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Introduction and Motivation

In physics, perturbation theory often leads to divergent series expansions, and

string theory is no exception.

F(g) ~ 2 gka, a, ~ k!
k>0

This asymptotic behavior signals that perturbation theory alone does not fully

capture the physics of the system.



Introduction

Given an asymptotic series

Z gka,, a, ~ k! (1)

k>0

We say that a function F(g) is a non-perturbative completion of (1) if

1) F(g) is a well defined function of g at least in some domain

2) F(g) reproduces (1) when expanded around g =0



Introduction

Given an asymptotic series, its non-perturbative completion is not unique.

It F'(g) is a non-pert completion, also F(g) + e~ 8" is as well

To ensure uniqueness, one needs more information, such as a Hamiltonian

or a differential equation with specified boundary conditions.

—hd%p(x) + V(X)p(x) = Ep(x)

In string theory this uniqueness is not built in a priori.



Introduction

One systematic way to approach the problem of finding a non-perturbative

completion is via resurgence

—> Given a perturbative series, one can construct a non-

perturbative completion using its (median) Borel summation

This approach is very general and concrete but often does not capture the full

richness of the problem.

—> see Les Houches lectures Marcos Marino

i % gnr Y,
n=0 g /A/g



Introduction
In string theory, however, we have another powerful tool: string dualities

—> Not only provide a concrete handle on non-perturbative effects but
allow to uncover unexpected connections leading to beautiful new

mathematics and new physics.

geometrical algebraic /dMe—NTr(V(M))
objects +—> objects




Introduction

Today we focus on topological string on toric CY manifolds* and we study its

non-perturbative structure via the topological string/spectral theory duality

- TS/ST
Topological string/ +—) Spectral theory of a class of
Enumerative geometry [AG-Hatsuda-Marifio] quantized mirror curves

> 4) O(j\:aﬁ)a [55913] — 1h
=1
/.
=
E;
A-model objects B-model objects

* + extension to elliptic cases [Hatsuda, Sciarappa, Zakany]
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. Topological strings and special functions
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. Outlook



Topological String Theory



Topological String Theory

In topological string theory the free energies encode in a precise way the

enumerative geometry of the target space X

— d ,—d
F()=) Nie
d>1

Ng are the Gromov-Witten (GW) invariants: “count” holomorphic maps

iy , - X
z, ¢
o7

t: Kédhler parameter of X



Topological String Theory

The (formal) partition function Z is obtained by summing over all genera

logZ=F =) g Ft)
>0

Problem: F, ~(2g9—2) g>1 —> zero radius of convergence

[Gross- Periwal, Shenker, Drukker-Marino-Putrov]

—> We are missing some non-perturbative physics



Topological String Theory

One way to reorganize the information on the genus expansion is through the

Gopakumar-Vafa function

Example 1: resolved conifold

O(—1)® 6(-1) » CP!

_CP'

Figure from: 0410178

F(t.g) = ) g2 F (1)
>0

Fo(t) = — Liz(exp(—t)),
1

Fi(t) = — 5 Li1(exp(-1)),

(=1)9™" BygLiz—a4(exp(—t))

Fglt) == 29(2g — 2)!



Topological String Theory

Example 1: resolved conifold

The corresponding Gopakumar-Vafa representation is

GV _ € . mg;
F7h(t, g,) = E - <231n< > ))

m>1

Two comments:

—> dense set of poles on the real axis at g, = 7Q) (*)

—> away from the axis, i.e. g, € R, it is well defined because there are

no poles and the sum over m converges

(*) this problematic point was first raised by [Hatsuda-Okuyama-Moryamal]



Topological String Theory

Example 2: local CP*

F(t,g) = ) g 7 F (1)
>0

O(-3) » CP?

One can compute F,(7) up to very high genus

recursively (*) but no closed from expression

expression for all genus exists

cP (*) up to g ~ 200 from [Haghighat-Klemm-Rauch]

Figure from: 0410178



Topological String Theory

Example 2: local CP? . The Gopakumar-Vafa representation is

FGV _ g < WEs >2g— —wdt
(t,8,) = ZZZ—n 2 sin e

g>0 d w=l

= ) F,(g)e™

m>1
: 3g°
For the first few terms  F(g) = —
(g% = 1)?

F 3q* (4q4 +7q° + 4)
8= Ty

Fi() = 2 10g'% +27¢" + 54¢° + 62¢° + 54¢* + 27¢* + 10
3\8s) =

(g% —1)?

with g = e’



Topological String Theory

Example 2: local CP? . The Gopakumar-Vafa representation is

FV(t,g) = ) F,(g)e™

m>1
Two comments:

—> dense set of poles on the real axis at g, = 7Q

—> away from the axis, g, € R, we do not have poles but the

summation over m diverges log|F,(g,)| ~ m?, m > 1

[Hatsuda-Marino-Moryama-Okuyama]



Some points to keep in mind

—> Dense set of poles at g, € R: F©Y alone can not provide a non-

perturbative completion of the genus expansion

—> Forthe resolved conifold there have been many approaches to study

non-perturbative effects, and at the end they are all give the same

answer.

[Pasquetti - Schiappa, Krefl - Mkrtchyan, Hatsuda - Okuyama, Hatsuda,
Bridgeland, Alexandrov-Pioline, Alim-Saha-Tulli, Alim-Teschner-Tulli, AG-
Hao - Neitzke, Alim-Hollands-Tulli, Hattab-Palti ...]

—> But not everything is like the resolved conifold



Some points to keep in mind

—> The non-perturbative approach that | will use today is based on one

particular duality: the TS/ST correspondence, and it applies to all local

CY geometries (with mirror curve of genus g > 1)

—> There exists a special class of toric CYs (A, fibrations over Cl]j’l) for
which it exists a non-perturbative duality with Chern-Simons matrix

models on lens spaces [Aganagic-Klemm-Marino-Vafa]



Topological string and spectral theory

Topological string/

Enumerative geometry

TS/ST
—> Spectral theory of a class of
[AG,Hatsuda,Marifio] quantized mirror curves
) O, p), [x,p]l=1n
47
gs T h

Next: spectral theory of quantized mirror curves



Spectral Theory of Quantized Mirror Curves



Spectral Theory of Quantized Mirror Curves

Toric Calabi-Yau threefolds can be classified in terms of two-dimensional polytopes.

To each such polytope, we associate a curve known as the mirror curve.

[Batyrev , Chiang-Klemm-Yau-Zaslow, Hori-Vafa - ...].

Example: local P,.

MIrror curve

e’ +et+e +x=0

k: CY complex modulus

ax+by

(a, b) vertex > e



Spectral Theory of Quantized Mirror Curves

One can quantize such mirror curves by using Weyl's prescription

eax+by 5 e

quantization

ax+bp

where X, p are momentum and position operators in one dimensional

quantum mechanics: [)Ac,ﬁ] = 1h
e*Pp(x) = e*P(x) P Pp(x) = Pp(x — ih)

[ Aganagic-Dijkgraaf-Klemm-Marino-Vafa, Aganagic-Dijkgraat-Cheng-Krefl-Vafa,
Mironov-Morozov, Nekrasov-Shatashvili,...]



Spectral Theory of Quantized Mirror Curves

Example: local P,

The quantization leads to 0 = e” + e* + e ” whose eigenvalue equation is

P(x — ih) + e“Pp(x) + e M2 p(x + ih) + kPp(x) = 0

Example: local P; X P,

The quantization leadsto O = e” + e” 4+ me™ + ' whose eigenvalue equation is

P(x — ih) + P(x + ih) + (me™ + & + K)p(x) = 0



Spectral Theory of Quantized Mirror Curves
The inverse of the operators obtained from such quantization have a discrete
spectrum and are of trace class.

The trace class property is very important, as it allows for the definition of
Fredholm determinants and Fermionic spectral traces, which are key

ingredients in the TS/ST correspondence.

The quantization of a mirror curve of genus g leads g non-commuting trace

class quantum mechanical operators on the real line

[AG-Hatsuda-Marino, Kashaev-Marino, Laptev-Schwimmer-Takhtajan, Codesido-AG-Marino]



Spectral Theory of Quantized Mirror Curves

Example: local P, (genus one mirror curve)

The quantization of the mirror curve gives

d(x — ih) + e*Pp(x) + e e p(x + ih) + kp(x) = 0

Spectral problem: look for L>(R) solutions which admit analytic continuation in the strip

xeC||Imx| < h}

Theorem: The operator p = 0~ has a discrete spectrum {E, '} 5, and itis of trace class

on L*(IR)

v
[AG-Hatsuda-Marino, Kashaev-Marifio, Trp" = ZEH—N < 00

Laptev-Schwimmer-Takhtajan] n>0



Spectral Theory of Quantized Mirror Curves

Example: local P,

The kernel of the operator p is [Kashaev-Marifo]

@, (x+ ib/3) TPH)N3

P, (v = ib/3) 2b cosh [ﬂ(x;y +é)

px,y) =

where @, is the Faddeev quantum dilogarithm

If Im(b)>0 it reduces to
2¢, = i(b+ b7

12
(e2nb(x+cb), e2mb )

(6]

CI)b(x) =

(ezﬂb_l (x+cb)’ e—2iﬂb_2)

(60



Spectral Theory of Quantized Mirror Curves

if b2 = 2 € Q, the Faddeev dilogarithm simplifies and we get

m
exp | L () + (14525 7)1 (1- )]
(Db(Z) - Z N N Z N _m
[Garoufalidis,Kashaev]
ot Ik
where D/(X;q) = (1 —qu) , Z=2m\/nmz+inr(n+ m)
=1

As a consequence the kernel of our operators also simplifies at these values.



Spectral Theory of Quantized Mirror Curves

For example for local P? at i = 27 < b?> = 3 we have

(X, y) = sinh(y) 1 sinh(x)
PR SinhGy) o, coun (x_y +§) sinh(3x)

We will see that also on the string theory side when

B Ar?

= =2
8 7

many simplifications occurs (the theory is essentially one-loop exact).
[Codesido-AG-Marino]



Spectral Theory of Quantized Mirror Curves

The quantization of mirror curves of genus one leads to one trace class

operator p, and a convenient way to encode information about its spectrum

is by using the Fredholm determinant

det(1+Kp)=H<1+E£>

n>0 n

The Fredholm determinant of a trace class operator is an entire function

of Kk whose zeros correspond to the spectrum



Spectral Theory of Quantized Mirror Curves

Another key object in the TS/ST are the fermionic spectral traces Z(N, h) that appear

in the small k expansion of the determinant

det (1+xp) = ) «NZ(N, h)
N>0

1 N
where Z(N.f) = — > (—1)Sg“(")[ NdxlmdeHp(x,-, Xo(i)

" seSy R i=1

partition function of an non-interacting Fermi gas in one

dimension with N particles and density matrix p

1

Example: Z(1,A) =Trp or Z(2,h) = 5 ((Trp)2 — Trp2)



Spectral Theory of Quantized Mirror Curves

We can also express such spectral traces as matrix models. For the example of

local P? we have [Marino-Zakany]

1 dVu & Hi<j4 sinh” < - ; - )
2. = |

—V(u ,h)
— e l
! N H U — U .
N )y QoY1 Hij2cosh< — + z%)

—V(u,n) — 623Lb
- T
D, (1 — lg)

where e



Spectral Theory of Quantized Mirror Curves

What about geometries with higher genus mirror curves?

The quantization of mirror curves of genus g leads to g non-

commuting trace class quantum mechanical operators on the real

line.

We then need to define a generalized notion of Fredholm
determinant, which is entire in all g spectral parameters and takes
into account the spectral properties of all these operators

simultaneously.

[Codesido-AG-Marino]



Spectral Theory of Quantized Mirror Curves

Example: crepant resolution of C*/Z° geometry (genus two mirror curve)

. Representation 1
mirror curve

> e tedte Ve +x,=0

Representation 2

e¥ + Pt 4+ e P et + K = 0



Spectral Theory of Quantized Mirror Curves

We can construct g = 2 non-commuting trace class operators, one for each «;

e“+el+e™ P +ke ™ +x,=0
—~ —

quantization gives O, with trace class inverse p,

eX + P+ e P et + ki = 0
— —

quantization gives O, with trace class inverse p;,



Spectral Theory of Quantized Mirror Curves

We can construct g = 2 non-commuting trace class operators, one for each «;

e"+el +e P txe™ +x,=0
— —

Oy

Two trace class operators A; = Oale_x and A, = 00—1

The generalized Fredholm determinant is entire in k;

det (1 + KA+ K‘2A2> = det (1 + K1p1> det (1 + K50, )
K=




Spectral Theory of Quantized Mirror Curves

=(x!"™,500) = 0 : spectrum of p,

/ e Blue line: vanishing of the determinant

600 | | *

E(Kl, Kz) — det (1 + KlAl + K2A2>

k=0

~——__ = det (1 + x,p,) det <1 + KP4 >
K,=0

; = A =1
—700 T 200 Py = (€x+ el + e 3x—p + K€ x)

— (n)
=(—300, k5 ) = 0 spectrum of -1
( >) P P p; = (ezx 4+ ePHX 4 o7 P 4 Kzex)



Spectral Theory of Quantized Mirror Curves

The fermionic spectral traces decomposition gives

det (1+ KA, +1564y) = ) Z(N), Ny, Akl
N{,N,,>0

where . N, N+N,
_ _1elav o
20Ny, Ny 1) = 2 =D [d X<EA1(XG<»»XZ>> L1 A

oESy j=1+N,

Example  z(1,1,h) = TrA, TrA, — Tr(4,4,)

Z(2,1,h) = Tr (A2A,) —%Tr (A2) TrA, + ; (TrA,)” TrA, — TrA, Tr (A,A,)

Z(N,, N,, i) also has a matrix model representation which corresponds to a two-cut model.



Spectral Theory of Quantized Mirror Curves

Question: can we compute spectral quantities (spectrum,

determinant, eigenfunctions, ... ) explicitly in an analytic manner?

A perturbative WKB analysis of these problems reveals an intriguing
connection with the refined topological string special functions in
the Nekrasov-Shatashvili (NS) limit [Aganagic-Dijgraf-Cheng-Krefl-

Vatfa, Nekrasov-Shatashvili, Mironov-Morozoy, ... ].

Can we go beyond WKB and obtain an exact solution?



Spectral Theory of Quantized Mirror Curves

Can we go beyond WKB and obtain an exact solution?

Answer: Yes. Non-perturbative effects to the NS approach are encoded

in the usual unrefined Gopakumar-Vafa phase of topological string

theory.
h—0 . |
spectral theory of quantized mirror curves h— oo
< >
® NS limit of refined ® top string theory in the2
| 4
1P SHng GV phase with g, = —

® \WKB approximation ® enumerative geometry



Topological String and Spectral Theory

. TS/ST
Non-perturbative <+ —> Spectral theory of a class of
topological string [AG-Hatsuda-Marifio] quantized mirror curves
4n°
8 =
’ h

—Jp bridges perturbative expansions in one theory

with non-perturbative phenomena in its dual
counterpart — derivation of exact, closed-form
expressions for many quantities on both sides of

the correspondence.



Topological String and Spectral Theory

—p Letuslook at some concrete

statements



Topological String and Spectral Theory

. TS/ST
Non-perturbative e Spectral theory of a class of

topological string quantized mirror curves

[AG-Hatsuda-Marifio]

A2

=

string theory special functions

spectral theory objects are naturally
are naturally expressed by

expressed by complex moduli
using Kahler parameters

\ /

quantum mirror map




Topological String and Spectral Theory

Let us first focus on geometries with genus one mirror curves. The quantization

leads to one trace class operator p. A key identity in the TS/ST correspondence is

[AG-Hatsuda-Marifo]

det 1+ Kp 2 Ju+i2zn,h) Kk = e
nesZ

A A\

spectral theory topological string




Topological String and Spectral Theory

Where grand potential (*)

2r 4An? h t
J(u, h) ~ FGV< P I, P > + <2—ﬂdh+2—0t> FN> (t,h)

NS limit of refined topological
string partition function

The grand potential J is a well defined non-perturbative function of all its parameter.

(*) extension of the ABJM grand potential [Hatsuda- Marino-Moryama-Okuyamal]



Topological String and Spectral Theory

Recall 4
ecall: g, = —
7

—> FYV: non-perturbative in 7 at ¢ fixed

2n
—> F™:non-perturbative in g, at t” = 7t fixed



Topological String and Spectral Theory

By using string theory special functions, we obtain exact and explicit expressions

for the Fredholm determinants associated with quantum mirror curves

Example: local P?, set A = 2z. Then we have

39
det (1 +xp) ~ 0, (5—§,ZT>

21 : :
where ¢ = 2—71r2 (tE)tQFO — 0 Fy) and 7= ?(9752170 with t=t(x) = (quantum) mirror map

F} : genus zero GW invariants of

2 ¢
local P O/N S



Topological String and Spectral Theory

How do we think about the determinant from the topological strings point of view?

det 1+Kp Z J(u+12zn,h)

ne/z

—> The particular representation of the determinant on the rhs makes contact with
the large radius frame

—> J(u, h) gives a non-perturbative completion for topological string in the large
radius frame

—> the sum over n allow us to move away from large radius and obtain an

entire object which is well defined over the full moduli space, parametrized by «

Let's explore other regions



Topological String and Spectral Theory

Let us study the representation of the determinant in terms of fermionic

spectral traces

det (1 + Kp) = Z Z(N, h)x™
N>0

1
— __1\sgn(o)
where Z(N, h) = N E (—=1)® J

" 6ESy R

N
dx, - --deH pP(X;, X5;) are the
N i=1

Fermionic spectral traces.



Topological String and Spectral Theory

We find that
n, N—> _
log Z(N, #) T LY R g®
g0
A= % fixed \
free energy of top. string
4n? : :
&= in the conifold frame

and 4 is the vanishing period at the conifold point.

(equivalent of magnetic
frame in Seiberg-Witten
theory)




Topological String and Spectral Theory

Hence we found that

det (1 + Kp) = Z Z(N, h)x™
N>0

@ Z(N, h) is a well defined non-perturbative object since p is of trace class

@ Z(N, h) produce the genus expansion of top string in the conifold
frame in the 't Hooft limit

—> Z(N, h): non-perturbative completion of top string in the conifold frame



Topological String and Spectral Theory

How does the two expansions of the determinant talks to each other?

det (1+xp) = ) ZWN, by det (1 + kp) el tizan. )
N=0 / nezZ \
non-perturbative partition function non-perturbative partition
in the conifold frame function in large radius frame

1
We have the relation Z(N, 7) = —[ e/ =Ni qy
271} -

-9 |ntegral transformation as a change of frame: non-

perturbative analogous of [Aganagic,Bouchard,Klemm]




Topological String and Spectral Theory
What about higher genus mirror curve? Very similar but with more operators.

Example: crepant resolution of C3/Z° geometry (genus two mirror curve)

det (1 +KA; + A,) = Z Iy H2mn, iy Hi2amy ) p——

n,n,e”Z

where J has always the same structure

2n  2m  4n? h 1
I(pty, oy, ) ~ FGV< sl ) + (—ah+——a,,> FNS (1,1, 1)



Topological String and Spectral Theory

This is an example of how the interplay between spectral theory and

topological string is powertful:

—> gives new results in spectral theory

—> provides a concrete handle on topological string theory at the

non-perturbative level



Topological String and Spectral Theory

Many more applications

T 2

new result in spectral theory and relativistic integrable systems [Many] @

new integer invariants from spectral traces at finite N [Gu-Marifio, ...]

quantum modularity structure in spectral traces [Fantini-Rella]

number theoretic identities /@

relation to g-isomonodromic tau functions [Bonelli-AG-Tanzini, ....]
connection with Hofstadter butterfly [Hatsuda-Katsura-Tachikawa, ....]

application to 3d susy gauge theories matrix models  [Moryama-Nosaka, ....]
new results for /=2 SU(N) 4dim Seiberg-Witten theory [Bonelli-AG-Tanzini, ....]

extension of K-theoretic blowup equations [Gu-Haghighat-Sun-Wang, ...]



Spectral Theory of Quantized Mirror Curves

Example: local P, X P,

D(x — ih) + h(x + ih) + (me™ + e + K)h(x) = 0
Spectral problem: look for L*(R) solutions which admit analytic continuation
inthe strip {x € C | |Imx| < 71}

This is also the Baxter equation of two-particle relativistic Toda lattice

The spectrum is then determined by the vanishing of the Fredholm determinant

det(1+Kp)=H<l+E£)

n>0 n



Spectral Theory of Quantized Mirror Curves

TS/ST " Y Al
det (1 +Kp) =0 €——— 0,F(, 1) +2—ﬂa,FNS< i, — ) = 20(n + 1/2)

"~ —~

[AG,Hatsuda Marifio - ‘] non-perturbative corrections to the

Wang, Zhang,Huang - ...] (® NS quantization condition

together with the quantum mirror map t = #(E, f) this gives the energy levels E, of

the system.

Important point to keep in mind: in the context of quantum mirror curves, 5d gauge
theories, and relativistic integrable systems, the naive uplift of the Bethe/Gauge
correspondence from 4d to 5d fails. A whole new tower of non-perturbative effects

must be taken into account both at the level of spectrum and eigenfunctions.



Some number theoretic identities



Some number theoretic identities

Comparing the two sides of the duality yields some interesting number-theoretic

identities, for example identities for the periods at special points in the moduli space

Example local P?:

= d ,
\// 1(K) C/FA x p(x, k)

Z >

1
At the conifold point k. = — — we get [Marino-Zakany]
A-cycle 27

9 . ITT
(k) = ——ImLi, (e™?)

This was in fact a known identity [Rodriguez-Villegas].

" RY/4 VA
In addition we also have Fy(t(x,) = = 3Z(3) + - ImLi, (em )



Some number theoretic identities

Example: crepant resolution of C3/Z°:

In this case we get some number theoretic prediction for the periods at the

maximal conifold point [Codesido-AG-Marifo]

K, K, plane

____________ > K1:1/5, K2:_1/25

maximal conifold point

The conifold locus A(x, k) =0



Some number theoretic identities

Example: crepant resolution of C3/Z°:

For example we find

11 1 1\ 25  1+4/5
log3125 —1; | ——,—= | =35, ( ——,—= | = =D, | -
25°5 25°5 7 2

] »

Bloch-Wigner function

A-cycles Dy(z) = Im (Liz(2)) + log | 2 | arg(1 — 2)

This and others identities at the maximal conifold point have by now been

proven by [Doran, Kerr, Sinha Babu]



something about open strings



Topological String and Spectral Theory

So far we focused on closed topological string. What about open topological string?

Rough idea
closedstring - —~__ Fredholm determinant
openstring ~ N—  eigenfunctions (off-shell)
g, — o0 spectral theory of quantized mirror curves g, — 0
h—>0 < > h -
® NS limit of refined ® top string pert theory
top string

® \WKB approximation ® enumerative geometry



Topological String and Spectral Theory

The starting point is the GV free energy for the open string wave function, counting
holomorphic maps from a Riemann surface of genus g with 4 boundaries into the

target space

o N 20-2
FOP@H(xth—ZZZZZ e w<281nw2gs>g
d £

g=0 h=1 w= 1

h
XH 2 sin Weiss ! X Wt A l)pmwdt  x o
e 2 £yl

with the requirement that the boundaries of the Riemann surface end on a Lagrangian

manifold in the target space.

As with the closed string, we also have a dense set of poles on the axis g, € R



Topological String and Spectral Theory

We will focus on local P; X P, and we take a Lagrangian brane with topology of

R? x S! which lies on the external leg of the toric diagram

[Aganagic-Vafa]




Topological String and Spectral Theory

Example: local P, X P,

The open topological string wavefunction corresponding to a brane inserted in

the outer leg of toric diagram, can be computed via the refined topological

vertex.

8s P _ &8s _IF_ _
e'2e x(Ze’ze > —1—¢ tF)

t ; e_tB + @ (8_2t3)
(1= ee) (1= emn? (1= eet) (1 - efet)

F%pven (x, tp, g, gs) =

where 13 - are the Kéhler parameters (fiber and base)

1 1
Note: this functions has poles atx = % EtF + ig, <5 + n> , neN



Topological String and Spectral Theory

Example: local P; X P,

The quantization leadsto 0 = e” + e 4+ me™ + ' whose eigenvalue equation is

O(x —1h,k) + p(x +1h,x) + (me™ + ' + K)Pp(x,x) =0

when we think from the point of view of topological string theory, we should

identify x is the open string modulus.

[Aganagic-Vafa, Aganagic-Dijkgraaf-Klemm-Marifio-Vafa, Aganagic - Dijkgraaf
-Cheng - Krefl - Vafa, ...]



Topological String and Spectral Theory

Example: local P; X P,

Px —1n,x) + p(x +1h,x) + (me™ + e* + K)Pp(x,x) = 0

Spectral problem: look for L>(R) solutions which admit an analytic continuation in the

strip {x € C | |Imx| < A}

—> unique family of on-shell eigenfunctions ¢ (x) = ¢(x,xk = — E))

However, from a stringy perspective, we don't need to be on-shell. Ideally we look for

solutions which are entire in x at generic values of k [Maldacena-Moore-Seiberg-Shih]



Topological String and Spectral Theory

We find that it is indeed possible to construct such entire solutions using special

combinations of topological string special functions in the GV and NS phase

[Marino-Zakany, AG-Francois]

. i 7% | mx : . .
¢(.X) — Z <eJ(x,,u+127rk,éj,h) + e%T+7+J(—X—1ﬂ,ﬂ+lﬂ+12ﬂk,f,h)>
keZ

where

J(.X, H, 69 h) — JClOSGd(ﬂ, 69 h) + Jopen(x, H, 59 h)

/ l

grand potential for closed open string grand potential

strings discussed previously



Topological String and Spectral Theory

2 2xn 2xn  4rn?
open _ popen open
J (x,//tﬂf,h) FNS (x, Ir tB,h) +FGV < P X, = tr, = tg, ) )

l l

(refined) open topological string wavefunction corresponding to a
brane inserted in the outer leg of toric diagram, can be computed via
the refined topological vertex.
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e'zer (26’76_7_x —1- e‘tF>

Fopen

GV (x, Ip, g, 8s) = e B4+ 0 (e‘ztB)

elfie T (1 +er e (1+e") e‘TF‘x)

FOPEM (x, 1y, 15, 1) =

NS e B+ 0O (e_ZtB)

(1 — eih) (1 _ eihe—tp) (1 _ e—ihe—tF) (1 + eihe’TF—x> <1 + eihe—%—x>



Topological String and Spectral Theory

It is indeed possible to construct such entire solutions as

I i 7% | o . ..
qb(x) — Z <eJ(X,ﬂ+127rk,§,fl) 4 e%7+7+J(—x—m,y+m+127zk,¢f,h)>

= \
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-0.4}

Each term individually is a formal solution, but they are not entire
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For generic value of k = ¥ this

is entire in x but not LA(R)

Topological String and Spectral Theory
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Summary and Outlook



Summary and Outlook

The topological string/spectral theory duality provides a precise non-
perturbative relation between topological string theory on local Calabi-

Yau threefolds and the spectral theory of quantized mirror curves.

—> many applications

Many open problems remain; from a physical perspective, perhaps the
most interesting is understanding what is the physics of these non-

perturbative effects and what is their geometric interpretation



Thank you!



