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Introduction and Motivation

In physics, perturbation theory often leads to divergent series expansions, and 

string theory is no exception.

This asymptotic behavior signals that perturbation theory alone does not fully 

capture the physics of the system.

F(g) ∼ ∑
k≥0

gkak, ak ∼ k!



Given an asymptotic series

We say that a function  is a non-perturbative completion of (1) ifF(g)

1)  is a well defined function of  at least in some domainF(g) g

2)  reproduces (1) when expanded around F(g) g = 0

∑
k≥0

gkak, ak ∼ k! (1)

Introduction



Introduction

Given an asymptotic series, its non-perturbative completion is not unique.

To ensure uniqueness, one needs more information, such as a Hamiltonian 
or a differential equation with specified boundary conditions.

In string theory this uniqueness is not built in a priori.

−ℏ∂2
xφ(x) + V(x)φ(x) = Eφ(x)

If  is a non-pert completion, also  is as wellF(g) F(g) + e−1/g2



Introduction

One systematic way to approach the problem of finding a non-perturbative 

completion is via resurgence

Given a perturbative series, one can construct a non-

perturbative completion using its (median) Borel summation 

This approach is very general and concrete but often does not capture the full 

richness of the problem. 

see Les Houches lectures Marcos Mariño



Introduction

 In string theory, however, we have another powerful tool: string dualities

Not only provide a concrete handle on non-perturbative effects but 

allow to uncover unexpected connections leading to beautiful new 

mathematics and new physics.
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Introduction

Today we focus on topological string on toric CY manifolds* and we study its 

non-perturbative structure via the topological string/spectral theory duality

* + extension to elliptic cases [Hatsuda, Sciarappa, Zakany]

Topological string/ 
Enumerative geometry 

Spectral theory of a class of  
quantized mirror curves [AG-Hatsuda-Mariño]

O( ̂x, ̂p), [ ̂x, ̂p] = iℏ

A-model objects B-model objects

TS/ST

Σg
ϕ

E1

E2

E3



Plan of the talk

1. Topological strings and special functions 

2. Spectral theory of quantized mirror curves 

3. TS/ST duality (closed sector) 

4. Some applications of TS/ST 

5. TS/ST duality (open sector) 

6. Outlook 



Topological String Theory 



In topological string theory the free energies encode in a precise way the 

enumerative geometry of the target space X 

Topological String Theory 

 are the Gromov-Witten (GW) invariants: “count” holomorphic mapsNd
g

ϕ : →Σg X

t: Kähler parameter of X

Fg(t) = ∑
d≥1

Nd
g e−dt

Σg
ϕ



The (formal) partition function Z is obtained by summing over all genera

+ + + · · ·
F0 F1 F2

Problem: Fg(t) ⇠ (2g � 2)! g � 1 zero radius of convergence

[Gross- Periwal, Shenker, Drukker-Mariño-Putrov] 

We are missing some non-perturbative physics

log Z = F = ∑
g≥0

g2g−2
s Fg(t)

Topological String Theory 



One way to reorganize the information on the genus expansion is through the 

Gopakumar-Vafa function

Example 1: resolved conifold

Topological String Theory 

𝒪(−1) ⊕ 𝒪(−1) → ℂℙ1

Figure from: 0410178

F(t, gs) = ∑
g≥0

g2g−2
s Fg(t)



Example 1: resolved conifold

dense set of poles on the real axis at  (*)gs = πℚ

away from the axis, i.e. , it is well defined because there are 

no poles and the sum over m converges

gs ∉ ℝ

Topological String Theory 

The corresponding Gopakumar-Vafa representation is 

FGV(t, gs) = ∑
m≥1

e−mt

m (2 sin ( mgs

2 ))
−2

Two comments:

(*) this problematic point was first raised by [Hatsuda-Okuyama-Moryama]



Example 2: local  ℂℙ2

One can compute  up to very high genus 

recursively (*) but no closed from expression 

expression for all genus exists

Fg(t)

 (*) up to  from [Haghighat-Klemm-Rauch]g ∼ 200

𝒪(−3) → ℂℙ2

Figure from: 0410178

Topological String Theory 

F(t, gs) = ∑
g≥0

g2g−2
s Fg(t)



Example 2: local  . The Gopakumar-Vafa representation is  ℂℙ2

FGV(t, gs) = ∑
g≥0

∑
d

∞

∑
w=1

1
w

ng
d (2 sin wgs

2 )
2g−2

e−wdt

= ∑
m≥1

Fm(gs)e−mt

For the first few terms F1(gs) = − 3q2

(q2 − 1)2

F2(gs) =
3q2 (4q4 + 7q2 + 4)

2(q4 − 1)2

F3(gs) = −10q12 + 27q10 + 54q8 + 62q6 + 54q4 + 27q2 + 10
(q6 − 1)2

with  q = eigs

Topological String Theory 



Example 2: local  . The Gopakumar-Vafa representation is  ℂℙ2

FGV(t, gs) = ∑
m≥1

Fm(gs)e−mt

dense set of poles on the real axis at gs = πℚ

away from the axis, , we do not have poles but the 

summation over m diverges

gs ∉ ℝ

Two comments:

log |Fm(gs) | ∼ m2, m ≫ 1

Topological String Theory 

 [Hatsuda-Mariño-Moryama-Okuyama]



Some points to keep in mind

Dense set of poles at :   alone can not provide a non-

perturbative completion of the genus expansion

gs ∈ ℝ FGV

But not everything is like the resolved conifold

For the resolved conifold there have been many approaches to study 

non-perturbative effects, and at the end they are all give the same 

answer. 

[Pasquetti - Schiappa, Krefl - Mkrtchyan, Hatsuda - Okuyama, Hatsuda, 

Bridgeland, Alexandrov-Pioline,  Alim-Saha-Tulli,  Alim-Teschner-Tulli, AG-

Hao - Neitzke, Alim-Hollands-Tulli, Hattab-Palti …]



Some points to keep in mind

There exists a special class of toric CYs  (  fibrations over ) for 

which it exists a non-perturbative duality with Chern–Simons matrix 

models on lens spaces [Aganagic-Klemm-Mariño-Vafa]

An ℂℙ1

The non-perturbative approach that I will use today is based on one 

particular duality: the TS/ST correspondence, and it applies to all local 

CY geometries (with mirror curve of genus )g ≥ 1



Topological string/ 
Enumerative geometry 

Spectral theory of a class of  
quantized mirror curves

O( ̂x, ̂p), [ ̂x, ̂p] = iℏ
gs = 4π2

ℏ

 [AG,Hatsuda,Mariño]

Topological string and spectral theory

TS/ST

Next: spectral theory of quantized mirror curves

Σg
ϕ



Spectral Theory of Quantized Mirror Curves



Spectral Theory of Quantized Mirror Curves

[Batyrev , Chiang-Klemm-Yau-Zaslow, Hori-Vafa - …]. 

Example: local .ℙ2

mirror curve

:  CY complex modulusκ

 vertex(a, b) eax+by

Toric Calabi–Yau threefolds can be classified in terms of two-dimensional polytopes. 

To each such polytope, we associate a curve known as the mirror curve.

2.2 Realizations in toric ambient spaces

To have such a concrete algebraic realization we use hypersurfaces or complete inter-

sections in toric ambient spaces.

Possible toric bases B leading to the above described elliptic fibrations with only

I1 singularities of the Calabi-Yau d-fold are defined by reflexive polyhedra �B in d� 1

dimensions [6], as was observed in [40]. For the threefold case one has the following

possibilities of 2-dimensional polyhedra.

1 2 4 5 6 7 83

9 10 11 15141312 16

Figure 1: These are the 16 reflexive polyhedra �B in two dimensions, which
build 11 dual pairs (�B,�⇤

B
). Polyhedron k is dual to polyhedron 17 � k

for k = 1, . . . , 5. The polyhedra 6, . . . , 11 are selfdual.

The toric ambient spaces, which allow for smooth Calabi-Yau hypersurfaces as

section of the canonical bundle, can be described by pairs of reflexive polyhedra (�,�⇤).

Together with a complete star triangulation of �, they define a complex family of

Calabi-Yau threefolds. The mirror family is given by exchanging the role of � and �⇤.

A complete triangulation divides � in simplices of volume 1. In a star triangulation

all simplices contain the unique inner of the reflexive polyhedron. Let us give first two

examples for toric smooth ambient spaces in which the canonical hypersurface leads to

the E8 elliptic fibration over P2 and over the Hirzebruch surface F1. The polyhedron

8

(0,1)

(−1, − 1)

(1,0)κ e + e + e + κ = 0p x −x − p



where  are momentum and position operators in one dimensional 

quantum mechanics: 

̂x, ̂p

[ ̂x, ̂p] = iℏ

Spectral Theory of Quantized Mirror Curves

One can quantize such mirror curves by using Weyl’s prescription

[ Aganagic-Dijkgraaf-Klemm-Mariño-Vafa,  Aganagic-Dijkgraaf-Cheng-Krefl-Vafa,  
Mironov-Morozov, Nekrasov-Shatashvili,…]

quantization
eax+by ea ̂x+b ̂p

e ̂xϕ(x) = exϕ(x) e ̂pϕ(x) = ϕ(x − iℏ)



Spectral Theory of Quantized Mirror Curves

Example: local  ℙ2

The quantization leads to  whose eigenvalue equation is𝒪 = e ̂p + e ̂x + e− ̂x− ̂p

ϕ(x − iℏ) + exϕ(x) + e−iℏ/2e−xϕ(x + iℏ) + κϕ(x) = 0

Example: local ℙ1 × ℙ1

The quantization leads to  whose eigenvalue equation is𝒪 = e ̂p + e− ̂p + me− ̂x + e ̂x

ϕ(x − iℏ) + ϕ(x + iℏ) + (me−x + ex + κ)ϕ(x) = 0



Spectral Theory of Quantized Mirror Curves

The inverse of the operators obtained from such quantization have a discrete 

spectrum and are of trace class.

[AG-Hatsuda-Mariño, Kashaev-Mariño, Laptev-Schwimmer-Takhtajan, Codesido-AG-Mariño]

The trace class property is very important, as it allows for the definition of 

Fredholm determinants and Fermionic spectral traces, which are key 

ingredients in the TS/ST correspondence.

The quantization of a mirror curve of genus  leads g non-commuting trace 

class quantum mechanical operators on the real line

g



The quantization of the mirror curve gives

Spectral problem: look for  solutions which admit analytic continuation in the strip L2(ℝ)
{x ∈ ℂ ∣ | Imx | < ℏ}

Spectral Theory of Quantized Mirror Curves

TrρN = ∑
n≥0

E−N
n < ∞[AG-Hatsuda-Mariño, Kashaev-Mariño, 

Laptev-Schwimmer-Takhtajan]

Theorem:  The operator  has a discrete spectrum  and it is of trace class 

on  

ρ = 𝒪−1 {E−1
n }n≥0

L2(𝕀ℝ)

Example: local   (genus one mirror curve)ℙ2

ϕ(x − iℏ) + exϕ(x) + e−iℏ/2e−xϕ(x + iℏ) + κϕ(x) = 0



The kernel of the operator  is [Kashaev-Mariño]   ρ

Spectral Theory of Quantized Mirror Curves

where  is the Faddeev quantum dilogarithm Φb

If  Im(b)>0 it reduces to

Φb(x) = (e2πb(x+cb), e2iπb2)∞
(e2πb−1(x+cb), e−2iπb−2)∞

2cb = i(b + b−1)

Example: local ℙ2

ρ(x, y) =
Φb (x + ib/3)
Φb (y − ib/3)

eπb(x+y)/3

2b cosh [π ( x − y
b + i

6 )]
, b2 = 3ℏ

2π



Spectral Theory of Quantized Mirror Curves

If  , the Faddeev dilogarithm simplifies and we get b2 = n
m

∈ ℚ

Φb(z) =
exp [ i

2πnm Li2 (ez̃) + (1 + i
2πnm z̃) ln (1 − ez̃)]

Dm (e z̃
m; ei2π n

m ) Dn (e z̃
n ; ei2π m

n )

where   Dk(X; q) =
k−1

∏
ℓ=1

(1 − qℓX)ℓ/k , z̃ = 2π nm z + iπ(n + m)

[Garoufalidis,Kashaev]

As a consequence the kernel of our operators also simplifies at these values.



Spectral Theory of Quantized Mirror Curves

ρ(x, y) = sinh(y)
sinh(3y)

1
2π cosh (x − y + iπ

6 )
sinh(x)
sinh(3x)

For example for local  at  we haveℙ2 ℏ = 2π ↔ b2 = 3

We will see that also on the string theory side when

gs = 4π2

ℏ = 2π

many simplifications occurs (the theory is essentially one-loop exact).
[Codesido-AG-Mariño]



Spectral Theory of Quantized Mirror Curves

The quantization of mirror curves of genus one leads to one trace class 

operator , and a convenient way to encode information about its spectrum 

is by using the Fredholm determinant

ρ

det (1 + κρ) = ∏
n≥0

(1 + κ
En )

The Fredholm determinant of a trace class operator is an entire function 

of  whose zeros correspond to the spectrumκ



det (1 + κρ) = ∑
N≥0

κNZ(N, ℏ)

where    Z(N, ℏ) = 1
N! ∑

σ∈SN

(−1)sgn(σ) ∫ℝN
dx1⋯dxN

N

∏
i=1

ρ(xi, xσ(i))

Example:    or   Z(1,ℏ) = Trρ Z(2,ℏ) = 1
2 ((Trρ)2 − Trρ2)

Spectral Theory of Quantized Mirror Curves

Another key object in the TS/ST are the fermionic spectral traces  that appear 

in the small  expansion of the determinant

Z(N, ℏ)
κ

partition function of an non-interacting Fermi gas in one 

dimension with N particles and density matrix ρ



Spectral Theory of Quantized Mirror Curves

We can also express such spectral traces as matrix models. For the example of 

local  we have [Mariño-Zakany]ℙ2

Z(N, ℏ) = 1
N! ∫ℝN

dNu
(2π)N

N

∏
i=1

e−V(ui,ℏ)
∏i<j 4 sinh2 ( ui − uj

2 )
∏i, j 2 cosh ( ui − uj

2 + i π
6 )

where e−V(u,ℏ) = e 2πb
3 u

Φb(u + i π
3 )

Φb(u − i π
3 )



Spectral Theory of Quantized Mirror Curves

What about geometries with higher genus mirror curves?

The quantization of mirror curves of genus g leads to g non-

commuting trace class quantum mechanical operators on the real 

line. 

We then need to define a generalized notion of Fredholm 

determinant, which is entire in all g spectral parameters and takes 

into account the spectral properties of all these operators 

simultaneously.

[Codesido-AG-Mariño]



Spectral Theory of Quantized Mirror Curves

Example: crepant resolution of   geometry (genus two mirror curve)ℂ3/ℤ5

mirror curve

κ2κ1

ex + ey + e−3x−y + κ1e−x + κ2 = 0

e2x + ep+x + e−2x−p + κ2ex + κ1 = 0

Representation 1

Representation 2



Spectral Theory of Quantized Mirror Curves

We can construct  non-commuting trace class operators, one for each g = 2 κi

ex + ep + e−3x−p + κ1e−x + κ2 = 0

e2x + ep+x + e−2x−p + κ2ex + κ1 = 0

quantization gives  with trace class inverse  O2 ρ2

quantization gives  with trace class inverse O1 ρ1



Spectral Theory of Quantized Mirror Curves

Two trace class operators  and A1 = O−1
0 e−x A2 = O0

−1

ex + ep + e−3x−p + κ1e−x + κ2 = 0

The generalized Fredholm determinant is entire in κi

det (1 + κ1A1 + κ2A2) = det (1 + κ1ρ1) det (1 + κ2ρ2
κ1=0 )

= det (1 + κ2ρ2) det (1 + κ1ρ1
κ2=0 )

O0

We can construct  non-commuting trace class operators, one for each g = 2 κi



Spectral Theory of Quantized Mirror Curves

Ξ(κ1, κ2) = det (1 + κ1A1 + κ2A2)

= det (1 + κ2ρ2) det (1 + κ1ρ1
κ2=0 )

Blue line: vanishing of the determinant

= det (1 + κ1ρ1) det (1 + κ2ρ2
κ1=0 )

�600

200�700

-600 -400 -200 0 200

-600

-400

-200

0

200

400

600

1

2

600

⌅((n)
1 , 500) = 0 : spectrum of  ρ1

⌅(�300,(n)
2 ) = 0 spectrum of ρ2

ρ2 = (ex + ep + e−3x−p + κ1e−x)−1

ρ1 = (e2x + ep+x + e−2x−p + κ2ex)−1



Spectral Theory of Quantized Mirror Curves

det (1 + κ1A1 + κ2A2) = ∑
N1,N2,≥0

Z(N1, N2, ℏ)κN1
1 κN2

2

Z(N1, N2, ℏ) = 1
N1!N2! ∑

σ∈SN

(−1)σ ∫ dN x (
N1

∏
i=1

A1(xσ(i), xi))
N1+N2

∏
j=1+N1

A2(xσ( j), xj)

The fermionic spectral traces decomposition gives

where

Example Z(1,1,ℏ) = TrA1TrA2 − Tr(A1A2)

Z(2,1,ℏ) = Tr (A2
1 A2) − 1

2 Tr (A2
1) TrA2 + 1

2 (TrA1)2 TrA2 − TrA1 Tr (A1A2)

 also has a matrix model representation which corresponds to a two-cut model.Z(N1, N2, ℏ)



Question: can we compute spectral quantities (spectrum, 

determinant, eigenfunctions , … )  explicitly in an analytic manner? 

A perturbative WKB analysis of these problems reveals an intriguing 

connection with the refined topological string special functions in 

the Nekrasov-Shatashvili (NS) limit [Aganagic-Dijgraf-Cheng-Krefl-

Vafa, Nekrasov-Shatashvili, Mironov-Morozov, … ].  

Can we go beyond WKB and obtain an exact solution?

Spectral Theory of Quantized Mirror Curves



Can we go beyond WKB and obtain an exact solution? 

Answer: Yes. Non-perturbative effects to the NS approach are encoded 

in the usual unrefined Gopakumar-Vafa phase of topological string 

theory.

Spectral Theory of Quantized Mirror Curves

• top string theory in the 

GV phase with   gs = 4π2

ℏ

• enumerative geometry

• NS limit of refined 
top string

• WKB approximation

spectral theory of quantized mirror curvesℏ → 0 ℏ → ∞



Topological String and Spectral Theory 

gs = 4π2

ℏ

bridges perturbative expansions in one theory 

with non-perturbative phenomena in its dual 

counterpart  derivation of exact, closed-form 

expressions for many quantities on both sides of 

the correspondence. 

→

Non-perturbative 
topological string

Spectral theory of a class of  
quantized mirror curves [AG-Hatsuda-Mariño]

TS/ST



Let us look at some concrete 

statements

Topological String and Spectral Theory 



Topological String and Spectral Theory 

string theory special functions 

are naturally expressed by 

using Kahler parameters

tI

spectral theory objects are naturally 

expressed by  complex moduli

κI
quantum mirror map

gs = 4π2

ℏ

Non-perturbative 
topological string

Spectral theory of a class of  
quantized mirror curves [AG-Hatsuda-Mariño]

TS/ST



Topological String and Spectral Theory 

det (1 + κρ) = ∑
n∈ℤ

eJ(μ+i2πn,ℏ) κ = eμ

spectral theory topological string

Let us first focus on geometries with genus one mirror curves.  The quantization 

leads to one trace class operator .  A key identity in the TS/ST correspondence is 

[AG-Hatsuda-Mariño]

ρ



Where grand potential (*)

J(μ, ℏ) ∼ FGV ( 2π
ℏ t, 4π2

ℏ ) + ( ℏ
2π

∂ℏ + t
2π

∂t) FNS (t, ℏ)

Topological String and Spectral Theory 

The grand potential  is a well defined non-perturbative function of all its parameter.J

(*) extension of the ABJM grand potential [Hatsuda- Mariño-Moryama-Okuyama]

NS limit of refined topological 
string partition function



J(μ, ℏ) ∼ FGV ( 2π
ℏ t, 4π2

ℏ ) + ( ℏ
2π

∂ℏ + t
2π

∂t) FNS (t, ℏ)

Topological String and Spectral Theory 

: non-perturbative in  at  fixedFGV ℏ t

: non-perturbative in   at   fixed  FNS gs tD = 2π
ℏ t

Recall: gs = 4π2

ℏ



Example: local , set . Then we haveℙ2 ℏ = 2π

det (1 + κρ) ∼ θ3 (ξ − 3
8 , 9

4 τ)

4.1 ABJM with k = 2

As in the previous section, let us start with the simplest case, namely ABJM theory with k = 2.
In order to evaluate ⌅(µ, k = 2), we should use the formula (2.21), together with the explicit
expressions (3.23), (3.25) for the modified grand potential. Notice that the instanton part of
(3.23) depends on µ through z, so it is left invariant by the shift

µ ! µ + 2⇡in, n 2 Z, (4.1)

Therefore, the shift only a↵ects µe↵ . An easy calculation shows that

exp [J(µ + 2⇡in, 2)] = exp (J(µ, 2)) exp


⇡in2⌧ + 2⇡in

✓
⇠ � 1

12

◆�
, (4.2)

where

⌧ =
2i

⇡
@2
t F0 = � i

⇡

$0

2(z)

$0

1(z)
(4.3)

and

⇠ =
1

2⇡2

�
t@2

t F0 � @tF0
�
. (4.4)

In (4.3), $1,2(z) are the periods of local P1 ⇥ P1, and they are defined in (A.7). Notice that in
calculating J(µ + 2⇡in, 2) one obtains a cubic term in n3, but in deriving (4.2) we used that

exp

✓
�8⇡n3i

3

◆
= exp

✓
�2⇡ni

3

◆
, n 2 Z. (4.5)

We now recognize the form of the second factor in (4.2): it is the standard summand of
a Jacobi theta function. Of course, in order for this interpretation to be correct, one needs
Im(⌧) > 0. But the ⌧ appearing here is (up to an overall factor of 2 and an integer shift) the
modular parameter of the spectral curve describing the planar solution of ABJM theory [5].
Therefore, the resulting theta function is well-defined, and we finally obtain:

⌅(µ, k = 2) = exp (J(µ, 2)) #3

✓
⇠ � 1

12
, ⌧

◆
, (4.6)

where #3(v, ⌧) is the Jacobi theta function, defined in (B.1).
The function (4.6) is very similar to the “non-perturbative partition function” Z↵,�(⌃) in-

troduced in [28, 29] and further studied in [30]. Let us briefly review its construction, following
the notations of [30] (see also [52] for an overview in the context of matrix model asymptotics).
The function Z↵,�(⌃) is canonically associated to a spectral curve ⌃, together with a choice of
meromorphic di↵erential

� = y(x)dx. (4.7)

The basic ingredients in constructing this function are the free energies Fg, determined by the
pair (⌃, �) via special geometry and the topological recursion of [53] (we use a boldface notation
since these free energies di↵er from the ones used above in overall normalizations). Let us focus
on the case in which ⌃ has genus one, which is the relevant one for us. Given two symplectically
conjugated cycles on ⌃, A, B, one defines the genus zero free energy F0(✏) from the standard
relationships in special geometry,

✏ =
1

2⇡i

I

A

�, F
0

0 =

I

B

�, (4.8)
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modular parameter of the spectral curve describing the planar solution of ABJM theory [5].
Therefore, the resulting theta function is well-defined, and we finally obtain:

⌅(µ, k = 2) = exp (J(µ, 2)) #3

✓
⇠ � 1

12
, ⌧

◆
, (4.6)

where #3(v, ⌧) is the Jacobi theta function, defined in (B.1).
The function (4.6) is very similar to the “non-perturbative partition function” Z↵,�(⌃) in-

troduced in [28, 29] and further studied in [30]. Let us briefly review its construction, following
the notations of [30] (see also [52] for an overview in the context of matrix model asymptotics).
The function Z↵,�(⌃) is canonically associated to a spectral curve ⌃, together with a choice of
meromorphic di↵erential

� = y(x)dx. (4.7)

The basic ingredients in constructing this function are the free energies Fg, determined by the
pair (⌃, �) via special geometry and the topological recursion of [53] (we use a boldface notation
since these free energies di↵er from the ones used above in overall normalizations). Let us focus
on the case in which ⌃ has genus one, which is the relevant one for us. Given two symplectically
conjugated cycles on ⌃, A, B, one defines the genus zero free energy F0(✏) from the standard
relationships in special geometry,

✏ =
1

2⇡i

I

A

�, F
0

0 =

I

B

�, (4.8)
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t = t() = (quantum) mirror mapwhere and with

 genus zero GW invariants of 
local 
F0 :

ℙ2

Topological String and Spectral Theory 

ϕ

By using string theory special functions, we obtain exact and explicit expressions 

for the Fredholm determinants associated with quantum mirror curves



Topological String and Spectral Theory 

det (1 + κρ) = ∑
n∈ℤ

eJ(μ+i2πn,ℏ)

The particular representation of the determinant on the rhs makes contact with 
the large radius frame

  gives a non-perturbative completion for topological string in the large 
radius frame
J(μ, ℏ)

the sum over  allow us to move away from large radius and obtain an 

entire object which is well defined over the full moduli space, parametrized by 

n

κ

How do we think about the determinant from the topological strings point of view?

Let’s explore other regions



Topological String and Spectral Theory 

Let us study the representation of the determinant in terms of fermionic 

spectral traces

det (1 + κρ) = ∑
N≥0

Z(N, ℏ)κN

where    are the 

Fermionic spectral traces. 

Z(N, ℏ) = 1
N! ∑

σ∈SN

(−1)sgn(σ) ∫ℝN
dx1⋯dxN

N

∏
i=1

ρ(xi, xσ(i))



Topological String and Spectral Theory 

We find that

log Z(N, ℏ) ℏ , N→∞
∑
g≥0

Fg(λ) g2g−2
s

λ = N
ℏ fixed

free energy of top. string 
in the conifold frame 
(equivalent of magnetic 
frame in Seiberg-Witten 
theory)

gs = 4π2

ℏ

and  is the vanishing period at the conifold point.λ



Topological String and Spectral Theory 

Hence we found that 

 is a well defined non-perturbative object since  is of trace classZ(N, ℏ) ρ

 produce the genus expansion of top string in the conifold 
frame in the ’t Hooft limit
Z(N, ℏ)

: non-perturbative completion of top string in the conifold frameZ(N, ℏ)

1

2

det (1 + κρ) = ∑
N≥0

Z(N, ℏ)κN



Topological String and Spectral Theory 

How does the two expansions of the determinant talks to each other?

det (1 + κρ) = ∑
N≥0

Z(N, ℏ)κN det (1 + κρ) = ∑
n∈ℤ

eJ(μ+i2πn,ℏ)

We have the relation Z(N, ℏ) = 1
2πi ∫C

eJ(μ,ℏ)−Nμ dμ

Integral transformation as a change of frame: non-

perturbative analogous of [Aganagic,Bouchard,Klemm]

non-perturbative partition 

function in large radius frame
non-perturbative partition function 

in the conifold frame



Topological String and Spectral Theory 

What about higher genus mirror curve? Very similar but with more operators.

det (1 + κ1A1 + κ2A2) = ∑
n1,n2∈ℤ

eJ(μ1+i2πn1,μ2+i2πn2,ℏ) κi = eμi

Example: crepant resolution of    geometry (genus two mirror curve)ℂ3/ℤ5

where  has always the same structureJ

J(μ1, μ2, ℏ) ∼ FGV ( 2π
ℏ t1,

2π
ℏ t2,

4π2

ℏ ) + ( ℏ
2π

∂ℏ + 1
2π

ti
2π

∂ti) FNS (t1, t2, ℏ)



Topological String and Spectral Theory 

This is an example of how the interplay between spectral theory and 

topological string is  powerful:

gives new results in spectral theory

provides a concrete handle on topological string theory at the 

non-perturbative level



Topological String and Spectral Theory 
Many more applications

new result in spectral theory and relativistic integrable systems

new integer invariants from spectral traces at finite N 

number theoretic identities

new results for   4dim Seiberg-Witten theory𝒩 = 2 SU(N )

⋯

NEXT

NEXT

relation to q-isomonodromic tau functions

quantum modularity structure in spectral traces

[Gu-Mariño, …]

[Fantini-Rella]

[Bonelli-AG-Tanzini, ….]

[Bonelli-AG-Tanzini, ….]

connection with Hofstadter butterfly [Hatsuda-Katsura-Tachikawa, ….]

[Many]

extension of K-theoretic blowup equations [Gu-Haghighat-Sun-Wang, …]

application to 3d susy gauge theories matrix models [Moryama-Nosaka, ….]



The spectrum is then determined by the vanishing of the Fredholm determinant

Example: local ℙ1 × ℙ1

Spectral problem: look for  solutions which admit analytic continuation 

in the strip 

L2(ℝ)
{x ∈ ℂ ∣ | Imx | < ℏ}

ϕ(x − iℏ) + ϕ(x + iℏ) + (me−x + ex + κ)ϕ(x) = 0

This is also the Baxter equation of two-particle relativistic Toda lattice  

det (1 + κρ) = ∏
n≥0

(1 + κ
En )

Spectral Theory of Quantized Mirror Curves



     

det (1 + κρ) = 0 ∂tFNS(t, ℏ) + ℏ
2π

∂tFNS ( 2π
ℏ t, 4π2

ℏ ) = 2π(n + 1/2)

non-perturbative corrections to the 

NS quantization condition
 [AG,Hatsuda,Mariño - 

Wang, Zhang,Huang - …]

together with the quantum mirror map  this gives the energy levels  of 

the system. 

t ≡ t(E, ℏ) En

Important point to keep in mind:  in the context of quantum mirror curves, 5d gauge 

theories, and relativistic integrable systems, the naive uplift of the Bethe/Gauge 

correspondence from 4d to 5d fails. A whole new tower of non-perturbative effects 

must be taken into account both at the level of spectrum and eigenfunctions.

Spectral Theory of Quantized Mirror Curves

TS/ST



Some number theoretic identities



Some number theoretic identities

Comparing the two sides of the duality yields some interesting number-theoretic 

identities, for example identities for the periods at special points in the moduli space

Example local : ℙ2

A-cycle

t(κ) = ∮A
dx p(x, κ)

This was in fact a known identity [Rodriguez-Villegas].

At the conifold point  we get [Mariño-Zakany] κc = − 1
27

t(κc) = 9
2π

Im Li2 (eiπ/3)

In addition we also have F0(t(κc)) = − 3ζ(3) + 3π
4 Im Li2 (eiπ/3)



Some number theoretic identities

Example: crepant resolution of  :ℂ3/ℤ5

In this case we get some number theoretic prediction for the periods at the 

maximal conifold point [Codesido-AG-Mariño]

κ1 = 1/5, κ2 = − 1/25
maximal conifold point

The conifold locus Δ(κ1, κ2) = 0

 planeκ1, κ2



Some number theoretic identities

Example: crepant resolution of  :ℂ3/ℤ5

For example we find

Bloch–Wigner function

D2(z) = Im (Li2(z)) + log | z | arg(1� z)

This and others identities at the maximal conifold point have by now been 

proven by [Doran, Kerr, Sinha Babu]

A-cycles

log 3125 − t1 (− 1
25 , 1

5 ) − 3t2 (− 1
25 , 1

5 ) = 25
π

D2 (e πi
5 ⋅ 1 + 5

2 )



something about open strings



Topological String and Spectral Theory 

closed string Fredholm determinant

open string eigenfunctions (off-shell)

Rough idea
So far we focused on closed topological string. What about open topological string?

• top string pert theory

• enumerative geometry

• NS limit of refined 
top string

• WKB approximation

spectral theory of quantized mirror curvesgs → ∞
ℏ → 0 ℏ → ∞

gs → 0



Topological String and Spectral Theory 

The starting point is the GV free energy for the open string wave function, counting 

holomorphic maps from a Riemann surface of genus  with  boundaries  into the 

target space

g h

Fopen
GV (x, t, gs) = ∑

d

∞

∑
g=0

∞

∑
h=1

∑
ℓ

∞

∑
w=1

ih

h! ng,d,ℓ
1
w (2 sin wgs

2 )
2g−2

×
h

∏
i=1

(2 sin wℓigs

2 ) 1
ℓ1⋯ℓh

X−w(ℓ1+⋯+ℓh)e−wd⋅t, X = ex

with the requirement that the boundaries of the Riemann surface end on a Lagrangian 

manifold in the target space. 

As with the closed string, we also have a dense set of poles on the axis gs ∈ ℝ



Topological String and Spectral Theory 

[Aganagic-Vafa]

We will focus on local  and we take a Lagrangian brane with topology of 

 which lies on the external leg of the toric diagram

ℙ1 × ℙ1

ℝ2 × S1



Topological String and Spectral Theory 

The open topological string wavefunction corresponding to a brane inserted in 

the outer leg of toric diagram, can be computed via the refined topological 

vertex.

FopenGV (x, tF, tB, gs) =
ei gs

2 e
tF
2 −x (2ei gs

2 e− tF
2 −x − 1 − e−tF)

(1 − eigs) (1 − e−tF)2 (1 − ei gs
2 e

tF
2 −x) (1 − ei gs

2 e− tF
2 −x)

e−tB + 𝒪 (e−2 tB)

Example: local ℙ1 × ℙ1

where  are the Kähler parameters (fiber and base)  tB,F

Note: this functions has poles at  x = ± 1
2 tF + igs ( 1

2 + n) , n ∈ ℕ



Example: local ℙ1 × ℙ1

The quantization leads to  whose eigenvalue equation is𝒪 = e ̂p + e− ̂p + me− ̂x + e ̂x

Topological String and Spectral Theory 

when we think from the point of view of topological string theory, we should 

identify x is the open string modulus. 

ϕ(x − iℏ, κ) + ϕ(x + iℏ, κ) + (me−x + ex + κ)ϕ(x, κ) = 0

[Aganagic-Vafa, Aganagic-Dijkgraaf-Klemm-Mariño-Vafa,  Aganagic - Dijkgraaf 

-Cheng - Krefl - Vafa, …]



Example: local ℙ1 × ℙ1

ϕ(x − iℏ, κ) + ϕ(x + iℏ, κ) + (me−x + ex + κ)ϕ(x, κ) = 0

Topological String and Spectral Theory 

Spectral problem: look for  solutions which admit an analytic continuation in the 

strip 

L2(ℝ)
{x ∈ ℂ ∣ | Imx | < ℏ}

unique family of on-shell eigenfunctions  ϕn(x) = ϕ(x, κ = − En)

However, from a stringy perspective, we don’t need to be on-shell.  Ideally we look for 

solutions which are entire in x at generic values of  [Maldacena-Moore-Seiberg-Shih] κ



We find that it is indeed possible to construct such entire solutions using special 

combinations of topological string special functions in the GV and NS phase

Topological String and Spectral Theory 

 [Mariño-Zakany, AG-François]

ϕ(x) = ∑
k∈ℤ

(eJ(x,μ+i2πk,ξ,ℏ) + e i
ℏ

π2
2 + πx

ℏ +J(−x−iπ,μ+iπ+i2πk,ξ,ℏ))

open string grand potential

where

J(x, μ, ξ, ℏ) = Jclosed(μ, ξ, ℏ) + Jopen(x, μ, ξ, ℏ)

grand potential for closed 

strings discussed previously



Topological String and Spectral Theory 

Jopen (x, μ, ξ, ℏ) = FopenNS (x, tF, tB, ℏ) + FopenGV ( 2π
ℏ x, 2π

ℏ tF, 2π
ℏ tB, 4π2

ℏ )

(refined) open topological string wavefunction  corresponding to a 

brane inserted in the outer leg of toric diagram, can be computed via 

the refined topological vertex.

FopenGV (x, tF, tB, gs) =
ei gs

2 e
tF
2 −x (2ei gs

2 e− tF
2 −x − 1 − e−tF)

(1 − eigs) (1 − e−tF)2 (1 − ei gs
2 e

tF
2 −x) (1 − ei gs

2 e− tF
2 −x)

e−tB + 𝒪 (e−2 tB)

FopenNS (x, tF, tB, ℏ) =
eiℏe

tF
2 −x (1 + e−tF + eiℏ (1 + eiℏ) e− tF

2 −x)
(1 − eiℏ) (1 − eiℏe−tF) (1 − e−iℏe−tF) (1 + eiℏe tF

2 −x) (1 + eiℏe− tF
2 −x)

e−tB + 𝒪 (e−2 tB)



It is indeed possible to construct such entire solutions as

Topological String and Spectral Theory 

ϕ(x) = ∑
k∈ℤ

(eJ(x,μ+i2πk,ξ,ℏ) + e i
ℏ

π2
2 + πx

ℏ +J(−x−iπ,μ+iπ+i2πk,ξ,ℏ))

Each term individually is a formal solution, but they are not entire

ℏ = 4 2

ξ = 2
3

κ = − 27



Topological String and Spectral Theory 

ϕ(x) = ∑
k∈ℤ

(eJ(x,μ+i2πk,ξ,ℏ) + e i
ℏ

π2
2 + πx

ℏ +J(−x−iπ,μ+iπ+i2πk,ξ,ℏ))

For generic value of  this 

is entire in x but not 

κ = eμ

L2(ℝ)
It is in  one at L2(ℝ) κ = − En



Summary and Outlook



Summary and Outlook

The topological string/spectral theory duality provides a precise non-

perturbative relation between topological string theory on local Calabi–

Yau threefolds and the spectral theory of quantized mirror curves.

many applications

Many open problems remain; from a physical perspective, perhaps the 

most interesting is understanding what is the physics of these non-

perturbative effects and what is their geometric interpretation



Thank you!


