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Motivation

Geometric compactifications of String Theory

— good testing ground for quantum gravity:

properties of resulting gravitational theories €——» geometry of the compactification manifold

Geometric description particularly powerful in the absence of quantum corrections

— due to non-renormalization theorems

and/or

A

G
— gravitational weak-coupling limits in which Mi < 1
pl
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Motivation

Questions: 1. What kind of gravitational weak-coupling limits can exist?
2. How are these characterized?

3. What is the low-energy description, degrees of freedom, symmetries, ...?

In geometric compactifications of string theory:

1. Does the geometry constrain the possible weak-coupling limits?
2. What degrees of freedoms arise in weak coupling description?

3. Reverse question: Does the physics constrain the geometry?
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2. Additional light states can collectively be described by a dual theory.




Motivation

» Two lessons from string theory:

1. Gravitational weak-coupling limits — infinite distances in the moduli space

2. Additional light states can collectively be described by a dual theory.

» Summarized in the Distance and Emergent String Conjectures

At infinite distances in the moduli space of a consistent theory of

gravity, there is a tower of states becoming light as [0oguri, Vafa 06]

m tower

M,

— exp(—al giqt)
and this tower of states is either [Lee, Lerche, Weigand '19]
1) a KK-tower signaling a decompactification limit

or

ii) the tower of excitations of a fundamental string.




ESC: What happened so far ...

» Usual test of emergent string conjecture (in string compactifications):

E.g. [Lee, Lerche, Weigand ’18-’21; Baume, Marchesano, MW ’19; Xu ’20; Klawer, Lee, Weigand, MW ’20;
Alvarez-Garcia, Klawer, Weigand ’21; Basile ’22; Blumenhagen, Gligovic, Paraskevopoulou '23;
Alvarez-Garcia, Lee, Weigand ’23; Aoufia, Basile, Leone ’'24; ... ]

1. Consider an extreme limit for the compact geometry .# — Infinite Distance Limit

2. Identify the tower of light states — either KK states of the original geometry, or wrapped
D-/NS5-branes




ESC: What happened so far ...

» Usual test of emergent string conjecture (in string compactifications):

E.g. [Lee, Lerche, Weigand '18-'21; Baume, Marchesano, MW ’19; Xu '20; Klawer, Lee, Weigand, MW ’20;
Alvarez-Garcia, Klawer, Weigand ’21; Basile '22; Blumenhagen, Gligovic, Paraskevopoulou '23;
Alvarez-Garcia, Lee, Weigand ’23; Aoufia, Basile, Leone ’'24; ... ]

1. Consider an extreme limit for the compact geometry .# — Infinite Distance Limit

2. Identify the tower of light states — either KK states of the original geometry, or wrapped
D-/NS5-branes

» For emergent string limits (tensionless p-branes on (p-1)-cycles):

— use known string dualities to argue for criticality of string

AND/OR
— establish criticality from the worldsheet perspective by reducing

worldvolume theory of p-brane on (p-1)-cycle in



ESC without candidate branes for emergent strings

» This talk: Vector multiplet moduli space of Type IIB compactifications on CY3.
* Effective 4d N=2 theory of supergravity
/A {EB = complex structure deformations of CY3-fold also at quantum level

* No light 4d BPS strings from wrapped branes!

— Puzzle!!




ESC without candidate branes for emergent strings

» This talk: Vector multiplet moduli space of Type IIB compactifications on CY3.
* Effective 4d N=2 theory of supergravity
/A {EB = complex structure deformations of CY3-fold also at quantum level

* No light 4d BPS strings from wrapped branes!

— Puzzle!!

» Setups previously investigated in the context of the Distance Conjecture

[Grimm, Palti, Valenzuela '18, Grimm, Li, Palti ’18]

* Candidates for towers of light BPS states from wrapped D3-branes

* Open: Origin of emergent string mirror dual to Type IIA on CY3?
[Lee, Lerche, Weigand ’19]



Goals:

|
|
|

1. Establish the existence of a tower of BPS states becoming
light in type II limits!

2. Show criticality of tensionless string in type II limit!

3. New prediction on geometry from Emergent String
Conjecture and BPS State Counting on A-Model Side!




Low-energy Effective Action Perspective

» Low-energy effective action of Type IIB on Calabi-Yau threefold V
| . | ; 1 -
u i=1,... h*! Fl=dAl I=0,... h*!
vector multiplet moduli gauge fields

» Couplings determined by Hodge inner product and Hodge norm on H>(V)

<v,w>=[ vAK, VP = (o), vw e HYV)
vV
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Low-energy Effective Action Perspective

» Low-energy effective action of Type IIB on Calabi-Yau threefold V
| . | ; 1 -
u i=1,... h*! Fl=dAl I=0,... h*!
vector multiplet moduli gauge fields

» Couplings determined by Hodge inner product and Hodge norm on H>(V)

<v,w>=J vAK, VP = (o), vw e HYV)

V
» Extreme limits correspond to singularities of /%gB: A,k = {uhr = ... =ut =0}
.‘:"’ A ‘-\‘\‘\
» Behavior of couplings — behavior of H3(V) as u*i — 0. e / ~~a
— asymptotic Hodge theory /

» In this talk, focus on one-parameter limits u — 0 (more general case, see paper or ask us later)
[Friedrich, Monnee, Weigand, MW ’25] 6



Type Il Limits in ./,

» Near A = {u = 0}: mixed Hodge structure by decomposing the middle cohomology

for review/introduction to the topic, see

[van de Heisteeg 22, Monnee '24]
HV.C)= @ rua)

» Different limits distinguished by the dimensions "¢ = dim(/7*?)

» Focus here: i =1 397! =0 — “type II limits” N VN T
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» Near A = {u = 0}: mixed Hodge structure by decomposing the middle cohomology
for review/introduction to the topic, see

H3(V, C) — @ Ip’q(A) [van de Heisteeg 22, Monnee '24]
» Different limits distinguished by the dimensions "¢ = dim(/7*?)

» Focus here: i =1 397! =0 — “type II limits” a by

— free parameter the dimension i\"! = b.
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» Near A = {u = 0}: mixed Hodge structure by decomposing the middle cohomology

for review/introduction to the topic, see
[van de Heisteeg ’Q2, Monnee '24]

HV.C)= @ rua)

0<p,q<3

» Different limits distinguished by the dimensions "¢ = dim(/7*?)

» Focus here: i>! =1 > =0 — “type II limits” Pomme o

— free parameter the dimension i\"! = b.

* q

') GI‘2

» To determine the behavior of the couplings, define the graded spaces

Gry(8) = @ 17(a)

e For Type II limits: ~ H>(V, C) = Gr, & Gr; & Gr,, Gr, = Gr, most relevant for this talk!




Type ll, Limits in ./,

» Near A = {u = 0}: mixed Hodge structure by decomposing the middle cohomology
for review/introduction to the topic, see

[van de Heisteeg 22, Monnee '24]
HV.C)= @ rua)

» Different limits distinguished by the dimensions "¢ = dim(/7*?)

-~
\-

» Focus here: i>! =1 > =0 — “type II limits” Pomme o

— free parameter the dimension i\"! = b.

* q

') GI‘2

» To determine the behavior of the couplings, define the graded spaces

Gry(8) = @ 17(a)

ptq=t

e For Type II limits: ~ H>(V, C) = Gr, & Gr; & Gr,, Gr, = Gr, most relevant for this talk!

. . logu ,
e Define coordinate = —=a-+1s
211
e« Then (foru - 0 & s > 00) e X=|Q| ~s and for g € Gry(A) : lgl|* ~ s~!
Follows from growth theorem [Schmid ’73, Cattani, Kaplan, Schmid '86] >
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Claim: Type II, limits are candidates for emergent string limits

Evidence from low-energy effective action in the limit s — oo:

Light states of two different origins

: 3
* D3-branes with charge ¢ € H°(V, Z) N Gry. e BPS string solutions of 4d N=2 theory of supergravity
[Lanza, Marchesano, Martucci, Valenzuela 20, Q1]
. . Myower 1
e If there is a tower of them: MW ~ 7 * For string realizing type II limit, the tension scales as:
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T(s) 1
Mgl s
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Comparison of scales: fower
Mp, Mp,

“w=1” limit of [Lanza, Marchesano, Martucci, Valenzuela '20, '21]



Type I, Limits in ./Z/,” as candidate emergent string limits

Claim: Type II, limits are candidates for emergent string limits

Evidence from low-energy effective action in the limit s — oo:

Light states of two different origins

e D3-branes with charge ¢ € H>(V, Z) N Gr».  BPS string solutions of 4d N=2 theory of supergravity
[Lanza, Marchesano, Martucci, Valenzuela 20, Q1]
Mhower 1 . . . .
e If there is a tower of them: Mo, \/E  For string realizing type II limit, the tension scales as:
T(s) 1
Mgl s
m T
Comparison of scales: TOWer
Mp Mp

“w=1” limit of [Lanza, Marchesano, Martucci, Valenzuela '20, '21]

This behavior is indicative of emergent string limits!

— type II, limits are candidates of emergent string limits.
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Additional Information for Tyurin Degenerations

Problem: Low-energy effective perspective (<> asymptotic Hodge theory) alone
is not enough!

» Need: additional information about the UV completion

— geometry of the degenerate Calabi-Yau threefold arising at A .

» First: simple class of geometries realizing type II degenerations:

V—Vo=XiUz X5 1 nos g E - E
X J

quasi-Fano threefolds

K3-surface




Goals for this talk:

1. Establish the existence of a tower of BPS states becoming light in type II

limits corresponding to Tyurin degenerations!

2. Show criticality of tensionless EFT string!




Tower of BPS States

[Friedrich, Monnee, Weigand, MW ’25]
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» Wanted: infinitely many BPS states with charge g € H>(V, Z) N Gr, .

» Strategy: identify a charge g, € H>(V, Z) N Gr, for which dual 3-cycle I'y € H;(V)
gives a bound state upon multi-wrapping D3-branes on it

— gives a bound state with charge ng,. R Y
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» Wanted: infinitely many BPS states with charge g € H>(V, Z) N Gr, .

» Strategy: identify a charge g, € H>(V, Z) N Gr, for which dual 3-cycle I'y € H;(V)
gives a bound state upon multi-wrapping D3-branes on it

— gives a bound state with charge ng,. ré ! .

» Insight: Geometry of Tyurin degeneration identifies cf. [Doran, Harder, Thompson '16]
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» Insight: Geometry of Tyurin degeneration identifies cf. [Doran, Harder, Thompson '16]
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[Friedrich, Monnee, Weigand, MW ’25]
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i, 1. Establish the existence of a tower of BPS states becoming light in type II limits

‘l
ﬁ B

» Wanted: infinitely many BPS states with charge g € H>(V, Z) N Gr, .

» Insight: Geometry of Tyurin degeneration identifies cf. [Doran, Harder, Thompson '16]
it X, oV, PN

HZ(Z) ,“. , a »
Gr, = — — . o g
im(*H*(X))) + im(j*H*(X;)) 2% Vo AN
' o v ) GI'2
» Locally at degeneration (via Mayer-Vieotris):
three-cycle Iy dual to g, € H>(V, Z) N Gr, < S fibration over C, € H,(Z) )
\ {—lo—\

S! shrinking ak degeneration.,

| Iy is special Lagrangian and super-QM

BPS bound state with

charge nq, exists
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i, 1. Establish the existence of a tower of BPS states becoming light in type II limits

‘l
ﬁ B

Iy = —— —
im(*H*(X))) + im(j*H*(X,)) ji X, sV,

» Locally at degeneration (via Mayer-Vieotris):

three-cycle I dual to ¢, € H*(V, Z) N Gr, < S' fibration over C; € Hy(Z) b
' IZ/ " ’1’ »
C 2 D Gr,

» Elements of Gr, = A,,,,(£) with signature (2,b)

— 3 (at least) two curve classes C(gk) € Hy(Z) with CV -, C¥ > 0

that give rise to sLag Fg‘). k=12

CY-,CV>0-g(CY) 21— b(CY)>2
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i, 1. Establish the existence of a tower of BPS states becoming light in type II limit

l
ﬁ f 1 degenerations!

I = — .
im(i*H(X))) + im(j*H?(X;)) ji X, oV,

» Locally at degeneration (via Mayer-Vieotris):
three-cycle I'y dual to g, € H>(V, Z) N Gr, < S! fibration over C, € H,(Z) S

—t— G
CY.,CV>0—g(C) 21 - b (CY)>2 )




Tower of BPS States

[Friedrich, Monnee, Weigand, MW ’25]
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i, 1. Establish the existence of a tower of BPS states becoming light in type II limit

||
L | b - Tret N
I = —— —
27 im(i*H2(X;)) + im(j*H2(X,)) I

» Locally at degeneration (via Mayer-Vieotris):

three-cycle I, dual to g, € H>(V, Z) N Gr, < S' fibration over C, € H,(Z) .
AN IZ/ ~ fz’ .

CY.,CV>0—g(C) 21 - b (CY)>2

» Local fibration structure of Fg‘) — bl(F(()k)) > 3:

— n D3-branes on Fg‘) have sufficient scalar d.o.f. to break U(n) — U(1).

1

m tower
N ——

My /s

Tower of BPS bound states with mass scaling as




Goals for this talk:

[Friedrich, Monnee, Weigand, MW ’25]

' 1. Establish the existence of a tower of BPS states becoming light in type II

limits corresponding to Tyurin degenerations!

2. Show criticality of tensionless EFT string!




Criticality of the Light String

[Friedrich, Monnee, Weigand, MW ’25]

e — = — _ =

- 2. Show that the EFT string realizing these limits and becoming tensionless is a

Strategy: I. Determine the spectrum of massless degrees of freedoms along the string.
II. Show central charges on the string are ¢; =24, cz=12
— heterotic string in light-cone gauge.
III. Study the worldsheet interactions to distinguish free vs. interacting fields.
IV. Use this to identify the perturbative dual frame:

— heterotic string on (T? — P) x T? with perturbative gauge group of rank
2 + b for a limit of type II,,

12



l. Worldsheet Degrees of Freedom

[Friedrich, Monnee, Weigand, MW ’25]

» Take the BPS string solutions of [Lanza, Marchesano, Martucei, Valenzuela '20, '21]

— zoom in to the string core: string can be approximated as infinitely extended

ds? = — dt® + dx? + ¢?Pdzdz, with e?P = foe_K , z, D(r)
1 Z
1(z) =15+——log| — ),
271 r

» BPS string solution of 10d Type IIB supergravity — string worldsheet preserves /" = (0,4)

supersymmetry in 2d.

W
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l. Worldsheet Degrees of Freedom

[Friedrich, Monnee, Weigand, MW ’25]

» Take the BPS string solutions of [Lanza, Marchesano, Martucei, Valenzuela '20, '21]

— zoom in to the string core: string can be approximated as infinitely extended

ds? = — dt® + dx? + ¢?Pdzdz, with e?P = foe_K , z, D(r)
1 Z
1(z) =15+——log| — ),
271 r

» BPS string solution of 10d Type IIB supergravity — string worldsheet preserves /" = (0,4)
supersymmetry in 2d.

» Worldsheet degrees of freedom have two origins:

1. Geometric moduli of string: v

- Position modulus z, € D(r) = two left- & two right-moving scalars

on the string worldsheet. Q Ej m
.y

- Modulus ® of Z € Vy — one left- & one right-moving scalar

on string WS.

2. Components of Type IIB p-forms localized to string and propagating along it.




l. Worldsheet Degrees of Freedom

[Friedrich, Monnee, Weigand, MW ’25]
2. Components of Type IIB p-forms localized to string and propagating along it.

» Consider p-form of Type IIB string theory C,, .

» It gives rise to a massless field propagating along the string if there
Zg D(r)

exists a harmonic (p — 2)-form localized on the string.

C,D BY Al w, € HX(Z)

\Tmnsverse components give scalar fields
propagating along string

» In our setup, we get localized modes from C, and (B,, C,)

- sgn(H %(Z)) = (3,19) — 3 right- and 19 left-moving WS scalars.




Il. Criticality of the String

[Friedrich, Monnee, Weigand, MW ’25]

» Summary of bosonic degrees of freedom:

- Geometric Moduli Z
()]
- (B, Gy) : b0, b°
- Gy b”

19

24




II' Criticality Of the String [Friedrich, Monnee, Weigand, MW ’25]

» Summary of bosonic degrees of freedom:

nlkjos nl‘te)os
- Geometric Moduli Z 2 2
() 1 1
+ fermionic superpartiners
- (B, C)) : b0, b° 2 0 for (0,4) WS SUSY
- C4 b* 19 3
24 8

Central charges of the string worldsheet theory:
c; =24, cp=12




II' Criticality Of the String [Friedrich, Monnee, Weigand, MW ’25]

» Summary of bosonic degrees of freedom:

I’lEOS nlte)os
- Geometric Moduli Z 2 2
o 1 1
+ fermionic superpartiners
- (B, C)) : b0, b° 2 0 for (0,4) WS SUSY
- Gy b 19 3
24 8

Central charges of the string worldsheet theory:
c; =24, cp=12

EFT string emerging at type II, limit is a heterotic string! — which one?

15



lll. Interactions on the Worldsheet

[Friedrich, Monnee, Weigand, MW ’25]

» Specifically, we aim to distinguish free fields on the WS from interacting fields.

» Strategy: Consider the kinetic terms for the scalar fields on the string

z, D(r)

1
Sws kin = ) [dzU 8, (@) 0,"0°P*

T

Field space metric on the string
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[Friedrich, Monnee, Weigand, MW ’25]

» Specifically, we aim to distinguish free fields on the WS from interacting fields.

» Strategy: Consider the kinetic terms for the scalar fields on the string

1 z, D(r)
Sws kin = ) [dzg 8, (@) 0,"0°P*

T

Field space metric on the string
/ \
mekric is &ei.dmimdegamdem& mekbric is fieid-—-da?enden%
< Pt free scalar < @M interacting scalar

C4:B2a/\a)a

l

» For the modes arising, e.g., from C;: Siod = [dC4 A *104dCy D J dzdz 8(z,Z,0%)
D

» Extract Syyg yin as: 5Nz — 29) Sws in(Zo» Zo» DY) = 6Pz — 29) S (2 — 2, 7 — Z, b?)

Result: 2 + b free modes and 20 — b interacting modes from C,
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lll. Interactions on the Worldsheet ixe vy (07 Ej 0

. . . . . . X, &
» Details: for the modes arising from C, have to distinguish: RS b<

w, € HX(Z)/(Im(*) + Im(j*))

Cy D BLA (i* — j¥)a,, @, € H*(X)) ® H*(X,)
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lll. Interactions on the Worldsheet X eV, (O Ej Y

J: X<V,

» Details: for the modes arising from C, have to distinguish:

Cy D BLA(* — j¥)d;,  @; € HH(X)) ® HA(X,) C,DB{Aw,, w, € HX(Z)/(Im(i*) + Im(j*))

- Reduce 10d action for C;

Si0d — [

dz dz‘ dt dx(abi)(dbj)ezD(Z’Z)J @; A * @,
D R11

VZ

-, only have support at z = z:

— J W; N * @) = Qij 5P (z — Zp)
VZ

- We then have:

8z — 7y, Z — Zy, b') = e?PEI5D (7 — 7)) Q; [ d?c 0,b'0°b’
RLI I
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lll. Interactions on the Worldsheet X eV, (O Ej Y

J: X<V,

» Details: for the modes arising from C, have to distinguish:

Cy D BLA(* — j¥)d;,  @; € HH(X)) ® HA(X,) C,DB{Aw,, w, € HX(Z)/(Im(i*) + Im(j*))

- Reduce 10d action for C;

Si0d — [

dz dZJ dt dx(abi)(dbj)ezD(Z’Z)J @; A * @,
D R11

VZ

-, only have support at z = z:

— J W; N * @) = Qij 5P (z — Zp)
VZ

- We then have:

8z — 7y, Z — Zy, b') = e?PEI5D (7 — 7)) Q; ‘ d?c 0,b'0°b’
R1LI I

- For the WS kinetic term this means:

= ' 1 = i30T
SWS,kin(ZO’ Zo, bl) — 5 ‘dzd glj(ZO’ Zo) ()ab a bJ

with gij(ZO’ 20) — 2@2D(Z0’20)Qlj

Fields b’ Mow-hivia&iv interact with z, -
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lll. Interactions on the Worldsheet X eV, (O Ej Y

J: X<V,

» Details: for the modes arising from C, have to distinguish:

Cy D BLA(* — j¥)d;,  @; € HH(X)) ® HA(X,) C,DB{Aw,, w, € HX(Z)/(Im(i*) + Im(j*))

- Image of w, under boundary map non-trivial:

0 # d*w, =y, € H*(V,)

1
- Infact: y, € Gr, such that  lI7lI* ~ og| =)~ ¢
og|—

K
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» Details: for the modes arising from C, have to distinguish:
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- Image of w, under boundary map non-trivial:

0 # d*w, =y, € H*(V,)

1
- Infact: y, € Gr, such that  lI7lI* ~ og| =)~ ¢
og|—

K

Reduce 10d action for C; — read off kinetic WS term
= ay — 1 2 = apoj,b

- Metric given by:

8ap(Zo» Zy) = 2e 2D(Z°’ZO)§ab(Zo’ ),
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lll. Interactions on the Worldsheet X eV, (O Ej Y

J: X<V,

» Details: for the modes arising from C, have to distinguish:

Cy D BLA(* — j¥)d;,  @; € HH(X)) ® HA(X,) C,DB{Aw,, w, € HX(Z)/(Im(i*) + Im(j*))

- Image of w, under boundary map non-trivial:

0 # d*w, =y, € H*(V,)

1
- Infact: y, € Gr, such that  lI7lI* ~ og| =)~ ¢
0g

K

Reduce 10d action for C; — read off kinetic WS term

1
Sws (20, 2. ) = sza g (2, Z,) 0,b"0°b”

- Metric given by:
8an(Z0, Ty) = 2e*PM Q (20, 7)

2D(z,7) — —K(z,Z -~ - Z
€ (22) _fOe &2 Qab(Z, Z) = [ Ya A * Yo ~ eK(Z’Z)
V.

Z

- Dependence on z cancels!

Fields b? are free fields!
17
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lll. Interactions on the Worldsheet X eV, (O Ej Y

. . . _ . X, SV
» Details: for the modes arising from C, have to distinguish: St o b<

C, DB Aw,, w, € HX(Z)/(Im(i*) + Im(j*))

Cy D BLA (i* — j¥)a,, @, € H*(X)) ® H*(X,)

Fields b’ non-trivially interact with Zy Fields b are free fields! .
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sgn(Ape) = (1,19 = D) sgn(Atmylb
1_ E‘M&QW‘C&%MS 19 — b interacting left-moving 2 free right-moving b free left-moving
right-moving scalars scalars scalars
scalars K "
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~ ~ Y '
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S 4 .
N ~ Y 4 |
IR N 'I' \ 4
P ~ 24 : N : :
. . Heterotic gauge group of
“A 4 rank 2+ b

Target space of heterotic 6-model: # = (T? - D) x T? x C¥*

/'

WS supersjmme&rj ensures that Ehis is a K3!
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[Friedrich, Monnee, Weigand, MW ’25]

2
H?*(X,) ® H*(X,) £ polarization lattice ApgonZ (Im(igizh)n(j*)) = transcendental lattice A, on Z
sgn(Ape) = (1,19 = D) sgn(Atmylb
1_ E‘M&QW‘C&%MS 19 — b interacting left-moving 2 free right-moving b free left-moving
right-moving scalars scalars scalars
scalars K "
s ‘ :
~ ~ Y '
o ’
S 4 .
N ~ Y 4 |
IR N 'I' \ 4
P ~ 24 : N : :
. . Heterotic gauge group of
“A 4 rank 2+ b

Target space of heterotic 6-model: # = (T? - D) x T? x C¥*

/'

z >h>2 —~ :
WS supersjmme&rj ensures that this is a K3! Correct for 18 2 b 22 —~ otherwise

“target space” slightly different!
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[Friedrich, Monnee, Weigand, MW ’25]

| 1.  Establish the existence of a tower of BPS states becoming light in type I
limits corresponding to Tyurin degenerations!

2. Show criticality of tensionless EFT string!

|
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Beyond Tyurin Degenerations

[Friedrich, Monnee, Weigand, MW ’25]

» So far we focused on type II, limits corresponding to Tyurin degenerations:

V—V,=X,U, X, a4

quasi-Fane threefolds K3-surface ~ < } lz ’ ,

» What if Z is not a K3 but an Abelian surface?

- Worldsheet has enhanced (4,4) supersymmetry
— dual Type II instead of Heterotic String

n
» What about more general degenerations? V-oV,= U X, M, =X;NnX

i=1 \

Do they have to be K3/Abelian surfaces?

» Hodge theory: at least one Mio, j, has to be K3/Abelian surface.




Beyond Tyurin Degenerations

[Friedrich, Monnee, Weigand, MW ’25]

» So far we focused on type II, limits corresponding to Tyurin degenerations:

V _ VO o Xl UZ X2 ) .

quasi-Fano threefolds K3-surface | e .

» What if Z is not a K3 but an Abelian surface?

- Worldsheet has enhanced (4,4) supersymmetry
— dual Type II instead of Heterotic String

n
» What about more general degenerations? V-oV,= U X, M, =X;NnX
i=1 \

Do they have to be K3/Abelian surfaces?

» Hodge theory: at least one Mio, j, has to be K3/Abelian surface.

— — = = —_—— — = B —— ES————

> Idea: Turn logic around and use Emergent String Conjecture to predict constraints on th

possible geometries arising at type II, singularities.

|
| N - s
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Beyond Tyurin Degenerations

[Friedrich, Monnee, Weigand, MW ’25]

. Conjecture: For a type II, limit in the complex structure moduli space of a Calabi-Yau threefold,

the degenerate threefold, V|y, can be brought into the semi-stable form
| Vo= UXi
i=1

for which the non-vanishing surfaces X; N X; are either all Abelian surfaces with the

same complex structure or all K3 surfaces with the same polarization lattice of rank
(1,19 - b). In particular, the parameter b characterizing the family of II, degenerations

is bounded as

0<b<19

» Prediction of Emergent String Conjecture on geometry.

» Can be viewed as analogous to the constraints on geometries of Type II Kulikov models
of K3 surfaces. [Kulikov’'7781; Persson '81]

» Can the statement be confirmed from a purely geometric perspective ... ?

0



Conclusions

[Friedrich, Monnee, Weigand, MW ’25]

» Successful test of the Emergent String Conjecture in the vector multiplet sector of Type IIB
compactifications on Calabi-Yau threefolds.

» higher-dimensional branes cannot provide the critical string in emergent string limits!
< “usual” string dualities cannot be used to prove the ESC ... .

» Low-energy effective action: type II, limits are candidates for emergent string limits

— tensionless EFT string as in [Lanza, Marchesano, Martucei, Valenzuela ’20, ’21]
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Conclusions

[Friedrich, Monnee, Weigand, MW ’25]

» Successful test of the Emergent String Conjecture in the vector multiplet sector of Type IIB
compactifications on Calabi-Yau threefolds.

» higher-dimensional branes cannot provide the critical string in emergent string limits!
< “usual” string dualities cannot be used to prove the ESC ... .

» Low-energy effective action: type II, limits are candidates for emergent string limits

— tensionless EFT string as in [Lanza, Marchesano, Martucei, Valenzuela ’20, ’21]

» Using the details of the geometry for so-called Tyurin degenerations showed

| In other words: showed heterotic/Type IIB d

|

» Furthermore: used ESC to constrain possible other geometries arising at type II, singularities!

1l



Thank you!
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Beyond Tyurin Degenerations

[Friedrich, Monnee, Weigand, MW ’25] S )

-

n
» Assume we have a type Il degeneration b ’

where (at least) one Ml-1 i is not a K3 or Abelian surface.

» As before: have a string that is becoming tensionless at the same rate as a tower of BPS states
with charge g € H3(V, Z) n Gr,.

» The Type IIB p-forms reduced over localized forms on M, ; give degrees of freedom on the string.

Cp D) Bg A 0)5_2 W, € Hp_z(Mi,j)

» One surface M, ; is a K3/an Abelian surface — gives right-moving degrees of freedom with ¢z = 12.

CrLELt‘:aLLEj

» Since h4(Ml-1, i) 7 0 get additional right-moving degrees of freedom — string has cg > 12! e of string

» Only way out: all M; ; are equivalent — counting d.o.f. of each individual one is redundant!

+]1



Relationship BPS Tower < Critical String

[Friedrich, Monnee, Weigand, MW ’25]

» We found BPS states obtained from D3-branes on three-cycles I', associated with a cycle C, € H,(Z)

in the transcendental lattice A\ of Z.

trans

Apans CUP @ T

trans
» Goal: Want to count the BPS invariants associated with Fo

$2ppslp) = (= 1)Cﬁ/m'(ﬂro))( (Ar,)

Mr, = wmoduli space of A-brane on I, Euler characteristic

» Heterotic interpretation of light tower of BPS states: winding and momentum states of 77 in

M =T?*x K3 x C*

» Projection of C to U®? C A,... counts winding and momentum w.r.t. one-cycles in 7.

trans

| element in H 3(V, Z) N Gr,, there exists a meromorphic mock-modular form

1
0(q) = Z c(n)g"  such that S2gpsIy) =c¢ <ECO 'z Co) :

| neysy

|
|




Comparison to Emergent Strings in Type lA "~ @@ @@ e

» In Type IIA CY3 compactifications — Emergent strings from NS5-branes on K3-fiber Z

‘7 — Z — ﬂ:Dé [Lee, Lerche, Weigand ’19]

» Worldsheet theory = Reduction of NS5-brane worldvolume on 7.

/'

Critical heterotic string since Z is K3,

» Polarization lattice Apol(Z ) = HX(Z) n H"'(CY3) gives current algebra — bulk gauge theory

» Target space for heterotic string: (T2 — I]Z"[i) X T?x C
skrings n NSS*b!:&Me. strings Same if
type 1I, Limits th IIA
Criticality Vo= X1 Uz X5 5 s X3
K3-surface

Bullk gauge 5 A (Z)=UB A (2)

™ Atrans(Z ) Apol(Z ) trans . pol

cery (Z and Z mirror)
L. Vand V i

Gauge bundle | embedding Z© Vv embedding Z < V °‘:" ”abm“m”

at least in absence

of het. NS5-branes) +2




