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= amount of information to define a statement (using functions, sets)

~ Proposal: required tameness principle is sharp o-minimality
[TG,Schlechter,van Vliet '23][TG,van Vliet '24]

quantitive measure of information:
integers (F,D), sharp complexity

|[Binyamini,Novikov 22][Binyamini,Novikov,Zak "23]
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consider effective field theory: AN = 2 super Yang-Mills with SU(N)
1
SP) — _ / d4a:g—2 (Tr(ng)T(qu) R Trol o - )

Contradiction: expect that QFT cannot be coupled to QG for N > Ny ax

— too complex = many fields?

Coulomb branch of theory with NV = Ny + 1

— integrate out fields (much fewer remaining massless fields)

effective gauge couplings for massless U ( )N theory from
complicated prepotential

Interpret the resulting effective couplings as being too complex
[TG,Schlechter,van Vliet ‘23]

many works starting with [Vafa ‘05]

00 4k
B 7,2_ A 1n B _|_ Z Fi ( ) A?  [Seiberg, Witten]
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- Interpret this as the statement that H with dsg is too complex
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swampy upper half plane fundamental domain of SI(2, Z)
A A
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Fdllfl> 1 - ~ Ror = 0
H = {Im7 > 0} {Ir] > 1,0 < Rer < 3}

v

exponentially growing volume finite volume

S . »  one infinite distance point
dense set of infinite distance P

points on the real line + infinite
distance point at Im7 — oo

Wi

actual moduli space of elliptic curve
F =2 H/SI(2,Z) — P'\{0,1, 00}

l hyperbolic metric becomes:
oo = 0,0z K

infinite complexity A oo [i(HO(z)ﬁO(Z) — ﬁO(Z)Ho(z))}

finite complexity +—— period integrals of elliptic curve
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Some words on Tame Geometry

= Tameness principle from mathematical logic: o-minimality [van den Dries]...
(motivated by Godel’s logical undecidability)
precise selection criteria for tame sets and tame functions (have tame graph):
- collection of subsets of R",n =0,1,...: finitely many connected components

+ this collection should be closed under:
finite unions, intersection, products, linear projections, complements

— Oo-minimal structure

E Last years: sharp o-minimality [Binyamini Novikov ‘22][Binyamini,Novikov,Zack]

tame principle that allows notion of complexity = (keep track of finite
information)

@imal structures @arply o-minimal Structu@
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Bl —air a0 a; F' - number of variables

— amount of information needed to specify polynomial (real coefficients)

=~ Bounds from complexity:

» Upper: Number of zeros, minima, and maxima of P(x)

»  Lower: Number of data points to approximate

Liw) uptoerror e: Nie, F, D) -
unit ba

»  Upper: Volume growth — later

~ Complexity of (semi-) algebraicsets A CR™: A = {P,(z) =0, Q;(z) >0}
Ra1g — is o-minimal structure with notion of complexity
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— Pfaffian functions are o-minimal + have a notion of complexity

degree: D = deg(P) + Z deg(F; ;)
]

format: F=n-+r (number of variables +

number of non-trivial functions) 11/18
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Beyond polynomals - Period integrals

~ Many key applications in swampland program (and study of amplitudes)
use Hodge theory and period integrals

see talks by Marchesano, Wiesner, van de Heisteeg, Knapp,...

— need complexity of periods integrals (complicated functions on moduli space)

+ good news: periods satisfy differential equations (Picard-Fuchs equations)

» bad news: periods are not Pfaffian functions

= recent advance: [Binyamini ‘24] period integrals definable in RLN,eXp

LN - log-Noetherian functions —— have complexity F

&g Afn l
e o7 = Puilz, f) What is (ED)?

up-shot: sharply o-minimal structures have clean notion of complexity
— relevant examples are under construction
12/18
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= Tameness constrains volume growths [Yomdin,Comte]

Theorem: A ¢ R” be a tame set, then
for any ball B™(r) :

Vol(AN B™(r)) <C(n; A) Ao
7

finite, uniform upper bound on number of connected
components of AN P forany n — dim(A) plane P in R®  [Gabrielov]

= Remark: theorem is non-trivial locally, without taking r — oo
—s non-trivial even for finite volume sets A

= Sharply o-minimal set: C (n, A):C (F Bl n)

explicitly computable function depending on the
Complexity (F, D) of the set |[Binyamini,Novikov,Zack 23]
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Complexity of moduli spaces

Embed moduli spaces isometrically into R"

Nash’s embedding theorem: always exits n with T : M <> R" isometry

Volume growth conjecture follows from requiring;:
Moduli spaces (M, g) should admit a tame, isometric
embedding into R™.

Remarks:
[DHRTX 24] call volume growth condition a compactifiability condition:

matches with tame sets are always compactifiable [van den Dries]

+ complexity (F, D) of (M,g) are constrained by volume growth

Key questions: Tame version of Nash’s embedding theorem?
— Conditions for the existence of tame 777
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Moduli space covers are too complex

~ Implication: (H,gg) has no tame, isometric embedding in any R"

isometric embedding needs R6, is known and wild [Blanusa ’55]
H |
M/\ /\ . compare to - highly oscillating to account for
T \/ U \/ b sin(1/x) asymptotic negative curvature

=~ More generally:

consider a manifold M with negative sectional
curvature (< —|A| ), simply connected, complete

= forall €,7 > 0 one can always find balls B;(r) and Bs(r) such that
(1) Bi(r) and Bs(r) are . apart in M
(2) Bi(r) and Bs(r) are € apartin R"™ after embedding

|[Fontenele,Xavier]
15/18
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- Back to fundamental domain F = H/S1(2,Z)

Siegel sets admit tame isometric
embedding into R*

J(7)

M =P"\{0,1,00} ¢ F=S1(2,Z)\SI(2,R)/SO(2) — R"

gcs metric on M @) tame ol f [Peterzil, Starchenko "04]

~ General picture: M is complex structure moduli space of Calabi-Yau manifold

period map: ®: M — I'\G/H isatame map
|[Bakker,Klingler, Tsimerman 18]

(M, ges) have finite volume (M, ges) have finite complexity (F, D)

[Todorov "04] in progress
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V(¢)=sin(1/¢), 04V (¢) =0 ishyperbolic spiral

~ locus of minima, maxima is tame:  94: V' (¢) = 0

e.g. true for all flux potentials [Bakker, TG,Schnell, Tsimerman '21] [TG "21]

» vacuum locus always satisfied volume growth conjecture, fixed by (F, D)

e.g. complexity behavior (F, D) of self-dual flux vacuum locus conjectured [TG,Monnee '23]
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Conclusions

Investigated role of tameness, o-minimality, as generalized finiteness property
— powerful tools from mathematics between algebraic geometry and analysis

Quantify the complexity of spaces and functions using
sharp o-minimality (#o-minimality)

— complexity bounds on effective theories arising in quantum gravity

Example: volume growth conjecture is implied by tameness of isometric
embedding of moduli space with physical metric

— relations: tameness of the period map, asymptotic behavior of curvature, ...

Future: » precise condition on existence of tame embedding (tame Nash)
> complexity and the species scale
> complexity to classity asymptotic limits
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