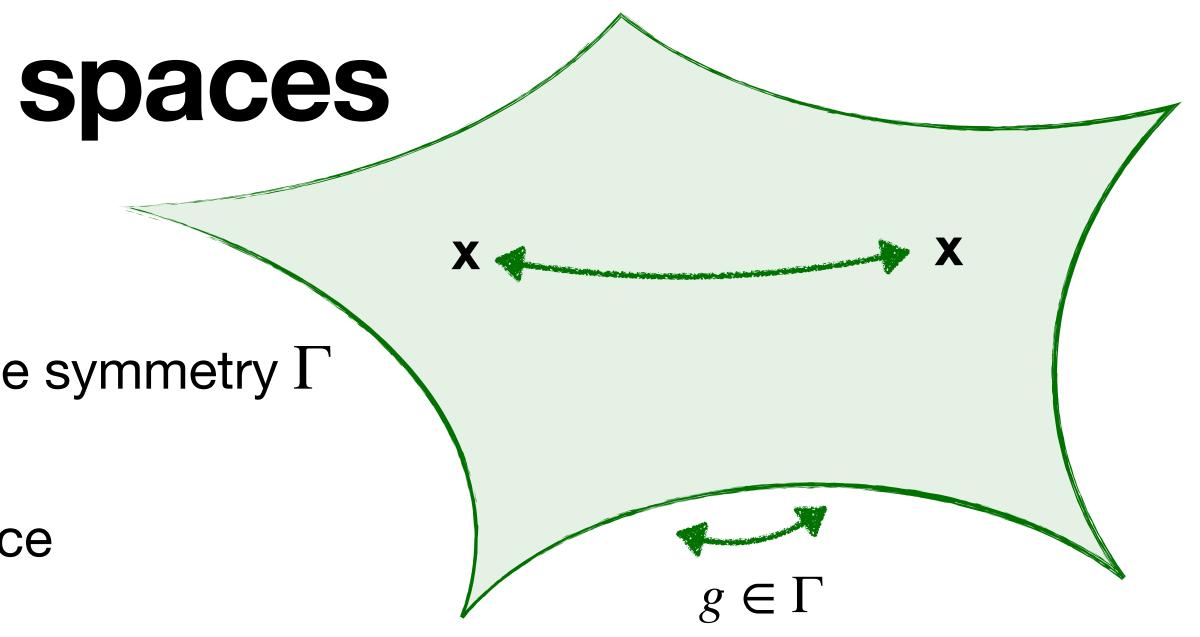
Self-dualities:



Self-dualities:

discrete, spontaneously broken, 0-form gauge symmetry Γ

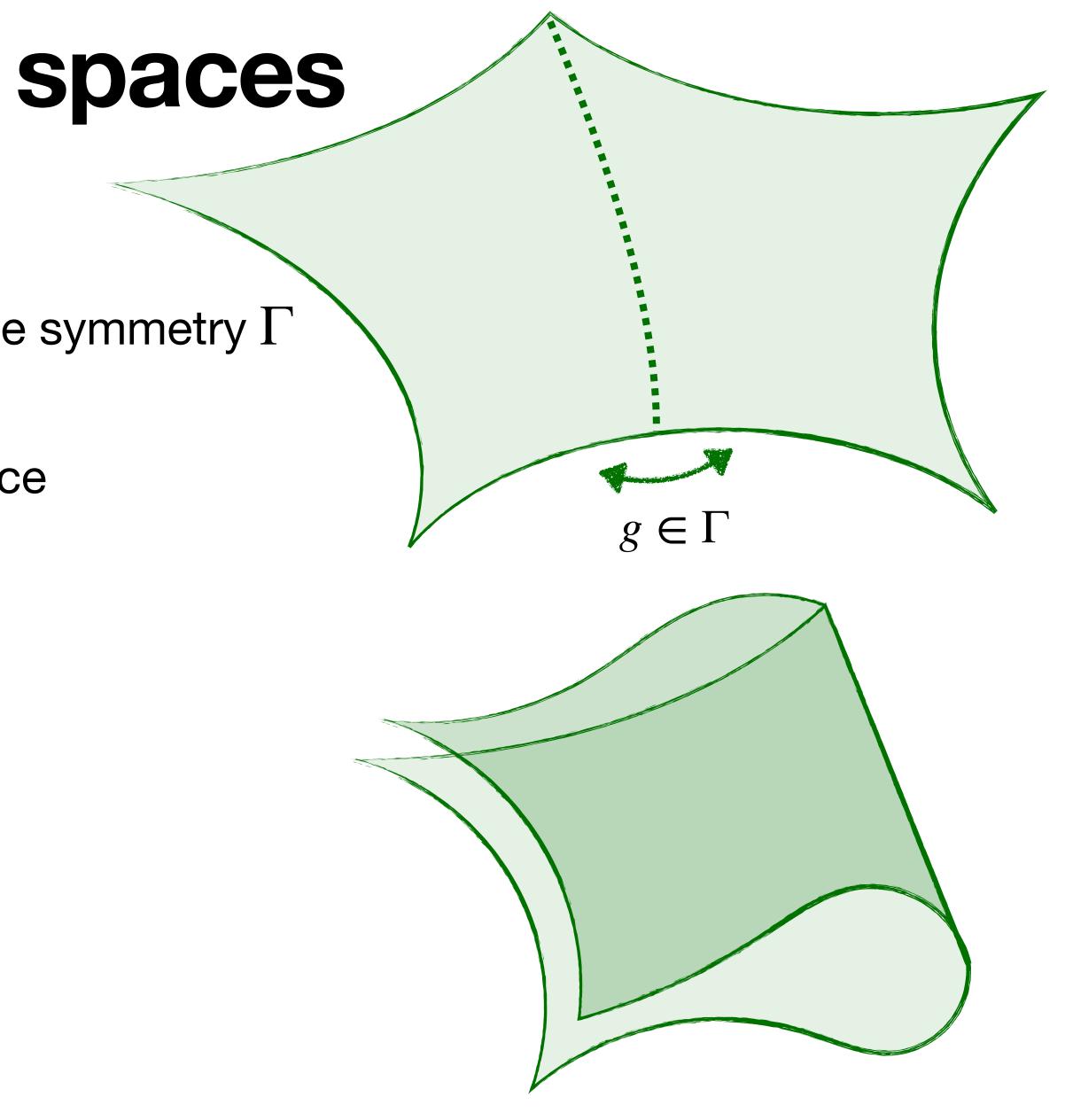
Identifies identical points in the moduli space



Self-dualities:

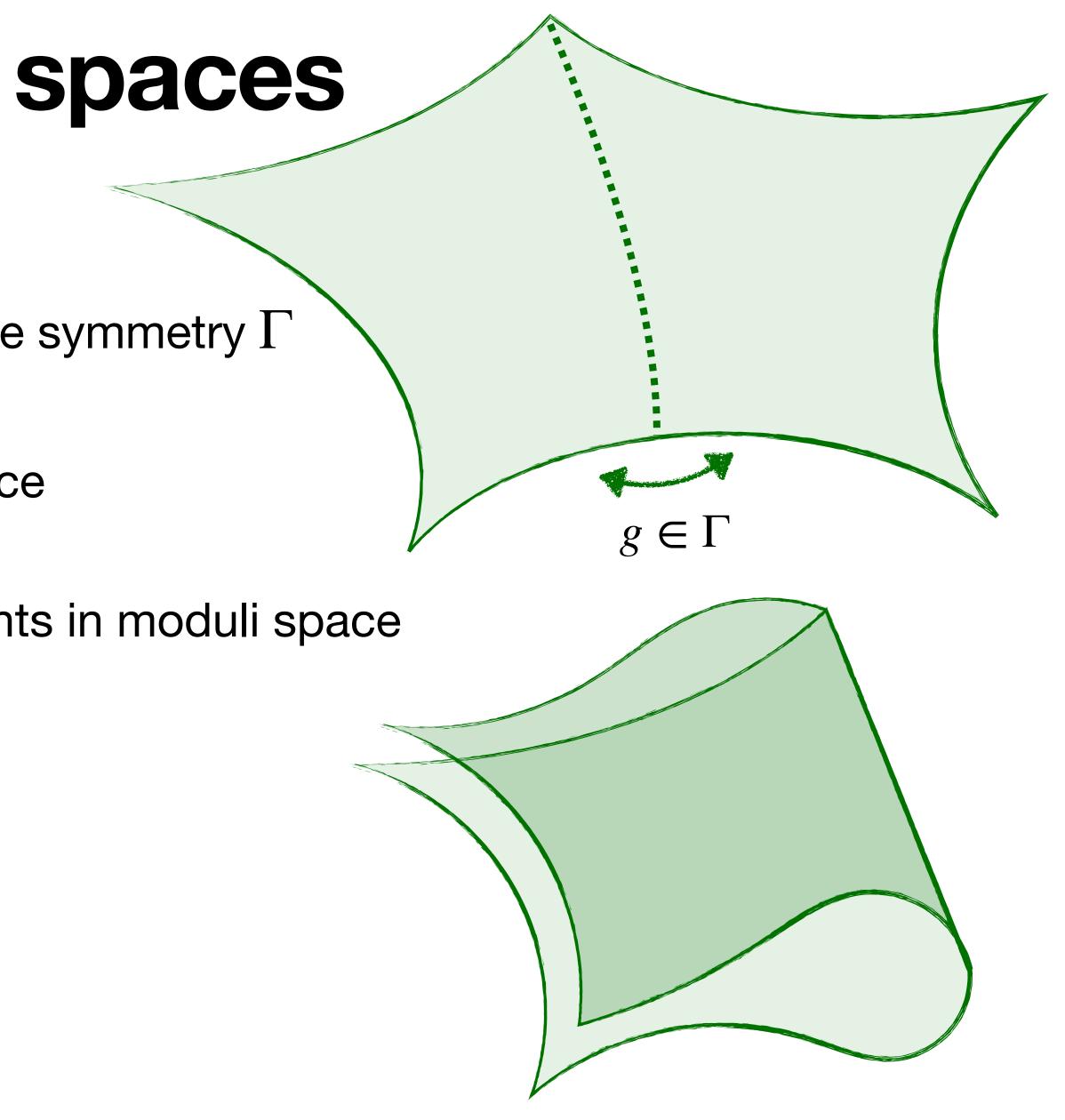
discrete, spontaneously broken, 0-form gauge symmetry Γ

Identifies identical points in the moduli space



Self-dualities:

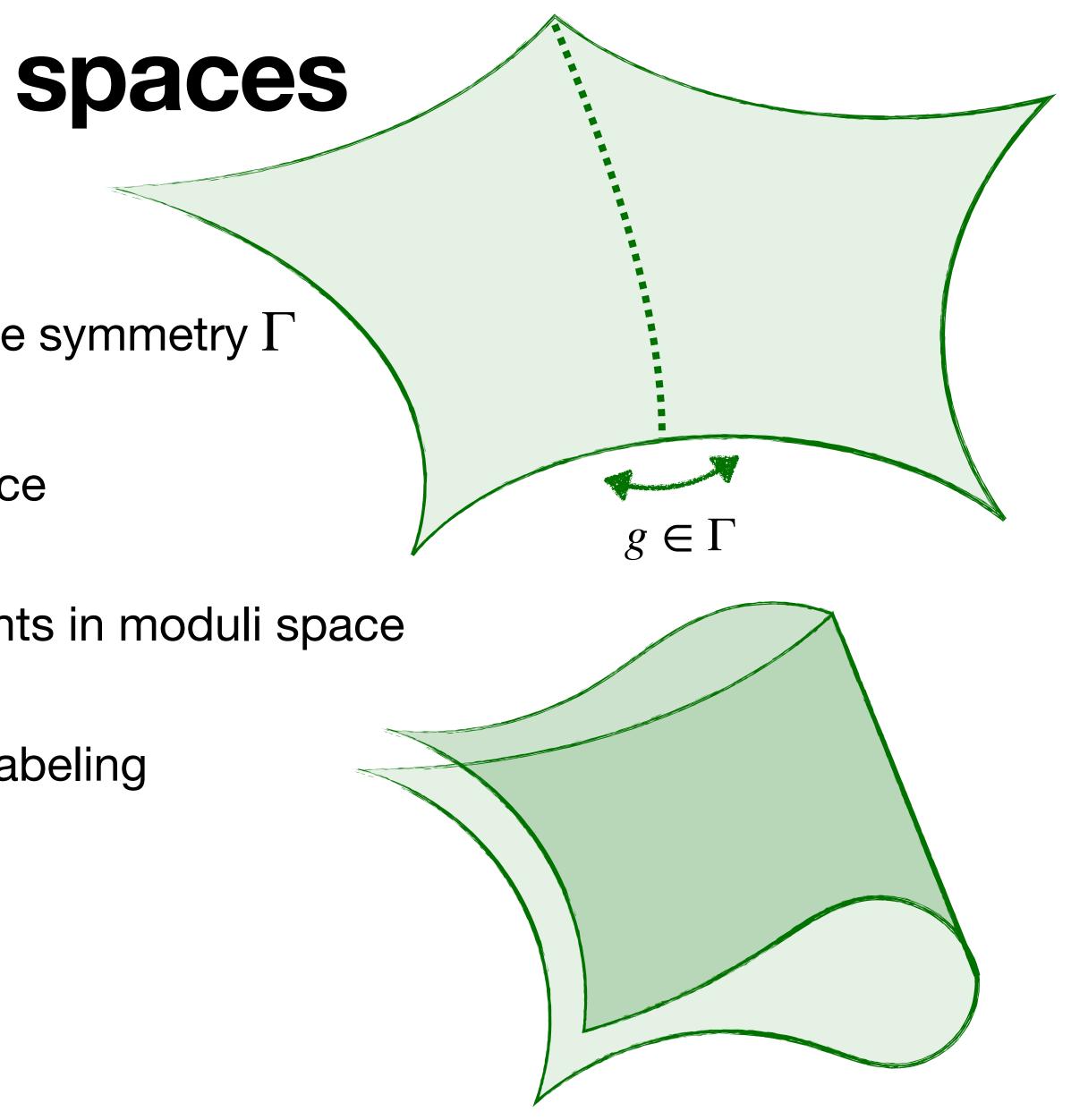
- Identifies identical points in the moduli space
- Gauge symmetry only restored at fixed points in moduli space



Self-dualities:

- Identifies identical points in the moduli space
- Gauge symmetry only restored at fixed points in moduli space
- Full spectrum of states is invariant after relabeling

$$\mathbf{q}' = g\mathbf{q}, \qquad g \in \Gamma$$

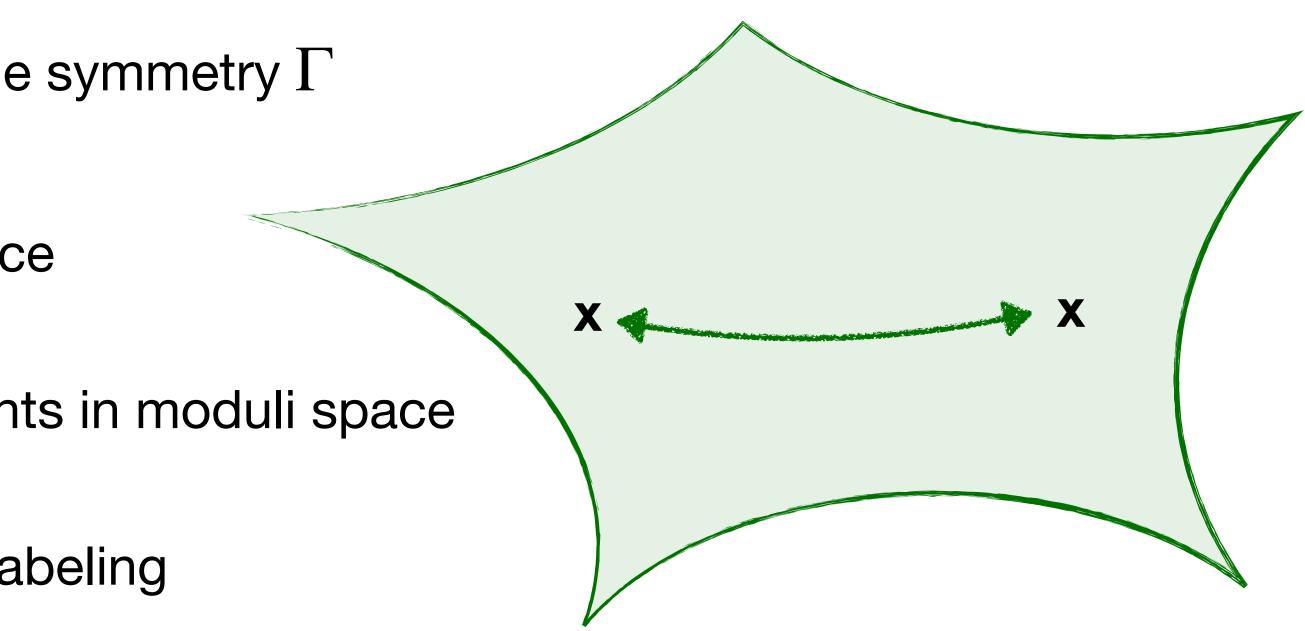


Moduli spaces and dualities

Self-dualities:

- Identifies identical points in the moduli space
- Gauge symmetry only restored at fixed points in moduli space
- Full spectrum of states is invariant after relabeling

$$\mathbf{q}' = g\mathbf{q}, \qquad g \in \Gamma$$

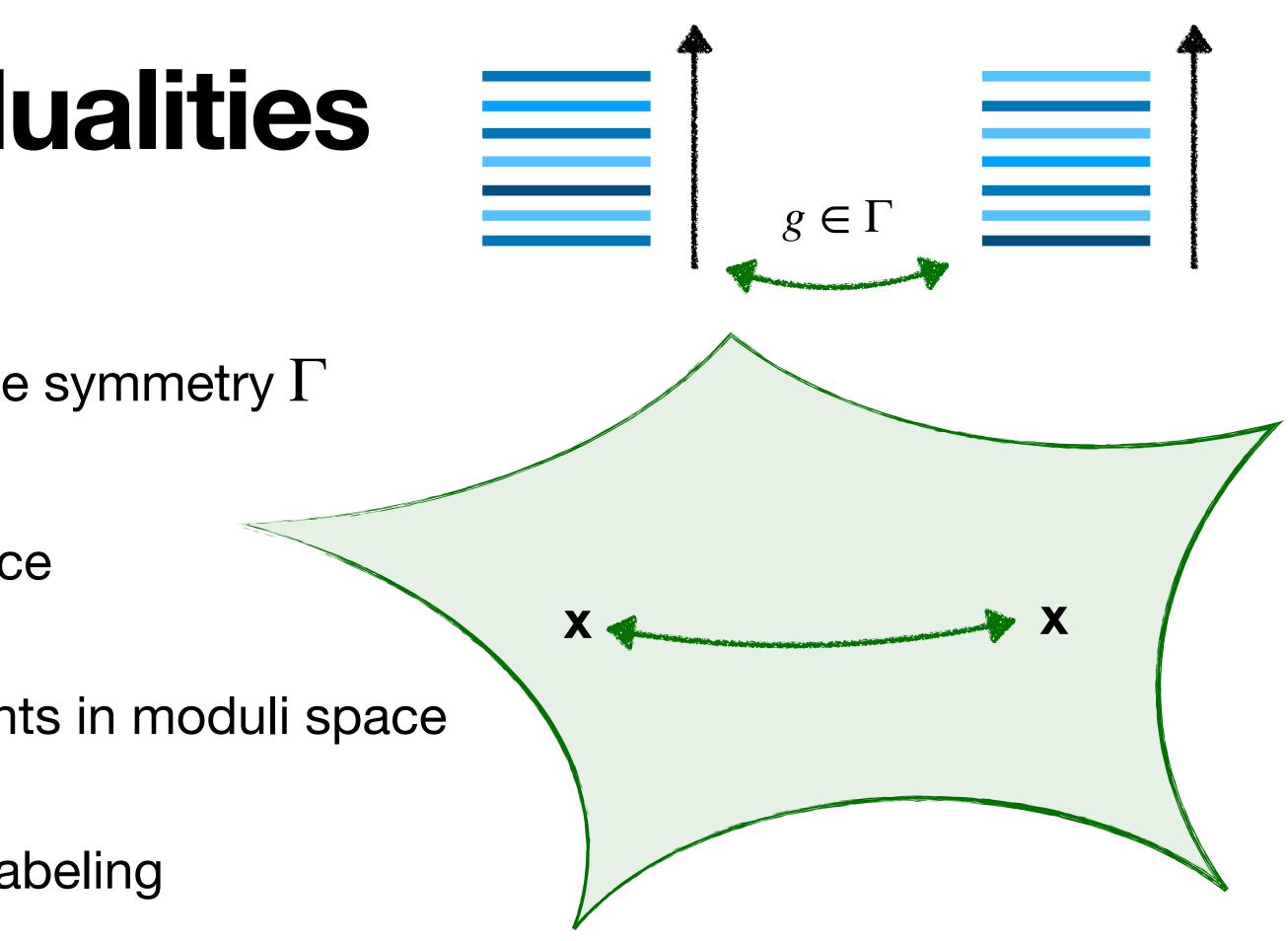


Moduli spaces and dualities

Self-dualities:

- Identifies identical points in the moduli space
- Gauge symmetry only restored at fixed points in moduli space
- Full spectrum of states is invariant after relabeling

$$\mathbf{q}' = g\mathbf{q}, \qquad g \in \Gamma$$



Moduli spaces and dualities

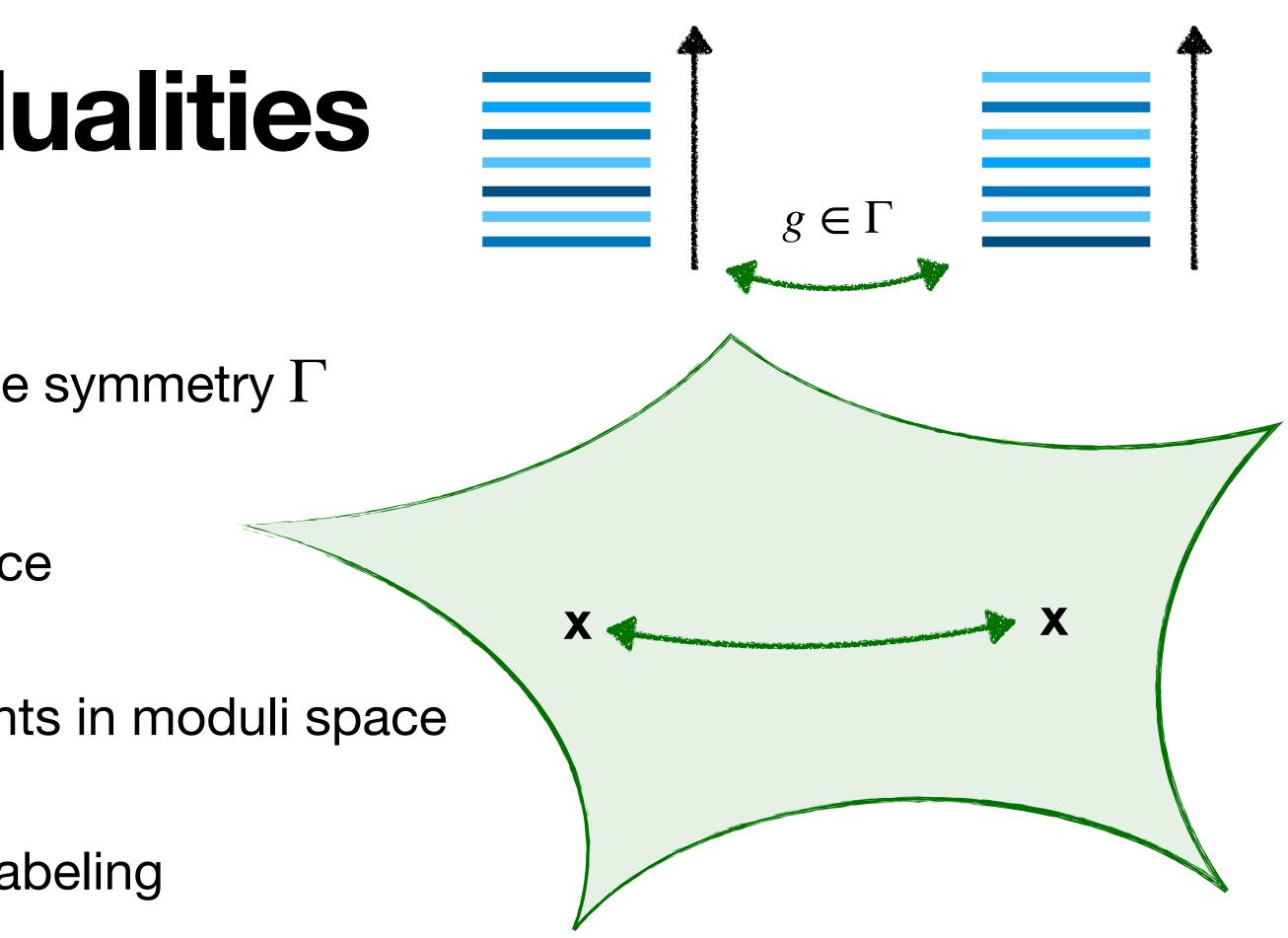
Self-dualities:

discrete, spontaneously broken, 0-form gauge symmetry Γ

- Identifies identical points in the moduli space lacksquare
- Gauge symmetry only restored at fixed points in moduli space
- Full spectrum of states is invariant after relabeling

$$\mathbf{q}' = g\mathbf{q}, \qquad g \in \Gamma$$

Duality vortices: codim-2 defects that implement the duality as you wind around (7-branes in 10d Type IIB, axionic strings in 4d supergravity)



The Plan

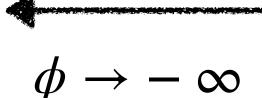
Today: explore the role of *moduli space volumes* and *dualities* in Quantum Gravity/String Theory.

- **1. Warm-up examples:** How does the volume grow? How do dualities act?
- **2.** 4d $\mathcal{N} = 2$ CYs compactifications: What is the representation of duality groups? What do these duality groups explicitly look like?
- 3. Bottom-up argument for Compactifiability: How do ground states see the moduli space? Is their finiteness related to the volume?

1. Warm-up examples

Moduli space – $\mathcal{M} = \mathbb{R}$ real line parametrized by $g_s = e^{\phi}$

Moduli space – $\mathcal{M} = \mathbb{R}$ real line parametrized by $g_s = e^{\phi}$

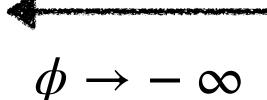


weak-coupling 10d Type IIA ϕ

 $\phi
ightarrow \infty$

strong-coupling 11d M-theory

Moduli space – $\mathcal{M} = \mathbb{R}$ real line parametrized by $g_s = e^{\phi}$



weak-coupling 10d Type IIA

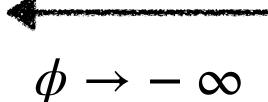
 \implies Volume within distance Δ : Vol $(\mathcal{M}_{\Delta}) = 2\Delta$

 ϕ

 $\phi \to \infty$

strong-coupling 11d M-theory

Moduli space – $\mathcal{M} = \mathbb{R}$ real line parametrized by $g_s = e^{\phi}$



weak-coupling 10d Type IIA

 \implies Volume within distance Δ : Vol $(\mathcal{M}_{\Lambda}) = 2\Delta$

Aside: the EFT with cut-off $\Lambda \leq \Lambda_{\text{species}}(\phi)$ has a moduli space of finite diameter [DvdH, Vafa, Wiesner, Wu, '23]

 ϕ

 $\phi \to \infty$ strong-coupling

11d M-theory

Moduli space — upper-half plane w/ $\mathscr{L}_{kin} = \frac{\partial_{\mu} \tau \partial^{\mu} \overline{\tau}}{(\tau_2)^2}$

Moduli space — upper-half plane w/ $\mathscr{L}_{\rm kin}$

Duality group — $SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad \right\}$

$$\lim_{n \to \infty} = \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\tau_2)^2}$$

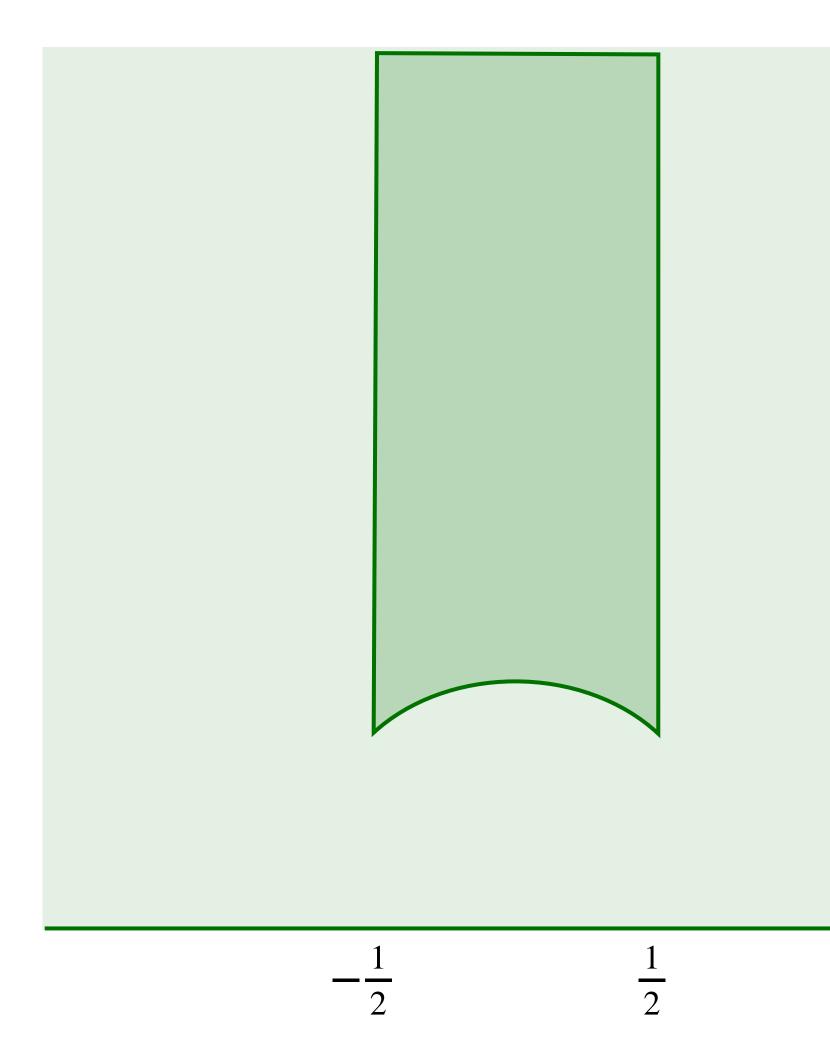
$$l - bc = 1$$

Moduli space — upper-half plane w/ \mathscr{L}_{kin}

Duality group - $SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad \right\}$

• action on axio-dilaton: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$

$$\sin = \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\tau_2)^2}$$
$$d - bc = 1$$

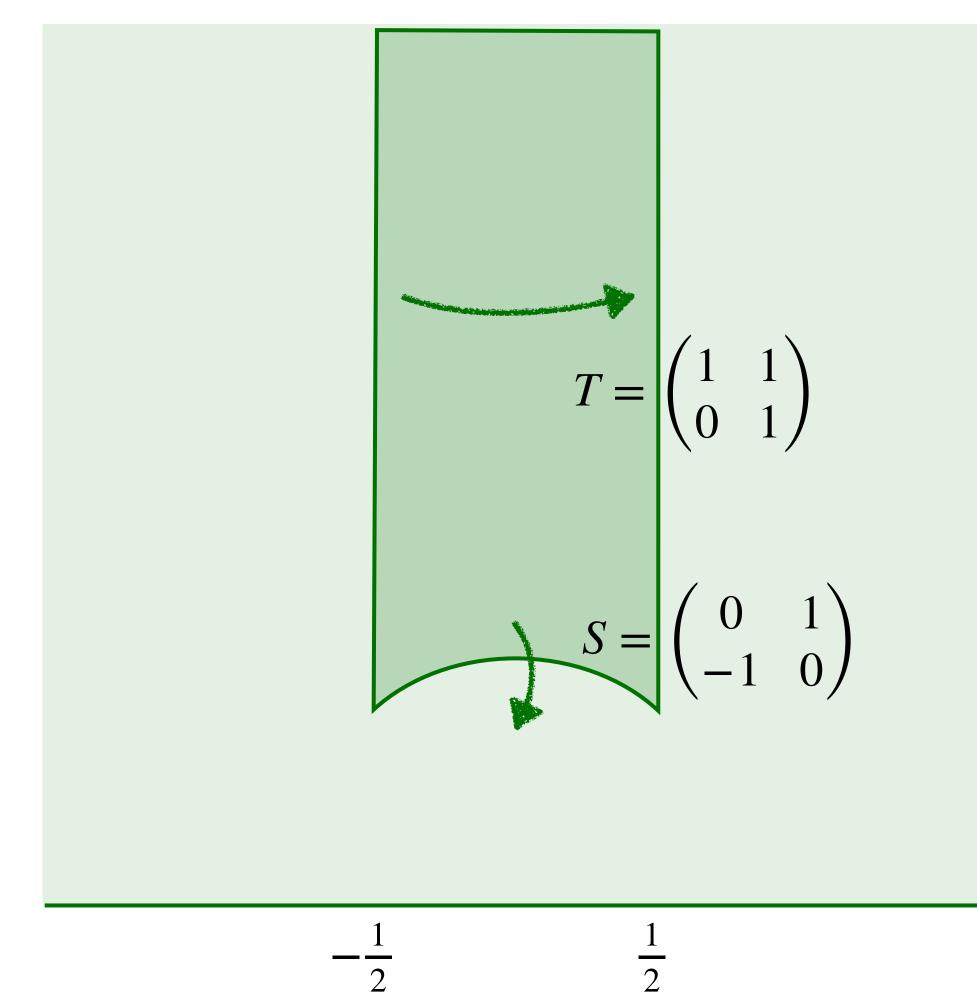


Moduli space — upper-half plane w/ \mathscr{L}_{ki}

Duality group - $SL(2,\mathbb{Z}) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad \end{cases}$

• action on axio-dilaton: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$

$$\sin = \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\tau_2)^2}$$
$$d - bc = 1$$



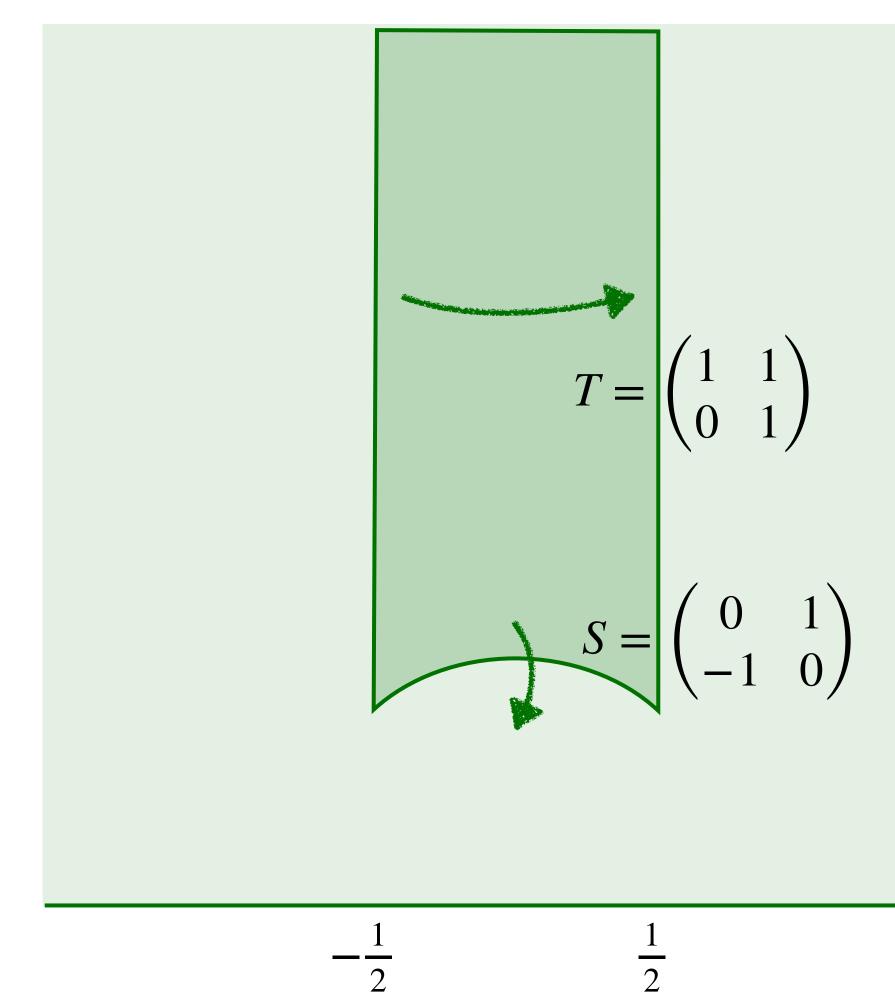
Moduli space — upper-half plane w/ \mathscr{L}_{ki}

Duality group - $SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad \right\}$

- action on axio-dilaton: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$
- action on other massless fields:

$$\begin{pmatrix} C_2 \\ B_2 \end{pmatrix} \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} C_2 \\ B_2 \end{pmatrix}, \quad C_4 \to C_4$$

$$\sin = \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\tau_2)^2}$$
$$d - bc = 1$$



Moduli space — upper-half plane w/ \mathscr{L}_{ki}

Duality group - $SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad \right\}$

- action on axio-dilaton: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$
- action on other massless fields:

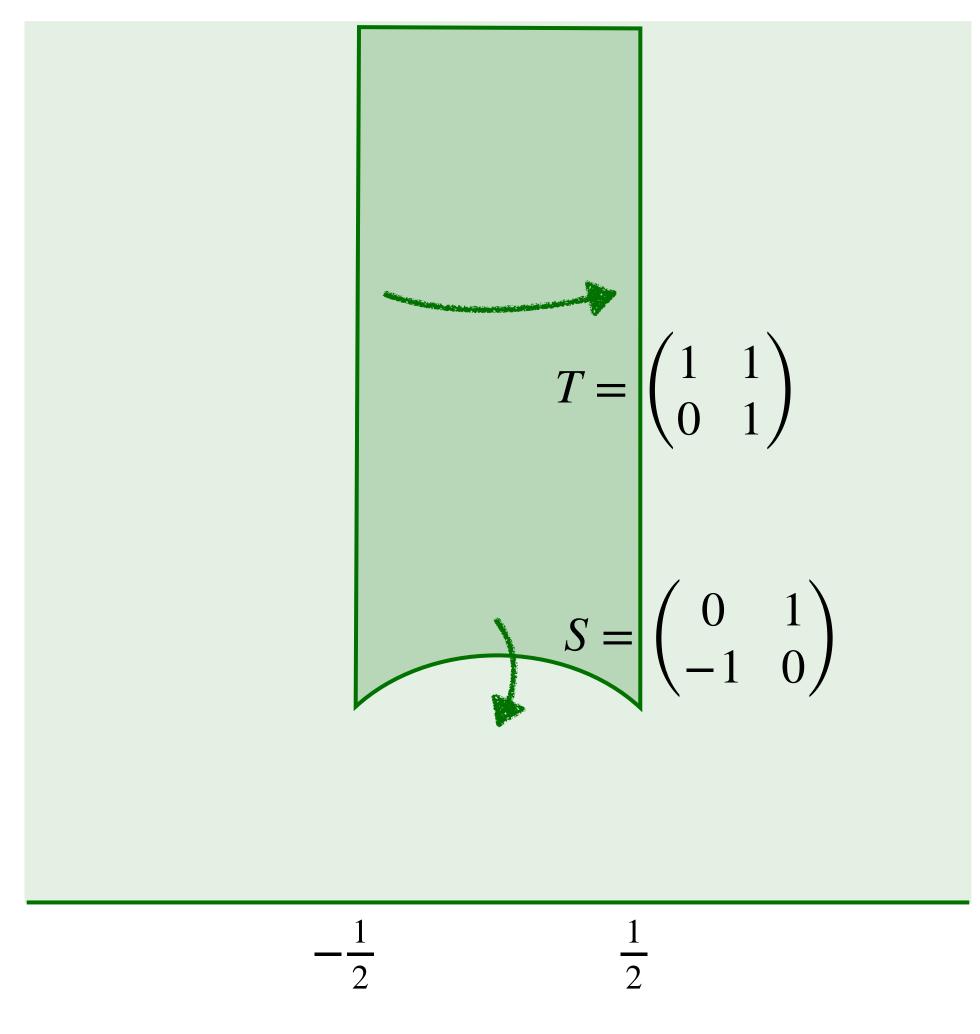
$$\begin{pmatrix} C_2 \\ B_2 \end{pmatrix} \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} C_2 \\ B_2 \end{pmatrix}, \quad C_4 \to C_4$$

Duality vortices – (p,q) 7-branes:

$$T_{p,q} = g_{p,q}^{-1} T g_{p,q} =$$

$$\lim_{n \to \infty} = \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\tau_2)^2}$$

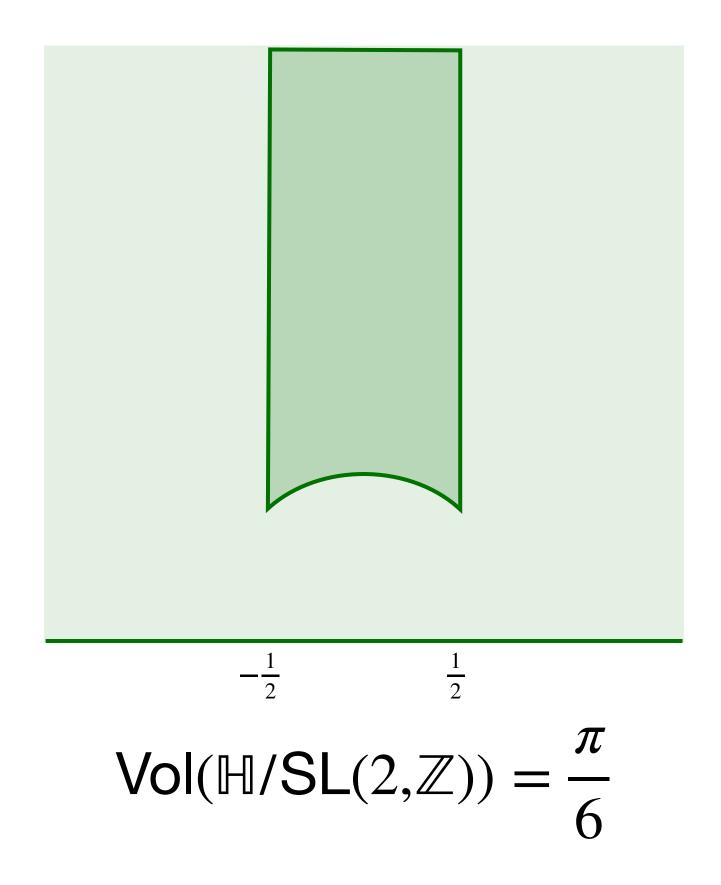
$$l - bc = 1$$

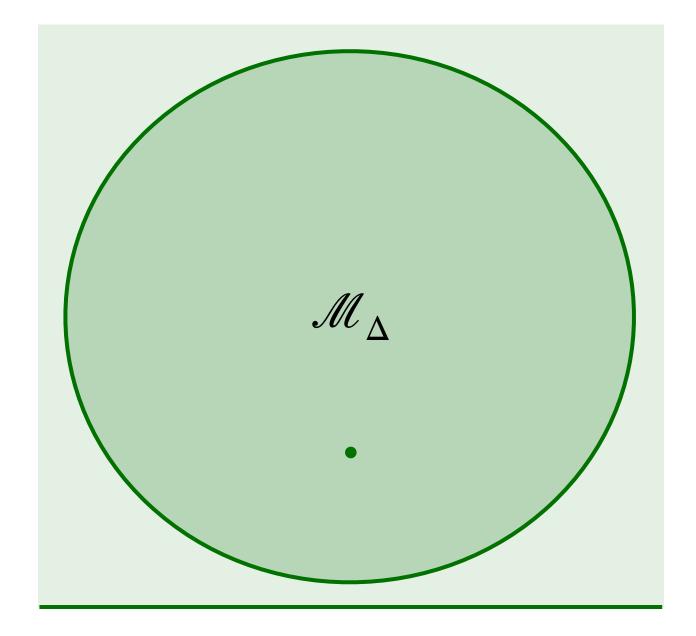


 $= \begin{pmatrix} 1+pq & p^2 \\ -q^2 & 1-pq \end{pmatrix}$

Type IIB comparison

$\Gamma = SL(2,\mathbb{Z})$

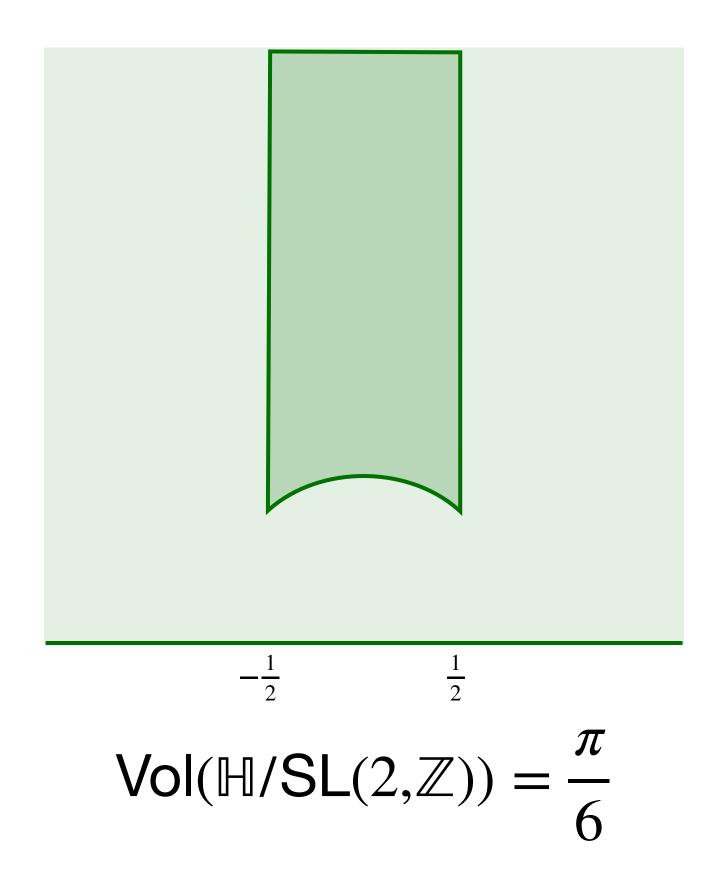




 $Vol(\mathcal{M}_{\Delta}) = 2\pi(\cosh \Delta - 1) \sim \pi e^{\Delta}$

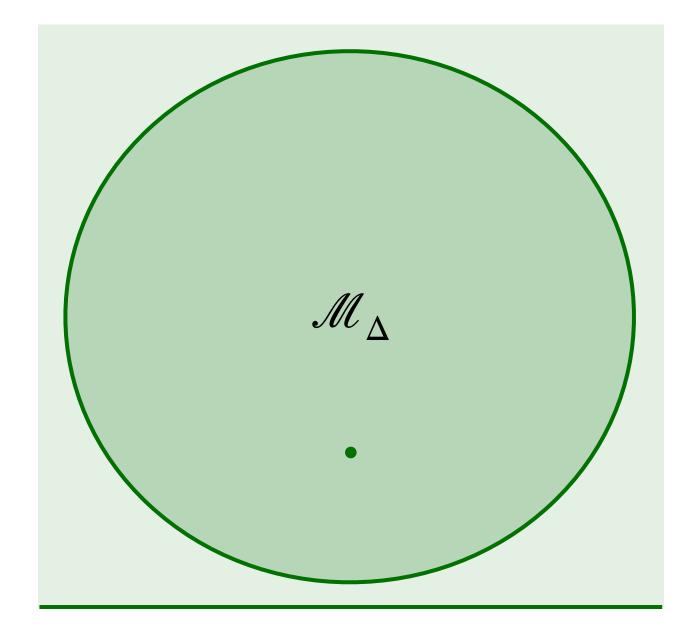
Type IIB comparison

$\Gamma = \mathsf{SL}(2,\mathbb{Z})$



*any finite-index $\Gamma \subset SL(2,\mathbb{Z})$ works

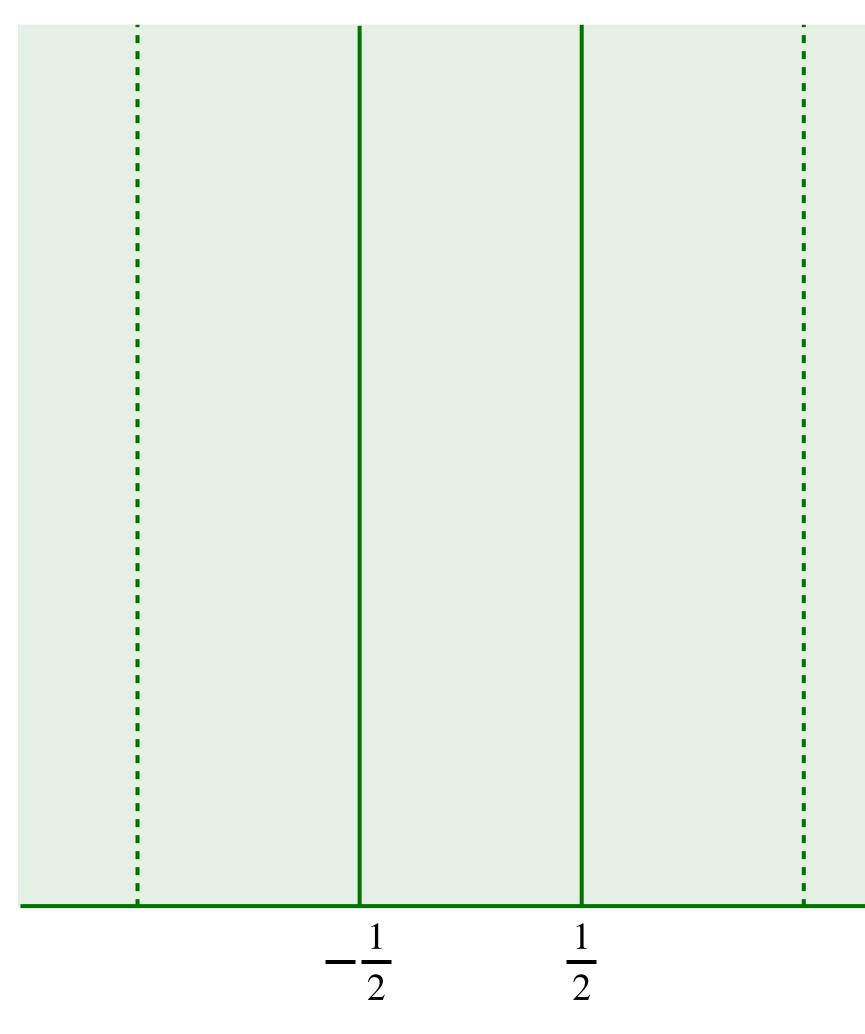
(expect only genus-zero modular curves [Dierigl, Heckman '20])

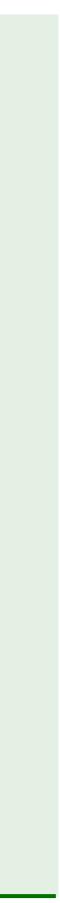


 $Vol(\mathcal{M}_{\Delta}) = 2\pi(\cosh \Delta - 1) \sim \pi e^{\Delta}$

Duality group generated by $\tau \rightarrow \tau + 1$

$$\Gamma_{\rm uni} = \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$$

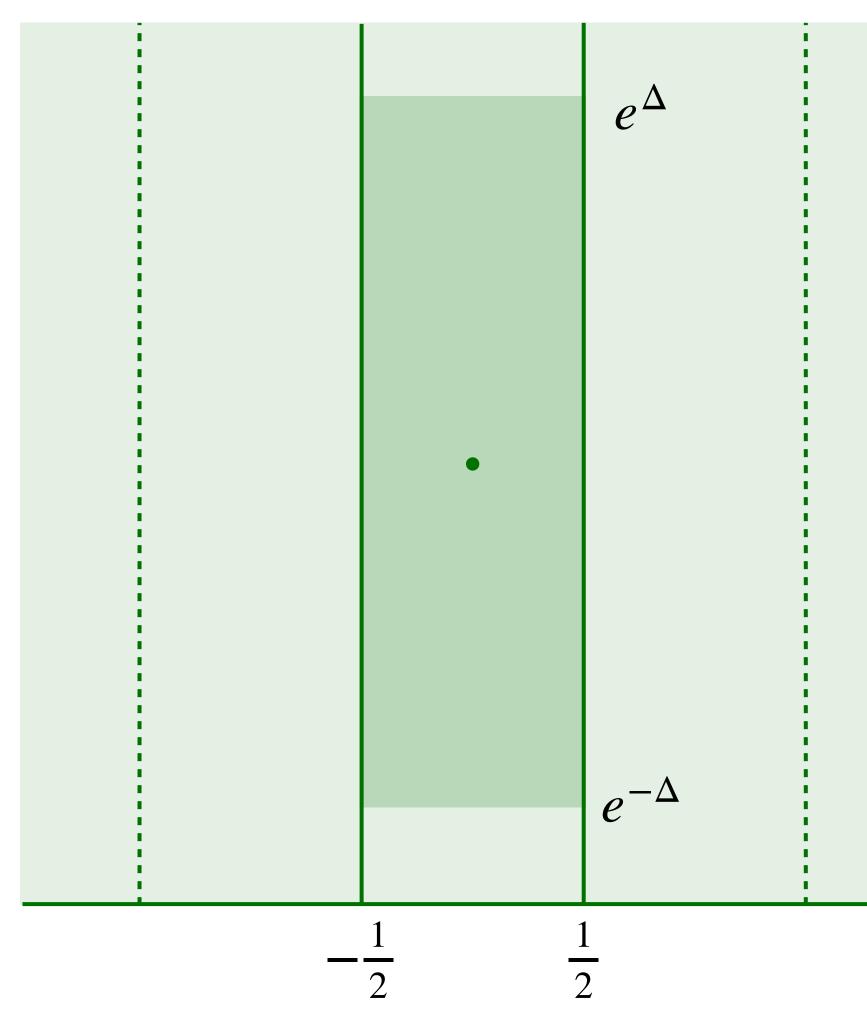


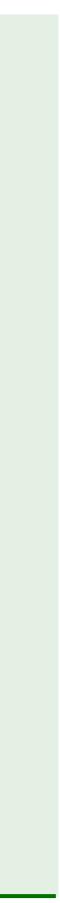


Duality group generated by $\tau \rightarrow \tau + 1$

$$\Gamma_{\rm uni} = \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$$

Volume within distance Δ of $\tau = i$:



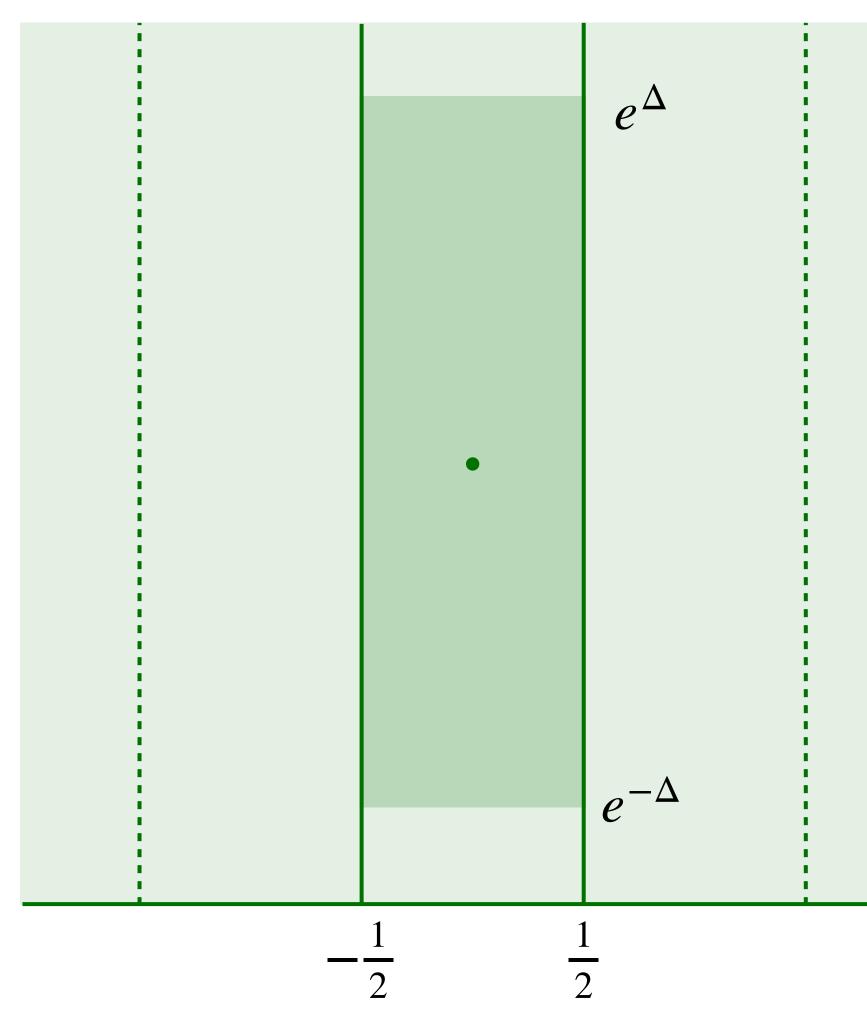


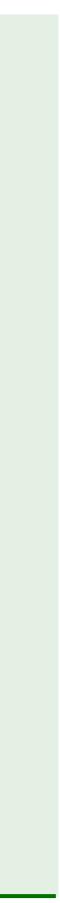
Duality group generated by $\tau \rightarrow \tau + 1$

$$\Gamma_{\rm uni} = \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$$

Volume within distance Δ of $\tau = i$:

$$\mathsf{Vol}(\mathscr{M}(\Delta)) = e^{\Delta} + \mathscr{O}(e^{-\Delta})$$





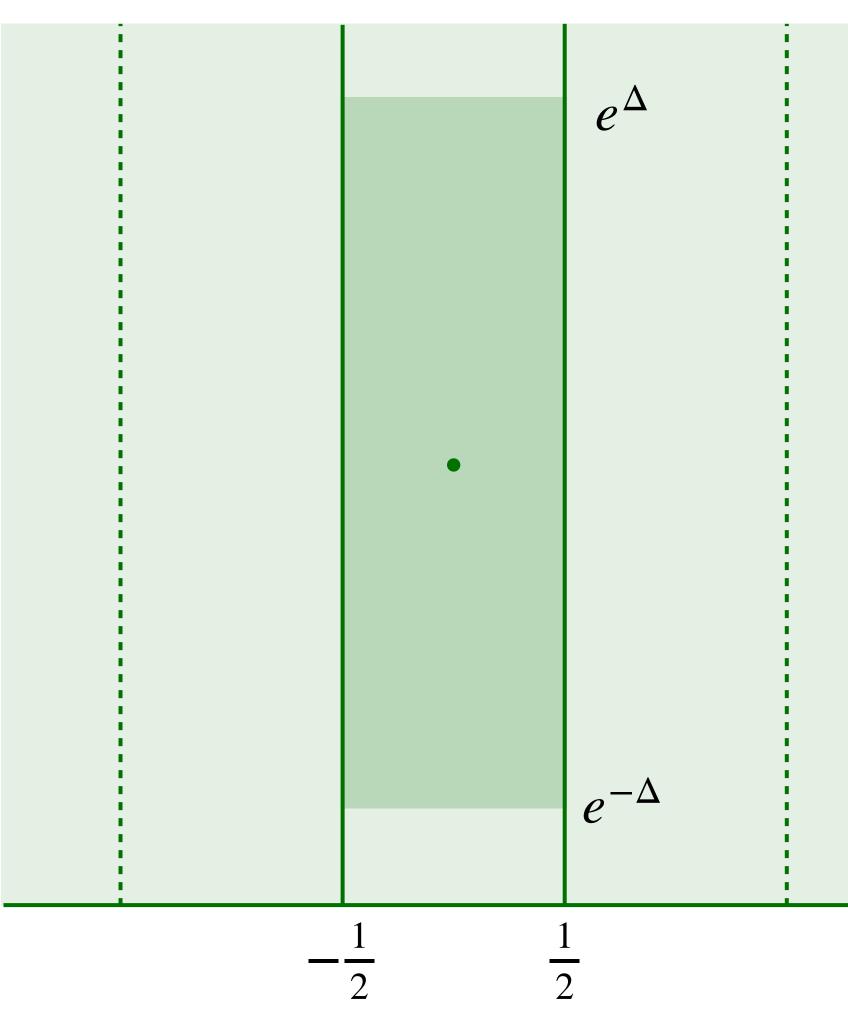
Duality group generated by $\tau \rightarrow \tau + 1$

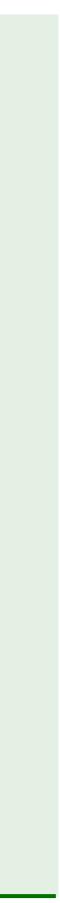
$$\Gamma_{\rm uni} = \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$$

Volume within distance Δ of $\tau = i$:

$$\mathsf{Vol}(\mathscr{M}(\Delta)) = e^{\Delta} + \mathscr{O}(e^{-\Delta})$$

 \implies Exponential growth, so **not compactifiable**!





Type IIB: Non-example

Duality group generated by $\tau \rightarrow \tau + 1$

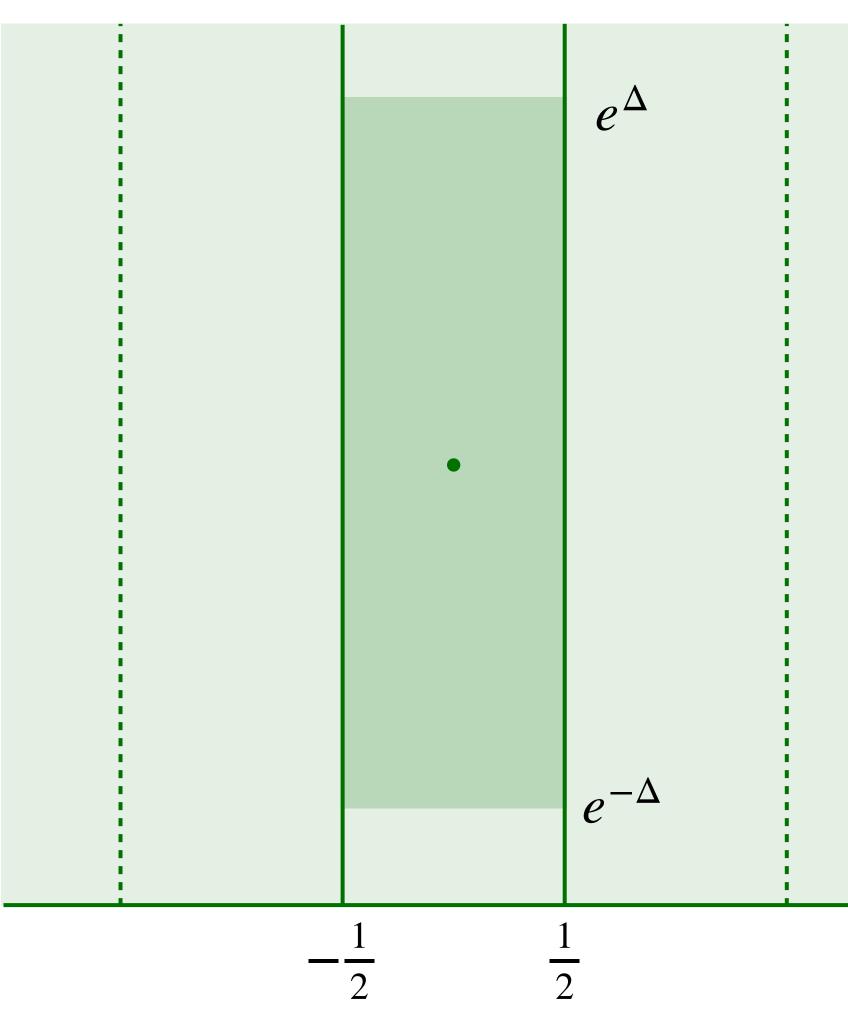
$$\Gamma_{\rm uni} = \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}$$

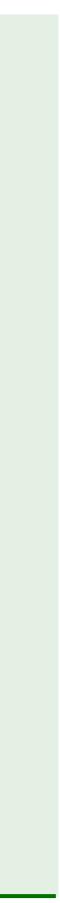
Volume within distance Δ of $\tau = i$:

$$\mathsf{Vol}(\mathscr{M}(\Delta)) = e^{\Delta} + \mathscr{O}(e^{-\Delta})$$

 \Rightarrow Exponential growth, so **not compactifiable!**

 $\implies \Gamma_{\text{uni}}$ is a bad type of duality group





Claim:

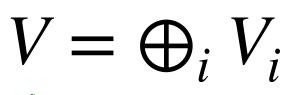
Duality group has a semisimple representation:

 $V = \bigoplus_i V_i$

Claim:

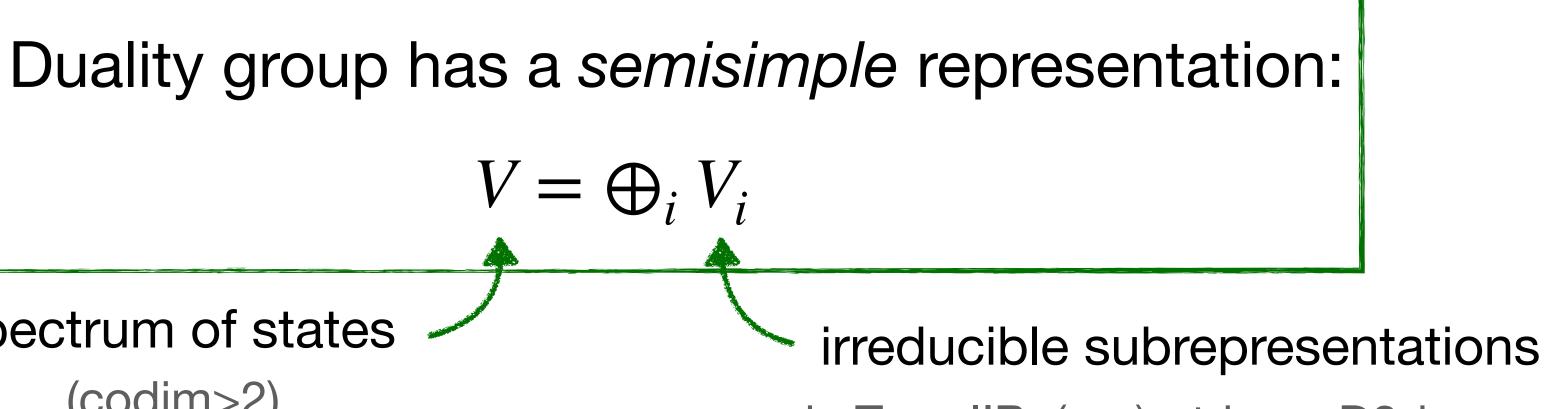
Duality group has a semisimple representation:

spectrum of states (codim>2)

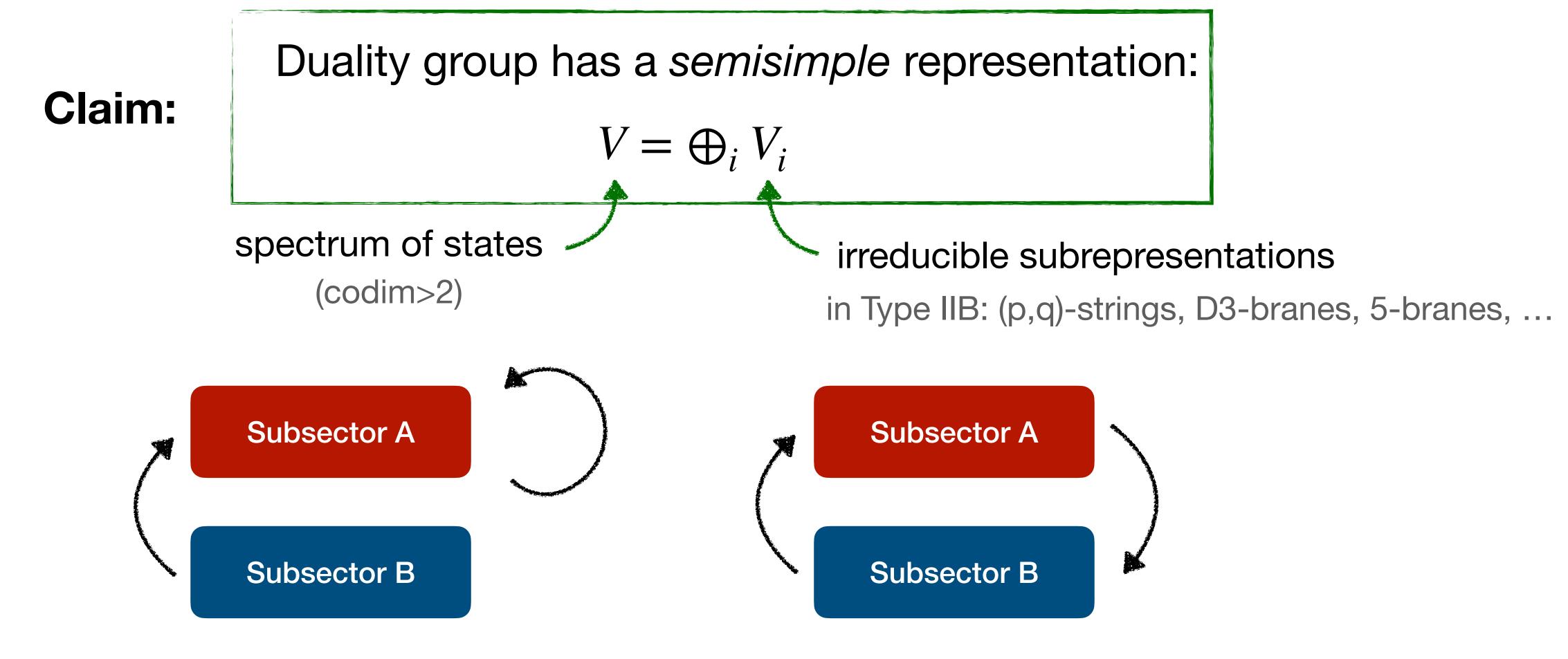


Claim:

spectrum of states (codim>2)

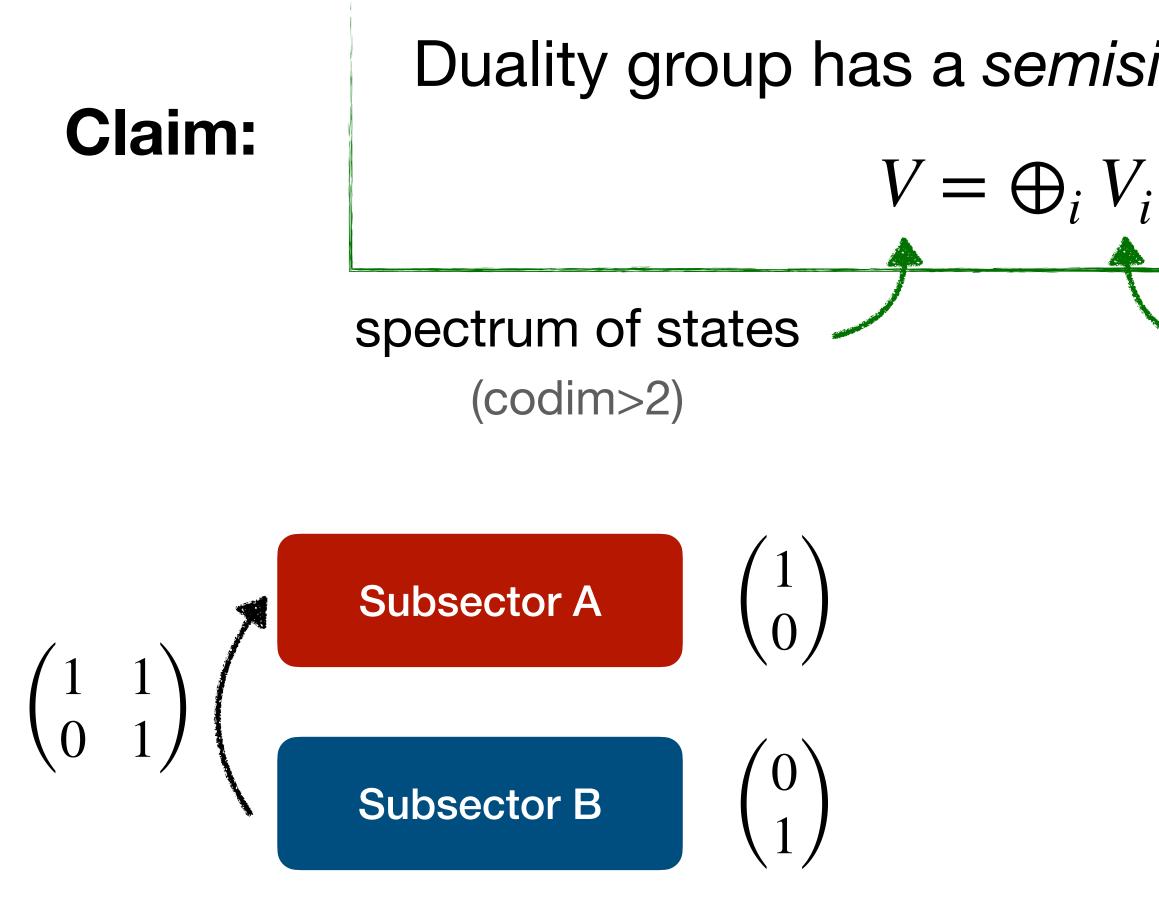


in Type IIB: (p,q)-strings, D3-branes, 5-branes, ...



Non-semisimple

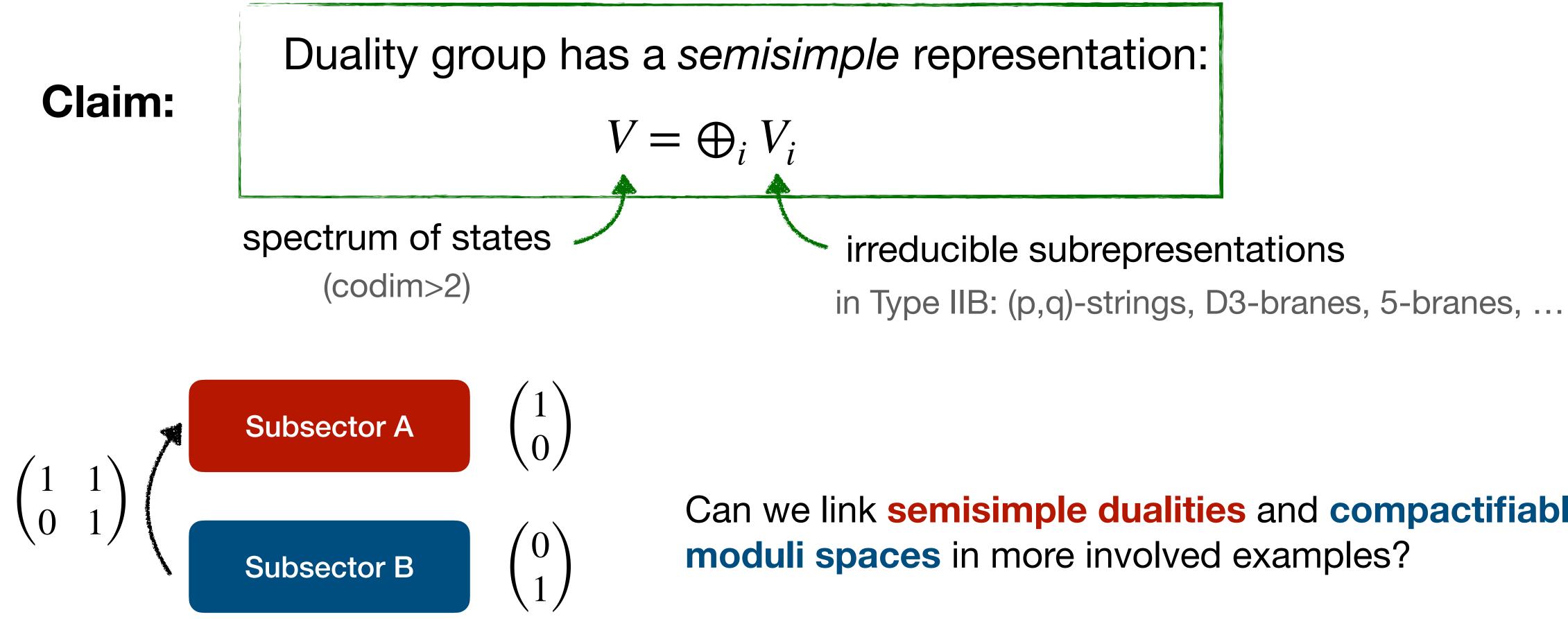
Semisimple



Non-semisimple

Duality group has a semisimple representation:

irreducible subrepresentations in Type IIB: (p,q)-strings, D3-branes, 5-branes, ...



Non-semisimple

Can we link semisimple dualities and compactifiable moduli spaces in more involved examples?

2. 4d $\mathcal{N} = 2$ CY compactifications

4d $\mathcal{N} = 2$ supergravity sector \implies vector multiplet sector

4d $\mathcal{N} = 2$ supergravity sector \implies vector multiplet sector

- Moduli space complex structure moduli space $\mathcal{M}_{VM} = \mathcal{M}_{cs}(Y_3)$

4d $\mathcal{N} = 2$ supergravity sector \implies vector multiplet sector

- Moduli space complex structure mo
- Spectrum BPS states from D3-branes on 3-cycles $\mathbf{q} \in H_3(Y_3, \mathbb{Z})$ mirror dual: $\mathbf{q} = (q_{D0}, q_{D2}, q_{D4}, q_{D6})$

oduli space
$$\mathcal{M}_{VM} = \mathcal{M}_{cs}(Y_3)$$

- 4d $\mathcal{N} = 2$ supergravity sector \implies vector multiplet sector
- Moduli space complex structure moduli space $\mathcal{M}_{VM} = \mathcal{M}_{cs}(Y_3)$
- Spectrum BPS states from D3-branes on 3-cycles $\mathbf{q} \in H_3(Y_3, \mathbb{Z})$ mirror dual: $\mathbf{q} = (q_{D0}, q_{D2}, q_{D4}, q_{D6})$
- Duality group monodromy group $\Gamma_{\rm EM} \subseteq {\rm Sp}(2n_V + 2,\mathbb{Z})$ of $\mathcal{M}_{\rm CS}(Y_3)$

- 4d $\mathcal{N} = 2$ supergravity sector \implies vector multiplet sector
- Moduli space complex structure moduli space $\mathcal{M}_{VM} = \mathcal{M}_{cs}(Y_3)$
- Spectrum BPS states from D3-branes on 3-cycles $\mathbf{q} \in H_3(Y_3, \mathbb{Z})$ mirror dual: $\mathbf{q} = (q_{D0}, q_{D2}, q_{D4}, q_{D6})$

- Duality group monodromy group $\Gamma_{\rm EM} \subseteq {\rm Sp}(2n_V + 2,\mathbb{Z})$ of $\mathcal{M}_{\rm CS}(Y_3)$
- **Duality vortices** axionic strings, [Lanza, Marchesano, Martucci, Valenzuela, '21; ...] \bullet e.g. from wrapping NS5-branes on divisors (in Type IIA) Type IIB: [Friedrich, Monnee, Weigand, Wiesner '25] Talk by Max!

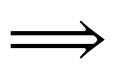
(same asymptotic Hodge theory machinery as [Grimm, Palti, Valenzuela, '18; ...])

General proof for semisimple dualities from compactifiability in Hodge theory: [Schmid, '70]

General proof for semisimple dualities from compactifiability in Hodge theory: [Schmid, '70]

(same asymptotic Hodge theory machinery as [Grimm, Palti, Valenzuela, '18; ...])

Compactifiable* moduli space



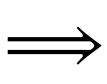
Semisimple electromagnetic dualities $\Gamma_{\rm EM} \subseteq Sp(2n_V + 2,\mathbb{Z})$

General proof for semisimple dualities from compactifiability in Hodge theory: [Schmid, '70]

(same asymptotic Hodge theory machinery as [Grimm, Palti, Valenzuela, '18; ...])

*Zariski-open in compact analytic space

*M*_{vector}



Semisimple electromagnetic dualities $\Gamma_{\rm EM} \subseteq Sp(2n_V + 2,\mathbb{Z})$

General proof for semisimple dualities from compactifiability in Hodge theory: [Schmid, '70]

(same asymptotic Hodge theory machinery as [Grimm, Palti, Valenzuela, '18; ...])

*Zariski-open in compact analytic space

Compactifiable* moduli space

M_{vector}

Finite-volume proven for CY3 moduli spaces [Todorov, '04; Lu, Sun '05]

Semisimple electromagnetic dualities $\Gamma_{\rm EM} \subseteq Sp(2n_V + 2,\mathbb{Z})$

How does this proof of semisimplicity roughly work?

How does this proof of semisimplicity roughly work?

Semisimple representation:

for any Γ -invariant subspace $V \subset W$, there is a complementary Γ -invariant subspace V' s.t. $V \oplus V' = W$ (subrepresentation) $W = \mathbb{R}^{2n_V+2}$ (subrepresentation)

How does this proof of semisimplicity roughly work?

Semisimple representation:

for any Γ -invariant subspace $V \subset W$, there is a complementary Γ -invariant subspace V' s.t. $V \oplus V' = W$ (subrepresentation) $W = \mathbb{R}^{2n_V+2}$ (subrepresentation)

Idea: consider orthogonal complement $V' = V^{\perp}$, for a suitable inner product on the states

(For Type IIB:
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 vs $\frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$)

How does this proof of semisimplicity roughly work?

Semisimple representation:

(subrepresentation) $W = \mathbb{R}^{2n_V+2}$

• Standard wedge product $\int_{v} v \wedge w$: indefinite signature \implies does not work...

(For Type IIB:
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 vs $\frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$)

- for any Γ -invariant subspace $V \subset W$, there is a complementary Γ -invariant subspace V' s.t. $V \oplus V' = W$ (subrepresentation)
- **Idea:** consider orthogonal complement $V' = V^{\perp}$, for a suitable inner product on the states

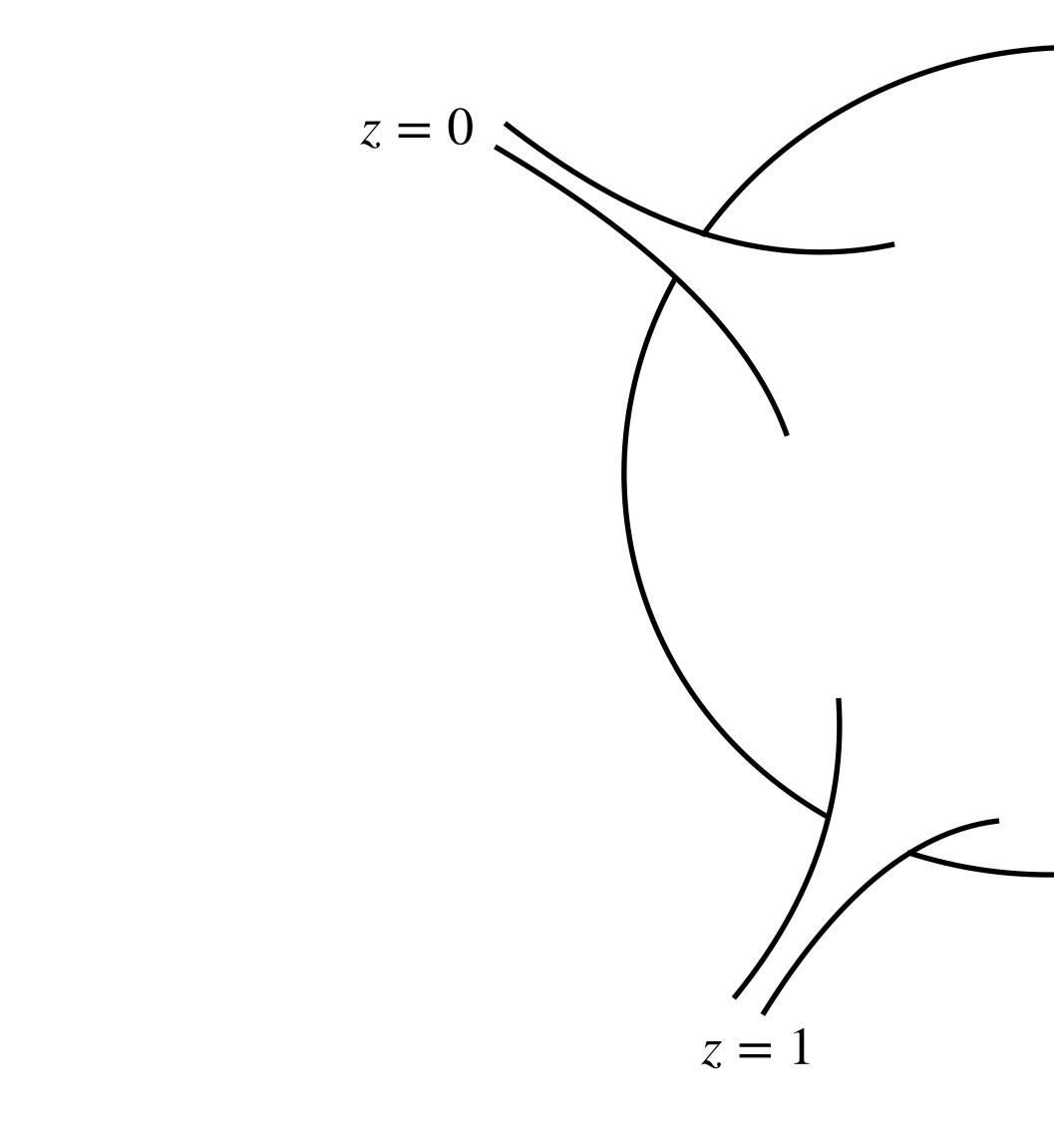
How does this proof of semisimplicity roughly work?

Semisimple representation:

(subrepresentation) $W = \mathbb{R}^{2n_V+2}$

- Standard wedge product $\int_{Y_3} v \wedge w$: indefinite signature \Longrightarrow does not work...
- Hodge product $\int_{U} v \wedge \star w$: positive definite, but moduli-dependent \implies need compactifiability! (For Type IIB: $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ vs $\frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}$)

- for any Γ -invariant subspace $V \subset W$, there is a complementary Γ -invariant subspace V' s.t. $V \oplus V' = W$ (subrepresentation)
- **Idea:** consider orthogonal complement $V' = V^{\perp}$, for a suitable inner product on the states



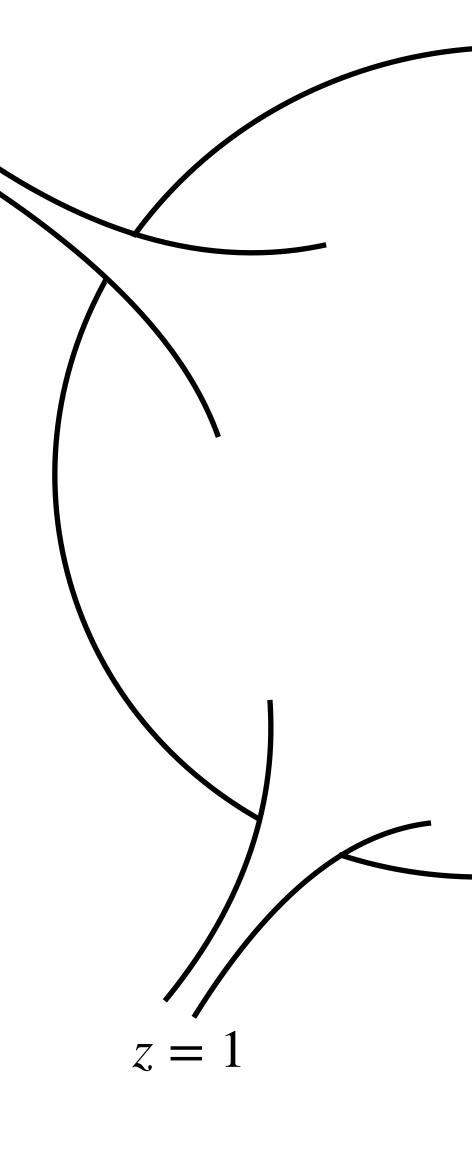
[Candelas, de la Ossa, Green, Parkes '93;...; Doran, Morgan '05; Almkvist, van Enckevort, van Straten, Zudilin, '05]

 $= \infty$

Large complex structure

z = 0

Infinite distance limit Tower: mirror D0-branes



[Candelas, de la Ossa, Green, Parkes '93;...; Doran, Morgan '05; Almkvist, van Enckevort, van Straten, Zudilin, '05]

 $= \infty$

z = 0

z = 1

Infinite distance limit Tower: mirror D0-branes

Conifold point

Finite distance limit Light states: massless hypers

[Candelas, de la Ossa, Green, Parkes '93;...; Doran, Morgan '05; Almkvist, van Enckevort, van Straten, Zudilin, '05]

 $= \infty$

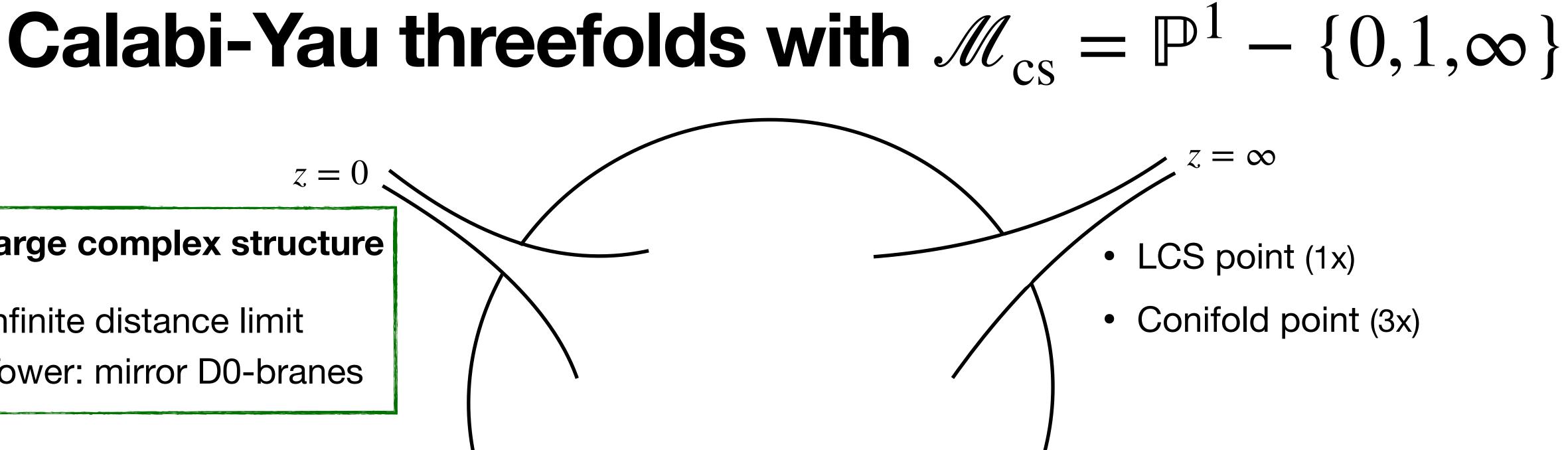
z =

z = 0

Infinite distance limit Tower: mirror D0-branes

Conifold point

Finite distance limit Light states: massless hypers



[Candelas, de la Ossa, Green, Parkes '93;...; Doran, Morgan '05; Almkvist, van Enckevort, van Straten, Zudilin, '05]

z = 0

z =

Infinite distance limit Tower: mirror D0-branes

Conifold point

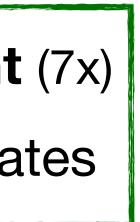
Finite distance limit Light states: massless hypers

- LCS point (1x)
- Conifold point (3x)

Landau-Ginzburg point (7x)

Orbifold point, no light states

[Candelas, de la Ossa, Green, Parkes '93;...; Doran, Morgan '05; Almkvist, van Enckevort, van Straten, Zudilin, '05]



z = 0

z = 1

Infinite distance limit Tower: mirror D0-branes

Conifold point

Finite distance limit Light states: massless hypers LCS point (1x)

 $= \infty$

• Conifold point (3x)

• Landau-Ginzburg point (7x)

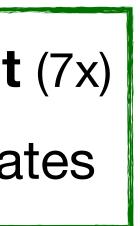
Orbifold point, no light states

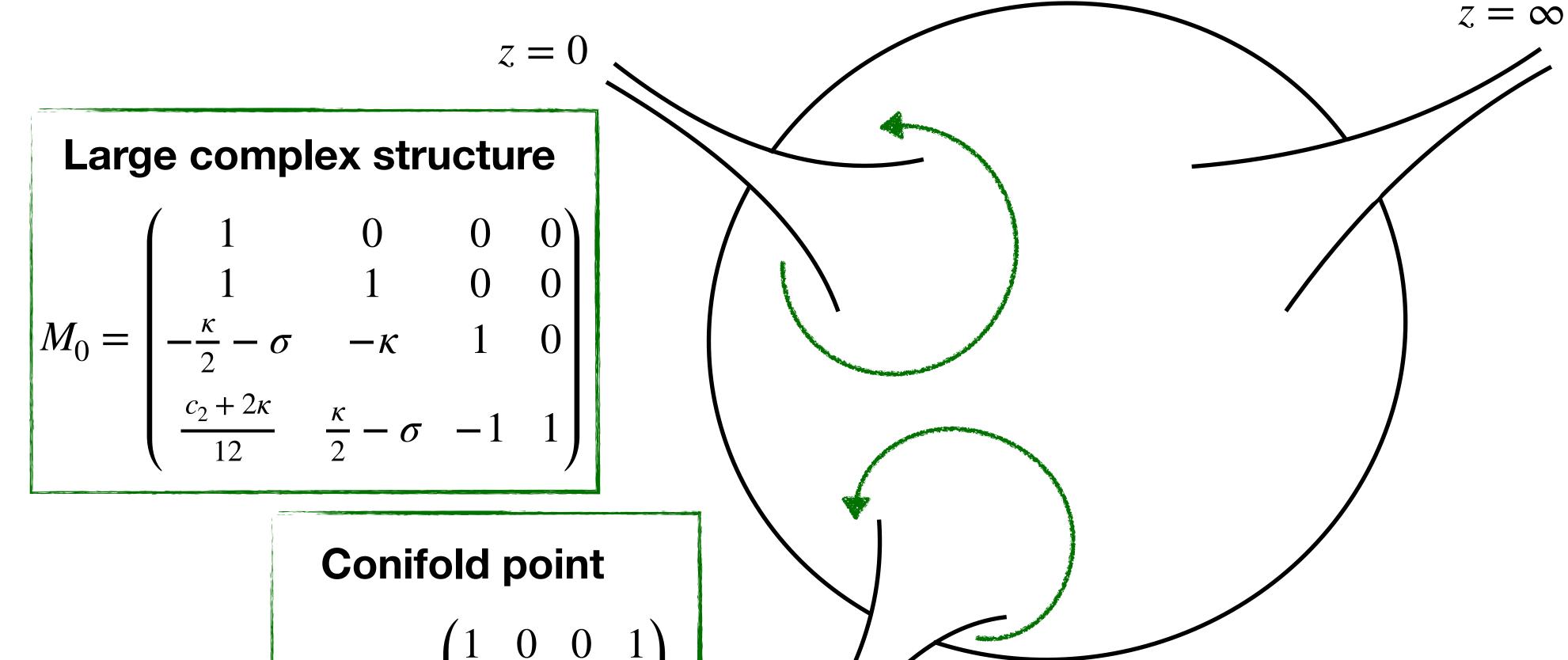
• **K-point** (3x)

Infinite distance limit

Tower: tensionless string

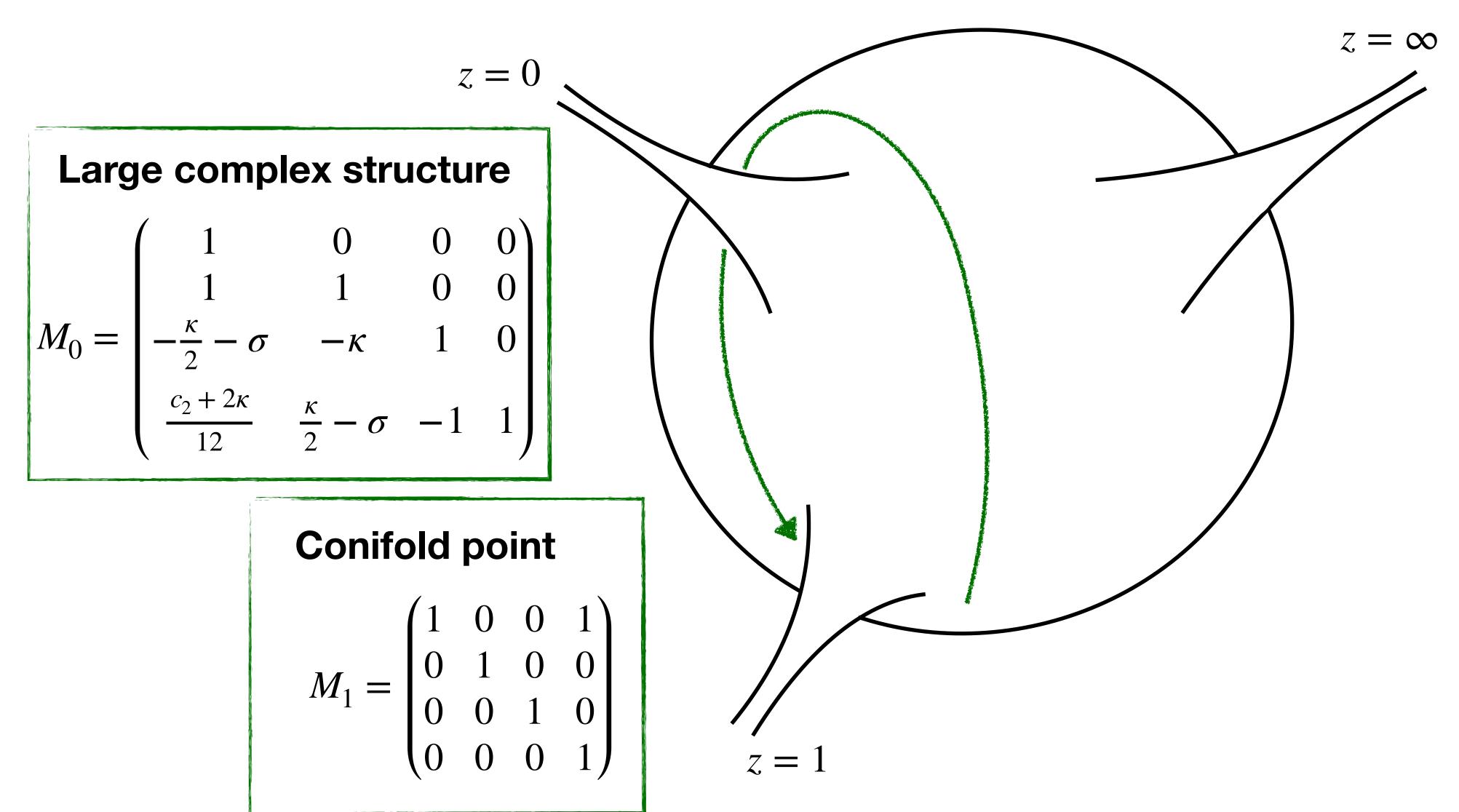
[Candelas, de la Ossa, Green, Parkes '93;...; Doran, Morgan '05; Almkvist, van Enckevort, van Straten, Zudilin, '05]

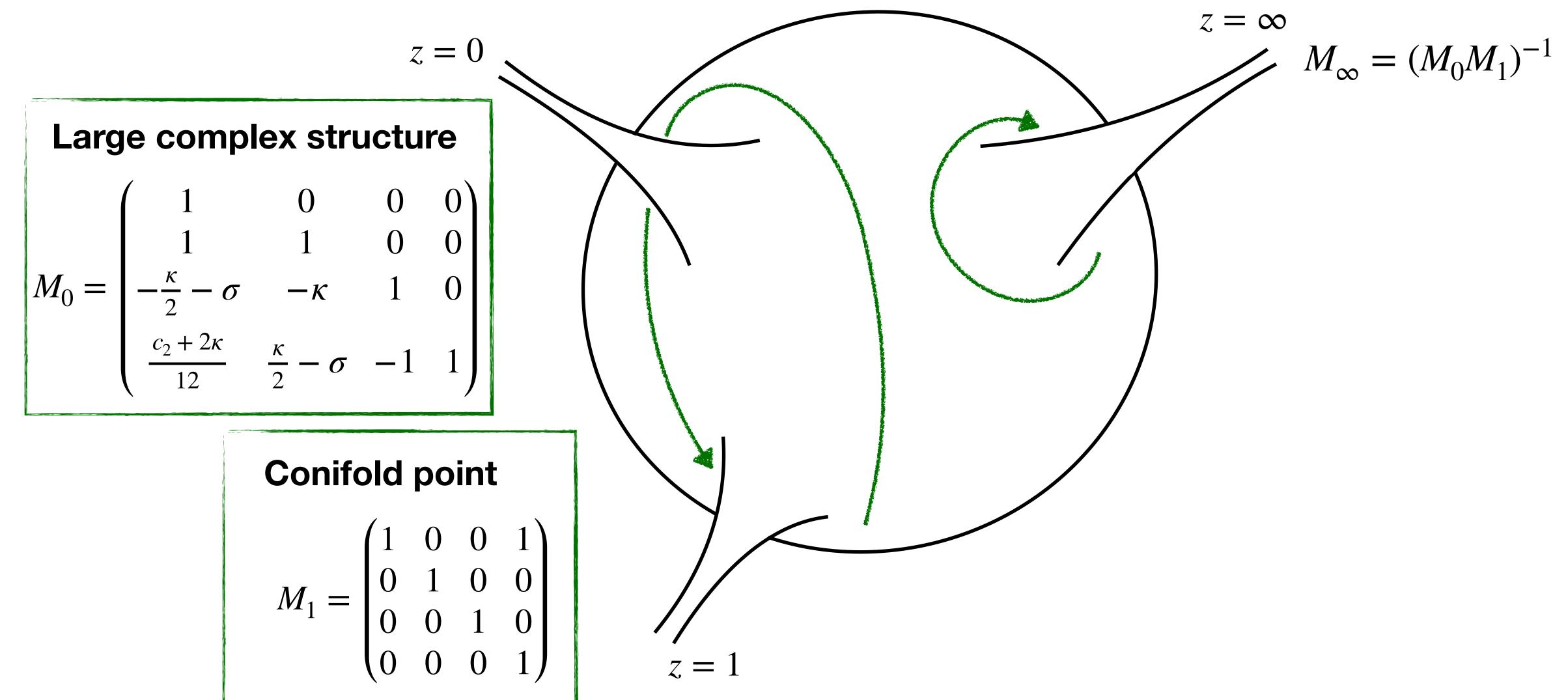


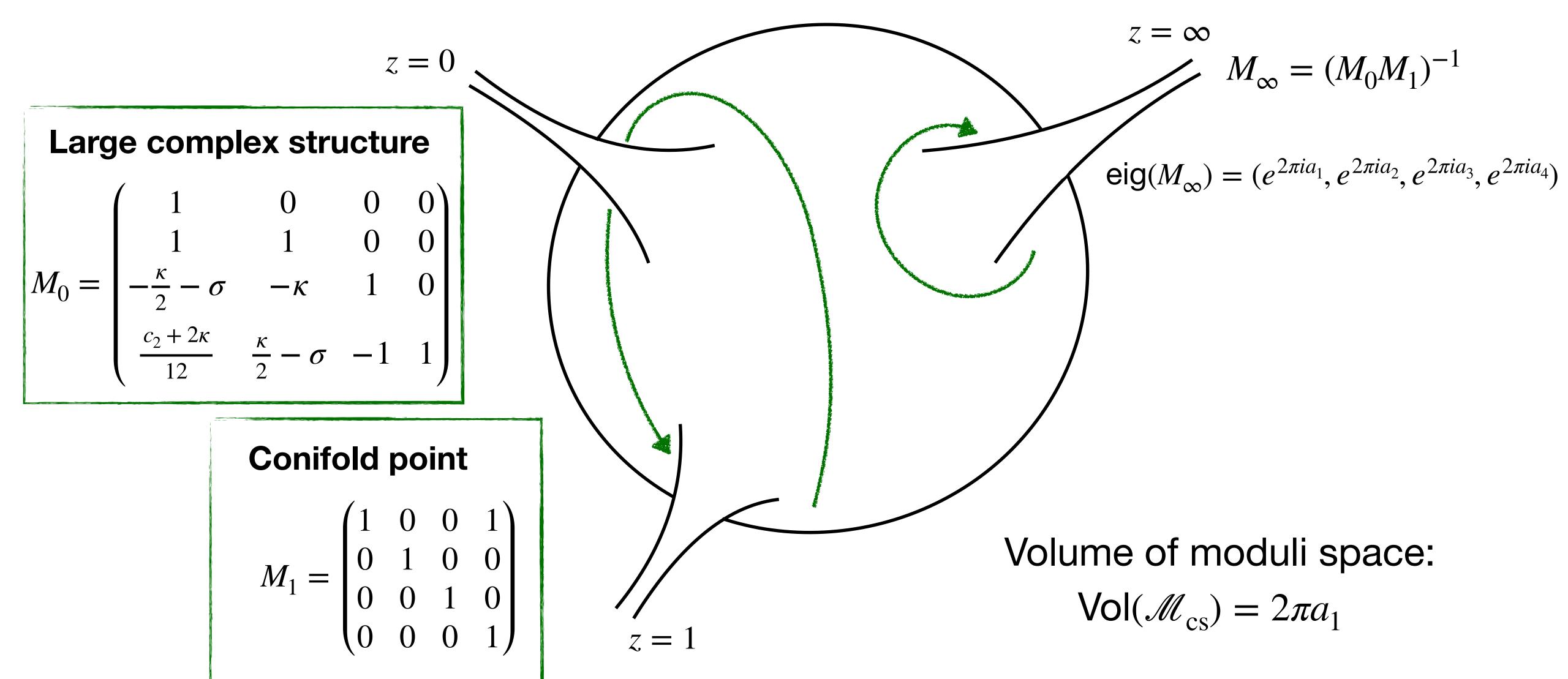


z = 1

$$M_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$







Monodromy groups as amalgamated products

For 7 CY3s with $\mathscr{M}_{cs} = \mathbb{P}^1 - \{0, 1, \infty\}$: (Reminiscent of Type IIB: $SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$)

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]

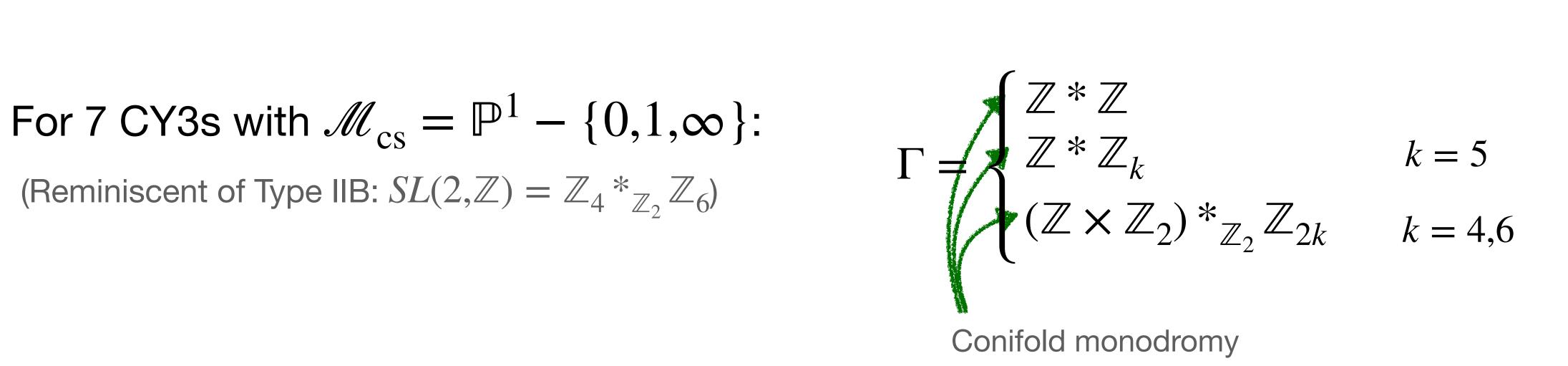
[Brav, Thomas; '12]

 $\Gamma = \begin{cases} \mathbb{Z}^* \mathbb{Z} \\ \mathbb{Z}^* \mathbb{Z}_k \\ (\mathbb{Z} \times \mathbb{Z}_2)^* \mathbb{Z}_2 \mathbb{Z}_{2k} \\ k = 4,6 \end{cases}$

Monodromy groups as amalgamated products

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]

[Brav, Thomas; '12]



Monodromy groups as amalgamated products [Brav, Thomas; '12] LCS or conifold monodromy

For 7 CY3s with $\mathcal{M}_{cs} = \mathbb{P}^1 - \{0, 1, \infty\}$: (Reminiscent of Type IIB: $SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$)

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]

 $\Gamma = \begin{cases} \mathbb{Z}^* \mathbb{Z} \\ \mathbb{Z}^* \mathbb{Z}_k \\ (\mathbb{Z} \times \mathbb{Z}_2)^* \mathbb{Z}_2 \mathbb{Z}_{2k} \\ k = 4,6 \end{cases}$ Conifold monodromy

Monodromy groups as amalgamated products [Brav, Thomas; '12]

For 7 CY3s with $\mathcal{M}_{cs} = \mathbb{P}^1 - \{0, 1, \infty\}$: (Reminiscent of Type IIB: $SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$)

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]

LCS or conifold monodromy -

 $\Gamma = \begin{cases} \mathbb{Z}^* \mathbb{Z} \\ \mathbb{Z}^* \mathbb{Z}_k \\ (\mathbb{Z} \times \mathbb{Z}_2)^* \mathbb{Z}_2 \mathbb{Z}_{2k} \\ k = 4,6 \end{cases}$ Conifold monodromy

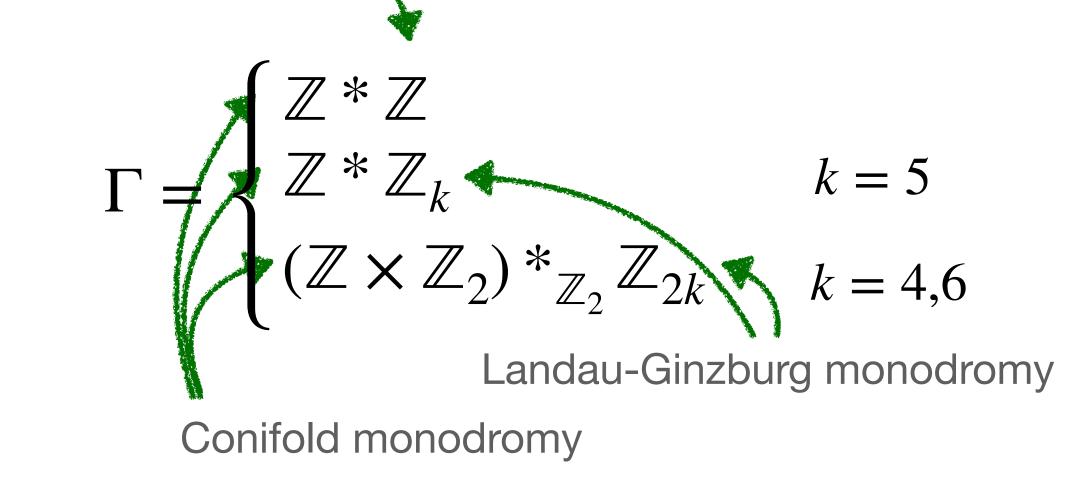
Monodromy groups as amalgamated products [Brav, Thomas; '12] LCS or conifold monodromy

For 7 CY3s with $\mathcal{M}_{cs} = \mathbb{P}^1 - \{0, 1, \infty\}$: (Reminiscent of Type IIB: $SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$)

Some lessons:

• Duality groups can have **infinite index**: $|Sp(4,\mathbb{Z}):\Gamma| = \infty$ (still Zariski-dense in $Sp(4,\mathbb{Z})$)

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]



Monodromy groups as amalgamated products [Brav, Thomas; '12] LCS or conifold monodromy

For 7 CY3s with $\mathcal{M}_{cs} = \mathbb{P}^1 - \{0, 1, \infty\}$: (Reminiscent of Type IIB: $SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$)

Some lessons:

- Duality groups can have **infinite index**: $|Sp(4,\mathbb{Z}):\Gamma| = \infty$ (still Zariski-dense in $Sp(4,\mathbb{Z})$)
- Duality groups cannot always be generated by finite order elements

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]

$$\Gamma = \begin{cases} \mathbb{Z} * \mathbb{Z} \\ \mathbb{Z} * \mathbb{Z}_{k} \\ (\mathbb{Z} \times \mathbb{Z}_{2}) *_{\mathbb{Z}_{2}} \mathbb{Z}_{2k} \\ \text{Landau-Ginzburg monodromy} \\ \text{Conifold monodromy} \end{cases}$$

Monodromy groups as amalgamated products [Brav, Thomas; '12] LCS or conifold monodromy

For 7 CY3s with $\mathcal{M}_{cs} = \mathbb{P}^1 - \{0, 1, \infty\}$: (Reminiscent of Type IIB: $SL(2,\mathbb{Z}) = \mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$)

Some lessons:

- Duality groups can have **infinite index**: $|Sp(4,\mathbb{Z}):\Gamma| = \infty$ (still Zariski-dense in $Sp(4,\mathbb{Z})$)
- Duality groups cannot always be generated by finite order elements
- Duality groups cannot always be generated by finite distance monodromies

*Other 7: finite-index subgroups of Sp(4,Z), see [Singh, Venkataramana, 12], [Singh, '13], [Hofmann, Van Straten; '15]

$$\Gamma = \begin{cases} \mathbb{Z}^* \mathbb{Z} \\ \mathbb{Z}^* \mathbb{Z}_k \\ (\mathbb{Z} \times \mathbb{Z}_2)^* \mathbb{Z}_2 \mathbb{Z}_{2k} \\ Landau-Ginzburg monodromy \\ Conifold monodromy \end{cases}$$

3. Bottom-up Argument for Compactifiability

Finiteness

Landscape of string theory vacua is expected to be finite [Vafa '05; Douglas '05; Acharya, Douglas, '06]

QG (string theory)

X

X

X

X

X

Finiteness

Landscape of string theory vacua is expected to be **finite**

Finiteness of Calabi-Yau manifolds?

elliptic Calabi-Yau manifolds [Gross, '93; Birkar, Cerbo, Svaldi, '24]

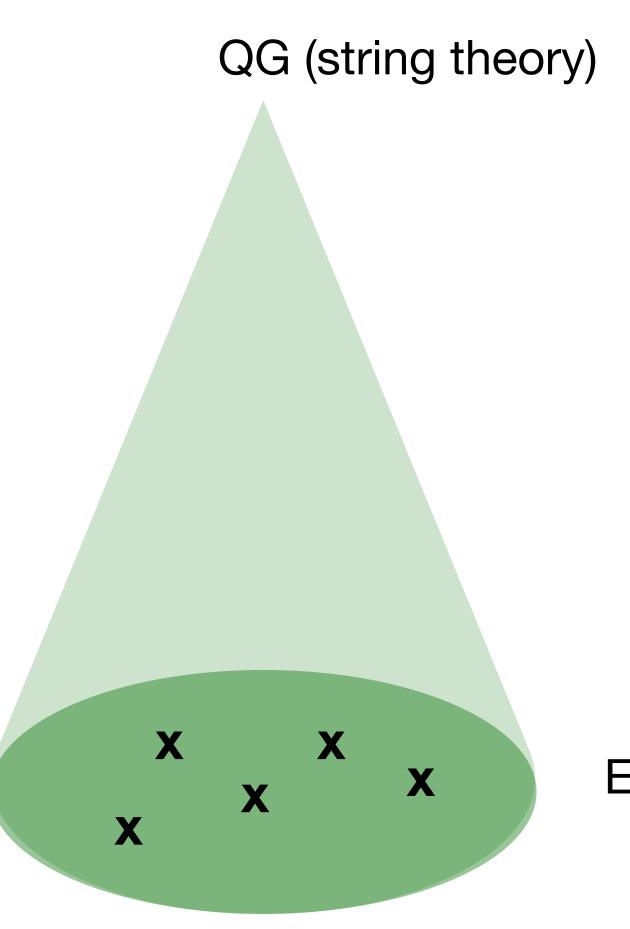
• Finiteness of 6d supergravity landscape

[Kumar, Taylor '09; ..., Kim, Vafa, Xu, '24]

- Finiteness of self-dual flux vacua [Bakker, Grimm, Schnell, Tsimerman '21]
- Finiteness properties of QG theories by reduction to 1d quantum-mechanical systems

[Hamada, Montero, Vafa, Valenzuela '21; Delgado, DvdH, Raman, Torres, Vafa, Xu '24]

[Vafa '05; Douglas '05; Acharya, Douglas, '06]



Finiteness

Landscape of string theory vacua is expected to be **finite**

Finiteness of Calabi-Yau manifolds?

elliptic Calabi-Yau manifolds [Gross, '93; Birkar, Cerbo, Svaldi, '24]

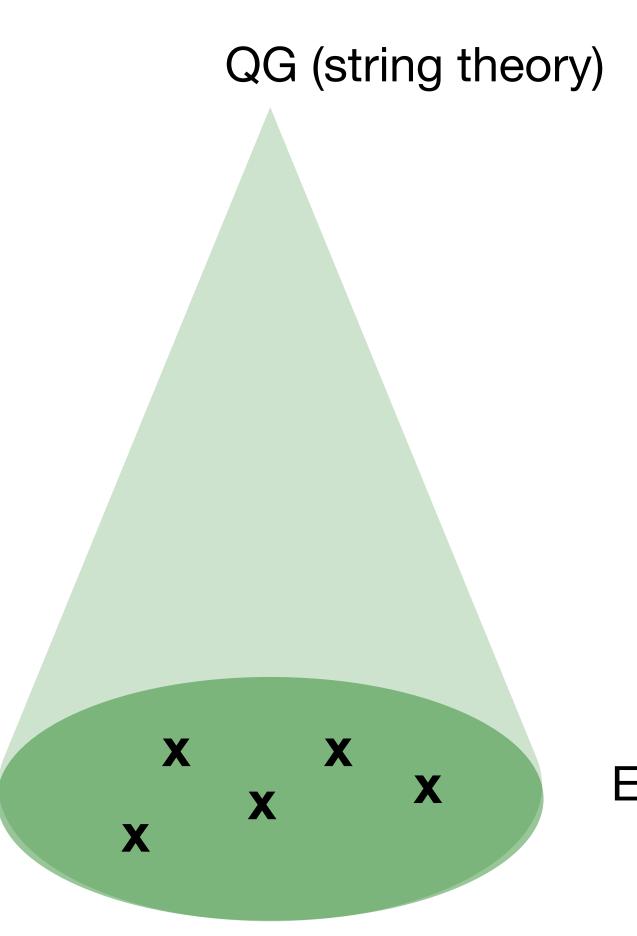
• Finiteness of 6d supergravity landscape

[Kumar, Taylor '09; ..., Kim, Vafa, Xu, '24]

- Finiteness of self-dual flux vacua [Bakker, Grimm, Schnell, Tsimerman '21]
- Finiteness properties of QG theories by reduction to 1d quantum-mechanical systems

[Hamada, Montero, Vafa, Valenzuela '21; Delgado, DvdH, Raman, Torres, Vafa, Xu '24]

[Vafa '05; Douglas '05; Acharya, Douglas, '06]



Finiteness of vacua

Main criterion

Compactify QG theory to 1d \implies number of ground states should be finite

(similar idea: [Hamada, Montero, Vafa, Valenzuela '21])

Finiteness of vacua

Main criterion

Compactify QG theory to $1d \implies$ number of ground states should be finite

(similar idea: [Hamada, Montero, Vafa, Valenzuela '21])

Why?

• Entropy of system diverges even at zero temperature:

 $S(T = 0) \sim \log(\# \text{ ground states}) \rightarrow \infty$

Partition function diverges at finite temperature:

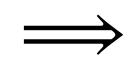
$$Z = \operatorname{Tr} e^{-\beta H} = \sum_{n} e^{-\beta E_{n}}$$

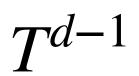
 $\rightarrow \infty$

Ground states

Compactify on T^{d-1}

d-dim susy QG theory





1d SUSY Quantum Mechanics

Ground states

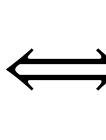
d-dim susy QG theory

Compactify on T^{d-1}

Idea: consider zero-modes coming fluctuations on the moduli space [Witten; '82]

Harmonic, normalizable *p*-forms

 $f(\phi)d\phi^1 \wedge \ldots \wedge d\phi^p$



T^{d-1} 1d SUSY Quantum Mechanics

Ground states

$$f(\phi)\psi_0^1...\psi_0^p |0\rangle$$

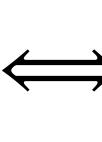
Ground states

d-dim susy QG theory

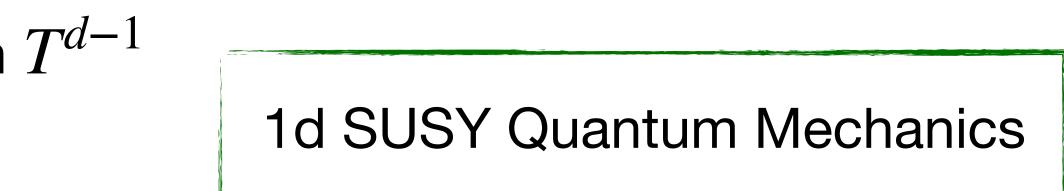
Compactify on T^{d-1}

Idea: consider zero-modes coming fluctuations on the moduli space [Witten; '82]

Harmonic, normalizable p-forms $f(\phi)d\phi^1 \wedge \ldots \wedge d\phi^p$



Can we relate the growth of $Vol(\mathcal{M})$ to this ground state spectrum?



Ground states

$$f(\phi)\psi_0^1...\psi_0^p |0\rangle$$

Ground states and volume growth

Fact: For metrics of the form $ds^2 = dr^2 + r^{2+\epsilon} dVol(\partial \mathcal{M})^2$ (dimension 2*k*), there are infinitely many harmonic, normalizable *k*-forms when $\epsilon > 0$

[Atiyah, Patodi, Singer '75; Dodziuk '79; Mazzeo '88; Lott '97]

Ground states and volume growth

Fact: For metrics of the form $ds^2 = dr^2 + r^{2+\epsilon} dVol(\partial \mathcal{M})^2$ (dimension 2*k*), there are infinitely many harmonic, normalizable *k*-forms when $\epsilon > 0$

 \implies infinitely many modes precisely when Vol(\mathcal{M}) $\gg \Delta^{\dim(\mathcal{M})}$

[Atiyah, Patodi, Singer '75; Dodziuk '79; Mazzeo '88; Lott '97]

Ground states and volume growth

Fact: For metrics of the form $ds^2 = dr^2 + r^{2+\epsilon} dVol(\partial \mathcal{M})^2$ (dimension 2k), there are infinitely many harmonic, normalizable k-forms when $\epsilon > 0$

 $dim(\mathcal{M})$ \implies infinitely many modes precisely when Vol(\mathcal{M}) $\gg \Delta$

Example: Type IIB with **no** duality group

Harmonic, normalizable one-forms on \mathbb{H} : $\omega_n = e^{-\frac{2\pi\tau_2}{n}} (\cos(2\pi\tau_1/n)d\tau_1 + \sin(2\pi\tau_1/n)d\tau_2)$

[Atiyah, Patodi, Singer '75; Dodziuk '79; Mazzeo '88; Lott '97]

What about the moduli of the T^{d-1} ?

What about the moduli of the T^{d-1} ?

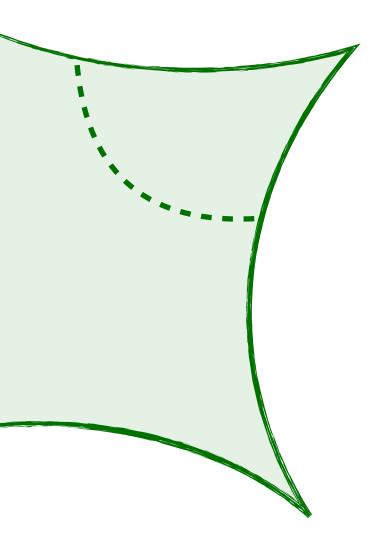
 \implies enlarge the moduli space: $\mathcal{M}_{QM} = \mathcal{M}_{QG,d} \rtimes \mathcal{M}_{T^{d-1}}$

loop corrections, instantons, ...

What about the moduli of the T^{d-1} ?

 \implies enlarge the moduli space: $\mathcal{M}_{QM} = \mathcal{M}_{QG,d} \rtimes \mathcal{M}_{T^{d-1}}$

loop corrections, instantons, ...



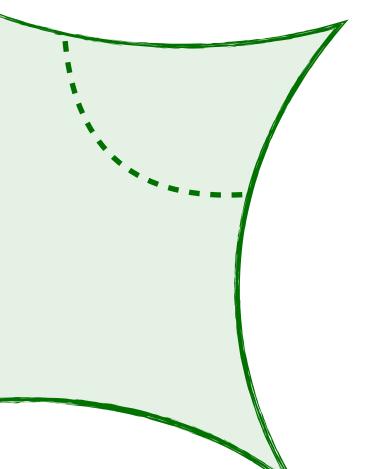
Large radius of T^{d-1} $ds_{QM}^2 \rightarrow ds_{QG,d}^2 + ds_{\mathcal{M}(T^{d-1})}^2$

What about the moduli of the T^{d-1} ?

 \implies enlarge the moduli space: $\mathcal{M}_{OM} = \mathcal{M}_{OG,d} \rtimes \mathcal{M}_{T^{d-1}}$

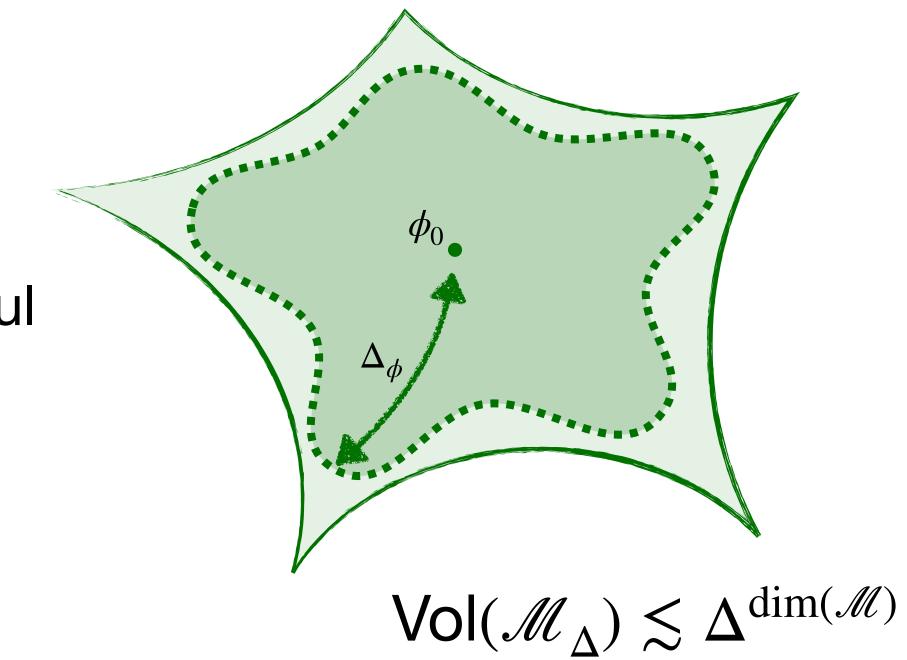
If \mathcal{M}_{OM} is compactifiable, also the large-radius region should be compactifiable

loop corrections, instantons, ...

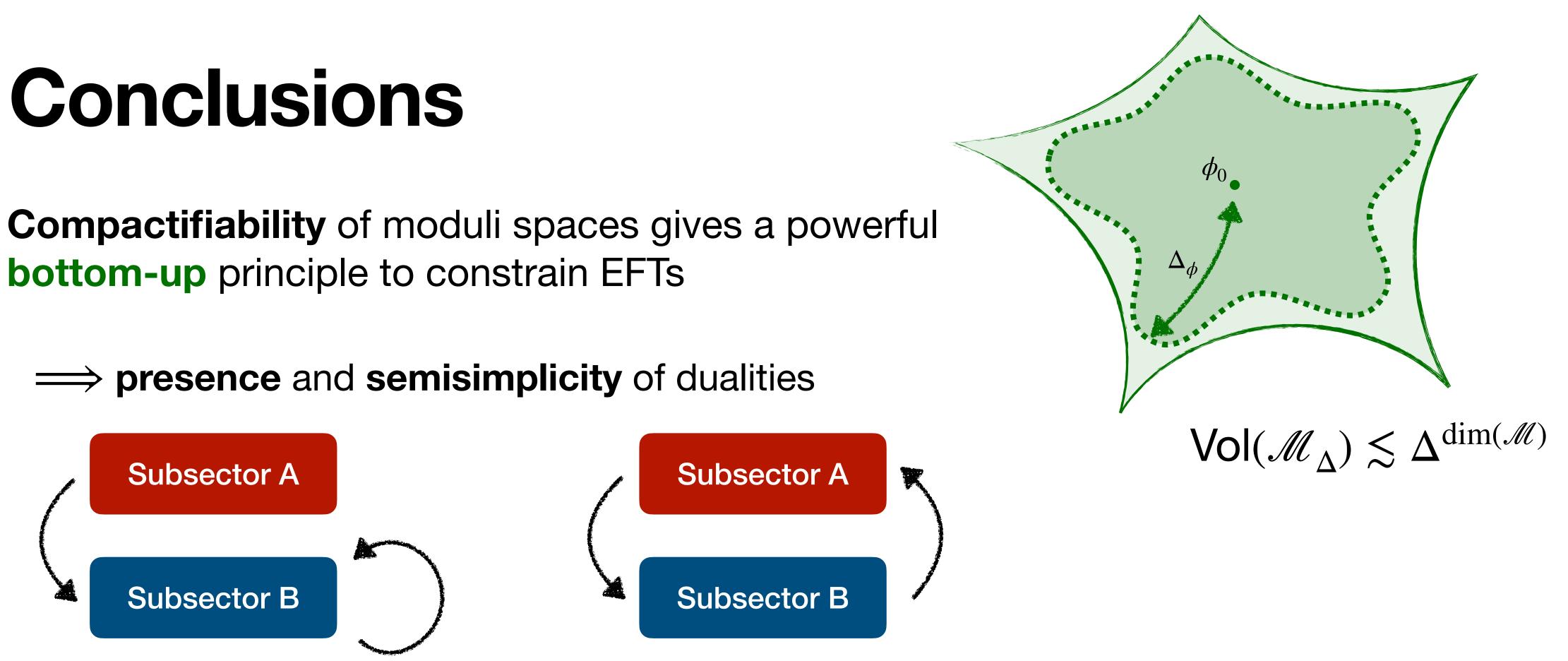


Large radius of T^{d-1} $ds_{QM}^2 \rightarrow ds_{QG,d}^2 + ds_{\mathcal{M}(T^{d-1})}^2$

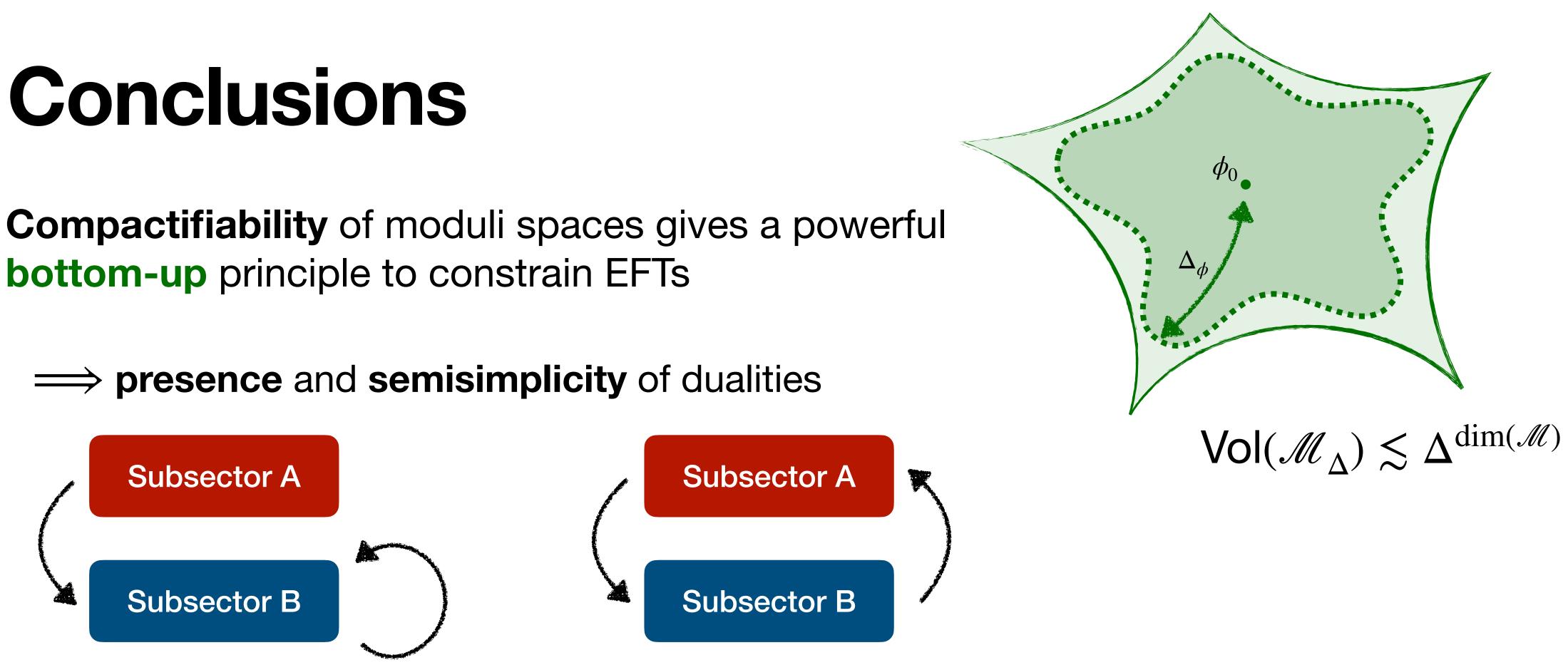
Compactifiability of moduli spaces gives a powerful **bottom-up** principle to constrain EFTs



bottom-up principle to constrain EFTs



bottom-up principle to constrain EFTs

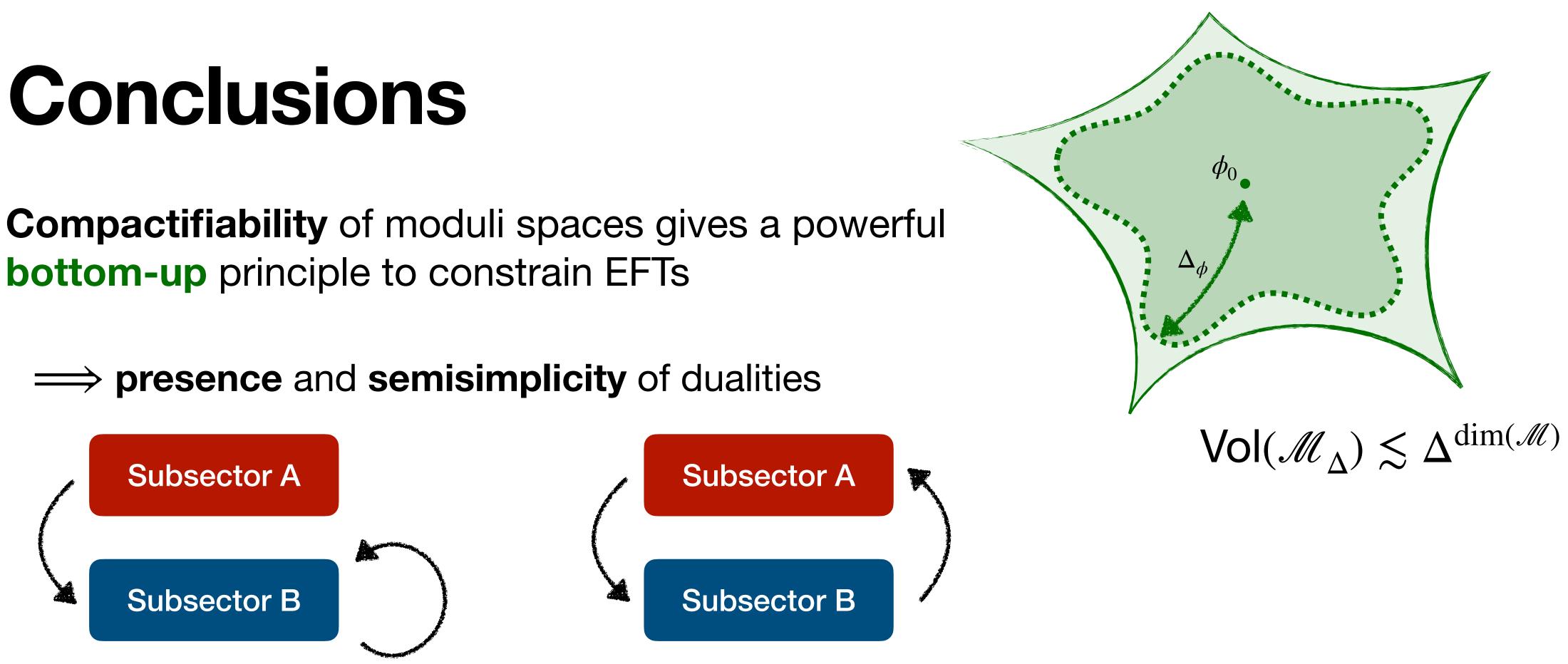


- ullet
- Relation to curvature of moduli space?
- Extension to theories with scalar potentials? UV complete field theories? \bullet

Is there an independent argument why Quantum Gravity should have semisimple dualities?

See also: Marchesano, Melotti, Paoloni '23; Raman, Vafa '24; Marchesano, Melotti, Wiesner '24; Castellano, Marchesano, Melotti, Paoloni '24]

bottom-up principle to constrain EFTs



- ullet
- Relation to curvature of moduli space?
- Extension to theories with scalar potentials? UV complete field theories? \bullet

Is there an independent argument why Quantum Gravity should have semisimple dualities?

See also: Marchesano, Melotti, Paoloni '23; Raman, Vafa '24; Marchesano, Melotti, Wiesner '24; Castellano, Marchesano, Melotti, Paoloni '24]

Thank you!

